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A Basic Question

Lesson from Quantum Complexity Theory:

Finding ground/low energy states is QMA hard, even for 1D systems.

So analysis of many body physics is impossible!

And yet . . . condensed matter physicists do it!

Heuristic techniques, DMRG, have been very successful for 1D systems.

Is there a principled phenomenon behind this?

Is there a clean well defined class of quantum many body systems that we
can analyze?
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Gap and Area Law

The size of the gap between the lowest and second lowest eigenstate:

QMA-complete require an inverse polynomial size gap.

Many physical systems have a constant size gap.

A first point of entry is a remarkable conjecture:

Area Law: Given a gapped local Hamiltonian, for any subset S of particles, the
entanglement entropy of ρS , the reduced density matrix of the ground state restricted
to S, is bounded by the surface area of S i.e. the number of local interactions between
S and S.
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Basic Questions

L

L

Can you prove an area law?

If so, do these states have small working descriptions?

Can they be efficiently computed?
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Concretely in 1D

i

... ...
i+1i

H

Given:

n d-dimensional particles on a line, H = (Cd)⊗n,

local operators 0 ≤ Hi ≤ 1 acting non-trivially on the ith and i+ 1st particle.

a Hamiltonian H =
P
iHi with a gap ε between the energy of the ground state

and the next lowest energy.

Goal: structural properties of the ground state |Γ >.
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Result: 1D Area Law

Previous results for 1D:

Hastings (2007) with bound eO(log d/ε).
I Existence of an MPS with polynomial bond dimension.
I Finding an approximation to the ground state is ∈ NP .

Arad, Landau, Vazirani (2011): Õ( log d
ε

)3 for frustration free system.

Brandao, Horodecki (2012): exponential decay implies an area law.

This result:

Theorem: The entanglement entropy of the ground state of a 1D gapped Hamiltonian
is bounded by Õ( log3 d

ε
)

Exponential improvement of the bound.

Bound the cusp of a 2D sub-volume law.

Implies a sublinear bond dimension MPS which leads to . . .
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Sub-exponential algorithm

Theorem: There is a subexponential time algorithm for finding an inverse polynomial
approximation to ground state of a 1D gapped Hamiltonian.

Combines sublinear bond dimension with a dynamical programing algorithm
(Aharonov, Arad, Irani, 2009).
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Preliminaries: Entanglement Rank

For a vector v ∈ H1 ⊗H2 with Schmidt decomposition v =
PD
i=1 ai ⊗ bi, has

entanglement rank D.
Operators

Operators acting just on one side do not increase the entanglement rank.

Operators of the form
PC

1 Ai ⊗Bi can only increase the entanglement rank by a
factor of C.

C

Local operator Hi can only increase the entanglement rank across i, i+ 1 by d2.

2

Hi =
d
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Preliminaries: Functional calculus of an operator

What does the operator f(H) = H2 − 2H − 1 look like?

Same eigenspaces as H,

Eigenvalue x for H becomes eigenvalue f(x) for f(H).

f(x)

x
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Proof main idea: moving closer while not increasing entanglement too
much

We are looking for an operator K with 2 properties:

It approximately projects onto the ground state:

K= f(H)

∆

1

It doesn’t increase the entanglement too much:

D

. . . 

. . . . . . 

. . . 

K

Such an operator is a (D,∆) Approximate Ground State Projection (AGSP).
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The consequence of a good AGSP: An area law

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which
D∆ < 1/2 proves that the ground state has entropy O(1) logD.
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Building good AGSP’s: reduce the norm

Looking for low entanglement operators that look like:

f(x)

∆

1

ε ||H||

Smaller ||H|| would be better but we don’t want to lost the local structure around the
cut.
Solution: Replace H =

P
iHi with H ′ = HL +H1 +H2 + · · ·+Hs +HR.

1

HL

s+1
...
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Building good AGSP’s: Chebyshev polynomials
Chebyshev polynomials: small in an interval:
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A good AGSP

A dilation and translation of the Chebyshev polynomial gives:

l

∆

1

ε ||H’||

K=C (H’)

with

∆ = e
− `

√
ε√

||H′|| .
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Entanglement Increase due to a single term of (H ′)`

(H ′)` =
X

( product of Hj).

For a single term:

Across some cut, an average number of terms are involved→ d2`/s.
Roundtrip cost of going and coming back from center cut: → ds.

Total: d2`/s+s

. . .
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Entanglement Increase Analysis of (H ′)`

Problem: Too many (s`) terms in naive expansion of (H ′)`.

Need to group terms in a nice way but it all works out with total entanglement increase
of the same order as the single term.
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Putting things together: Area Law for H ′

Chebyshev C`(H ′) has ∆ ≈ e−O(`
√
ε/
√
s):

f(x)

∆

1

ε ||H||

Entanglement analysis yields D ≈ O(d`/s+s).

. . .

2l/sCost d

Cost d s

Chosing ` = s2 yields log(D∆) ≈ −s3/2
√
ε+ s log d. Approximate equality occurs with

s ≈ log2 d/ε which yields D ≈ log3 d/ε.
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From H ′ to H: truncation and the definition of HL and HR

The truncation, A≤t of an operator A:

t

A  = f(A)
t

<t_

Definition of HL and HR using truncation:
1

HL

s+1
...

HL = (
X
i<1

Hi)
≤t, HR = (

X
i>s+1

Hi)
≤t.
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From H ′ to H: robustness of truncation

Question How does the Hamiltonian H ′ = HL +H1 + · · ·+Hs +HR compare to
H =

P
j Hj?

Answer At their low energies, they are very close.

Robustness Theorem: The gaps of H and H ′ are of the same order and the
ground states of H and H ′ are within exp(−t).

Area law for H now follows by starting with a constant truncation level t = t0 and then
letting it grow to t = O(logn).
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Summary

Area law Subexponential time 
algorithm

Gap

Schuch, Cirac, Verstraete
The structural engine for these results are AGSP’s.
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Where to go from here

Towards an area law for 2D . . . any improvement in the entropy bound Õ( log3 d
ε

)
would produce a sub-volume law for 2D systems.

Towards better approximation algorithms for 1D . . . [Landau, Vidick, Vazirani].

Towards more local algorithms in 1D. . .

Of independent interest: entanglement rank has a "random walk" type behavior
(added entanglement of H` is dO(

√
`)).

Of independent interest: robustness theorem of truncation.
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ε

)
would produce a sub-volume law for 2D systems.

Towards better approximation algorithms for 1D . . . [Landau, Vidick, Vazirani].

Towards more local algorithms in 1D. . .

Of independent interest: entanglement rank has a "random walk" type behavior
(added entanglement of H` is dO(

√
`)).

Of independent interest: robustness theorem of truncation.

I. Arad, A. Kitaev, Z. Landau, U. Vazirani () An area law and sub-exponential algorithm for 1D systems. 21 / 21



Where to go from here

Towards an area law for 2D . . . any improvement in the entropy bound Õ( log3 d
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