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The threshold theorem [AB97, KLZ98, Kit97, AGP05] is the central result of the theory of
fault-tolerant quantum computation. It states that, provided the error rate per gate or time step
is below some constant threshold value, then arbitrarily long quantum computations are possible
with only polylogarithmic overhead. The threshold theorem tells us that large quantum computers
are possible in principle, provided experimentalists can achieve an error rate below the threshold
value.

A number of assumptions are needed to prove the threshold theorem. Some of them can be
relaxed and some of them cannot be. One assumption that has been traditionally classified as
necessary is the need for fresh ancilla qubits in the course of the computation. In the course of
quantum error correction, ancilla qubits are introduced and used to record the error syndrome.
This can be viewed as a refrigeration process, where entropy which has been introduced into the
data qubits by the noise gets pumped out into the ancilla qubits, cooling down the data qubits.
In order for this to work, the ancilla qubits used must be cold themselves, or they cannot absorb
the extra entropy from the data. Since ancilla qubits created at the beginning of the computation
are themselves subject to the noise process, we can expect them to heat up over time, eventually
making them worthless for refrigeration. Based on this intuition, we expect to need a continual
stream of new, freshly cooled ancilla qubits to keep the error correction running.

At a rigorous mathematical level, this intuition is supported by the result of [ABIN96], which
showed that for noise in the form of a depolarizing channel, it is impossible to compute for longer
than O(log n) time. We study more general channels and reach a different conclusion. In particular,
we prove the following main theorem:

Theorem 1 (Main Theorem). Let C be any non-unitary channel close to the identity, and consider
quantum computations which suffer from noise C on each qubit at each time step. Up to unitary
equivalence, the limit of repeatedly applying C can be either a point or a diameter in the Bloch
sphere.

1. If the limit is the center of the Bloch sphere, it is possible to compute for a logarithmic time,
and no longer. An example of this class is the depolarizing channel.

2. If the limit is a diameter, than it is possible to compute for only a polynomial length of time.
An example of this class is the dephasing channel.

3. If the limit is a point which is not the center of the Bloch sphere, it is possible to compute
for an exponential number of time steps. An example of this class is the amplitude damping
channel.

For the third case, we expect that it is not possible to compute for longer than exponential
time, but we have not managed to prove this. We have shown upper bounds for the other cases.
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The three classes of channels can also be characterized in terms of how they treat the entropy.
The depolarizing class causes entropy to increase for all states until it reaches the maximum for
the completely mixed state. For the dephasing class of channels, entropy is merely non-decreasing:
For some states it increases, and for others it stays the same. For the amplitude damping class of
channels, entropy can decrease under the channel.

The result with the greatest practical significance is 3, as it enables quantum computation
without fresh qubits. This means that the usual claim that a quantum computation needs fresh
ancilla qubits supplied from the outside is not completely correct. Rather, we have shown that when
the channel is in the amplitude damping class, then we can co-opt the noise to create fresh ancilla
qubits, allowing us to recycle qubits and perform computation even in an otherwise closed system.
This doesn’t really violate the intuition discussed above, because noise of this form provides some
cooling, taking a maximally mixed state to a less mixed state. For instance, if the system is in
thermal contact with a cold bath, if a qubit is not affected by the computation for a long time, it
will tend to equilibrate to the temperature of the bath. Viewed this way, of course the system is
not truly closed, but it is open in only a single limited way.

Moreover, our protocol works for any fixed point (other than the maximally mixed state).
Therefore, even a very hot bath, provided it is at finite temperature, can provide enough cooling
to leverage into a full-blown fault-tolerant computation. Of course, the overhead is very high when
the fixed point is close to maximally mixed, but it is perhaps surprising that it can still be done
at all. One might instead have expected a threshold temperature above which the system is too
hot to compute. There is a threshold error strength, but that is a constraint on the coupling to the
bath rather than the temperature of the bath.

We now provide some intuition to the proofs of the various parts of the main theorem.
We work in a model in which gates are perfect, but after each time step, each qubit undergoes a

single-qubit channel C. Thus, we alternate layers consisting of gates with layers consisting of noise.
Every qubit undergoes the same noise at each time step, and there is no memory or correlation
between different qubits or different time steps.

The lower bounds (showing that quantum computation is possible for at least a certain amount
of time) are proven by allowing arbitrary single-qubit and two-qubit gates in parallel at each time
step, as is usual for fault-tolerant constructions. The upper bounds (showing that computation
is impossible for more than a certain amount of time) are more generous, and allow arbitrary
many-qubit unitaries between the applications of noise at each time step.

• Limit(C) is the center of the Bloch sphere: The proof for this case is just a slight
generalization of [ABIN96], and uses the same techniques.

• Limit(C) is a diameter: By [KR01], the noise is equivalent to the phase damping channel.
We can perform a polynomial-length computation by running the computation on m qubits,
leaving n −m qubits in the state |0〉, a state left unchanged by the noise. At each stage of
the computation it is possible to take fresh qubits which were unaffected by the noise. Since
at most m qubits are needed every step, the computation can go for time (n−m)/m.

Proving the other direction is a little tricky, as it is not clear how fast the entropy rises. We
show that it is impossible to store half of an EPR pair for more than polynomial time. To do
this, we take advantage of the fact that the entropy cannot decrease. Therefore, if the state is
stored for a long time, there must be some time step during which the entropy rises very little.
For the dephasing channel, this can only happen if the qubits are essentially unentangled and
diagonal in the standard basis. But a completely dephased state has no entanglement with
the outside world at all, and therefore we have failed to maintain the EPR pair.
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Figure 1: For noise in the amplitude damping class, the computer consists of three components: A
computation component, a storage house, and a refrigerator.

• Limit(C) is a point which is not the center of the sphere: In this model we divide
the system into three parts. The first part is just a standard fault-tolerant computation using
n′ qubits. At each step we allow this part to use up to n′ qubits, and receive the same number
of fresh qubits from the other parts.

The second part of the computation is a storage house. This part holds n′T chunks of data.
The size of each chunk is a constant R which depends on the channel, and at each stage of
the computation n′ chunks are passed to the refrigerator. Qubits stay in the storage house
for a time T , which is chosen sufficiently long to get close to the fixed point of C. T depends
both on the limit of C and the strength of the noise.

The last part is the refrigerator, which is actually built of O(n′) refrigeration units which
work in parallel. Each such unit takes R qubits (where each qubit in the sequence is very
similar to the limit of C), and condenses the entropy to R − 1 qubits and to a fresh qubit.
Then the refrigerator passes n′ qubits to the computation, which uses as many as it needs.
The dirty qubits left over from the refrigerator, the qubits used up by the computation, and
any unused fresh qubits are recycled by being sent back to the storehouse. The constant R
is a function of the fixed point of C, and is chosen such that R qubits close to the fixed point
have total entropy less than R− 1. The upper bound on the strength of the interaction with
the channel (the threshold under which computation is possible) is determined by the usual
threshold with fresh ancillas and the time to condense one fresh qubit.
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