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In this work, we show that the asymptotic limit of the recoupling coefficients of the
symmetric group is characterized by the existence of quantum states of three particles with
given eigenvalues for their reduced density matrices. This parallels Wigner’s observation that
the semiclassical behavior of the 6j-symbols for SU(2)—fundamental to the quantum theory
of angular momentum—is governed by the existence of Euclidean tetrahedra. Interpreted
differently, our result characterizes the existence of quantum states with certain marginal
eigenvalues in terms of representation theory. We furthermore explain how to deduce solely
from symmetry properties of the recoupling coefficients the strong subadditivity of the von
Neumann entropy, first proved by Lieb and Ruskai, and discuss possible generalizations of
our result.

Spin, the quantum-mechanical analog of angular momentum, is mathematically given by an
irreducible representation of the group SU(2), the covering group of the rotations in three-dimensional
space. In order to compute the total spin of two particles, one needs to decompose the tensor
product of the individual spins into irreducible representations. This decomposition is described by
a unitary matrix whose entries are known as the Clebsch–Gordan coefficients, or, equivalently, as
the Wigner 3j-symbols (the latter differ only in normalisation). Clebsch–Gordan coefficients are
fundamental to quantum theory, governing, for instance, optical transitions in atoms and molecules.
When computing the total spin of three spins j1, j2 and j3, one can either start by decomposing j1
and j2 to obtain j12 and then further decompose j12 and j3 into j123, or, alternatively, decompose j2
and j3 into j23 and then decompose j1 and j23 into j123. The entries of the unitary matrix relating
these two decompositions are known as the recoupling coefficients, or as the Wigner 6j-symbols in
their rescaled, more symmetric form [2]; they depend only on the six mentioned spins (the Racah
W-coefficients [3] are also closely related). The semiclassical limit where all spins are simultaneously
rescaled by k →∞ was first considered by Wigner [2] who noted that the absolute value squared of
the 6j-symbol—corresponding to the probability of particles two and three having total spin j23
given the spins j1, j2, j3, j12, j123—oscillates around the inverse volume of the tetrahedron whose
edges have length equal to the six spins if such a tetrahedron exists; in particular, it then decays
polynomially with k. If no such tetrahedron exists then the 6j-symbol decays exponentially. A more
precise formula together with a heuristic proof was given by Ponzano and Regge [4] and only proved
in 1999 by Roberts [5]. Wigner 6j-symbols and their asymptotics have recently been studied in
depth in the context of quantum gravity, more precisely, in connection with spin foams and spin
networks (see e.g. [6–11]). They also have applications in quantum information theory [12, 13] and
quantum computation [14, 15] (cf. [16]).

In this work we consider the recoupling coefficients of the symmetric group Sk, defined in direct
analogy to the case of SU(2). The spins are replaced by irreducible representations [λ] of Sk, labelled
by Young diagrams λ with k boxes. Since, in contrast to SU(2), the Clebsch–Gordan series for
Sk, [α]⊗ [β] ∼=

⊕
λ[λ]⊗Hαβ

λ , is not multiplicity-free (i.e., dim Hαβ
λ > 1 in general), the recoupling

coefficients are no longer scalars. Instead, they are the linear maps

[
α β µ
γ λ ν

]
: Hµγ

λ ⊗Hαβ
µ → Hλ

αν ⊗Hν
βγ (1)
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which make up the isomorphism relating the two decompositions of a triple tensor product

[α]⊗ [β]⊗ [γ] ∼=
⊕
λ

[λ]⊗

(⊕
µ

Hµγ
λ ⊗Hαβ

µ

)
∼=
⊕
λ

[λ]⊗

(⊕
ν

Hαν
λ ⊗Hβγ

ν

)
. (2)

We now consider the symbols’ Hilbert–Schmidt norm in the limit where k becomes large but where
the normalized Young diagrams α := α/k, β := β/k, etc. converge. To state our result, we introduce
the following terminology: For a density operator ρABC on Ca ⊗ Cb ⊗ Cc, we consider the reduced
density operators ρAB = trC(ρABC), ρA = trBC(ρABC) etc., and denote by rABC , rAB , rA, etc., the
corresponding vectors of eigenvalues (each ordered non-increasingly, e.g. rABC,1 ≥ rABC,2 ≥ . . .).
We call the tuple (rA, rB, rC , rAB, rBC , rABC) the eigenvalues associated to ρABC . The missing rAC
will be discussed in the conclusions. The following theorem is the main result of our work:

Theorem 1. If there exists a quantum state ρABC with eigenvalues (rA, rB, rC , rAB, rBC , rABC)
then there exist Young diagrams α, β, γ, µ, ν, λ with k →∞ boxes such that

lim
k→∞

(α, β, γ, µ, ν, λ) = (rA, rB, rC , rAB, rBC , rABC) (3)

and

‖
[
α β µ
γ λ ν

]
‖HS ≥

1

poly(k)
. (4)

Conversely, if (rA, rB, rC , rAB, rBC , rABC) is not associated to any tripartite quantum state then for
every sequence of Young diagrams satisfying (3) we have

‖
[
α β µ
γ λ ν

]
‖HS ≤ exp(−Ω(k)). (5)

This description of the asymptotics in terms of the existence of a geometric object (here a
quantum state with certain spectral properties) can be seen as a direct analog to the existence of
Wigner’s tetrahedra. Our work can also be understood in the context of the quantum marginal
problem: we characterize the existence of quantum states of three particles with certain marginal
eigenvalues. This extends significantly recent results where it was shown that the case of two
particles is guided by the asymptotics of the Kronecker coefficients of Sk (i.e., the dimensions of
the multiplicity spaces Hαβ

λ ) [17–21], and ties in with the current interest in joint typicality for
multipartite quantum systems [22, 23].

The proof of Theorem 1 builds on and generalizes the quantum information methods developed
in [17, 24, 25]. We work with Hilbert space (Cabc)⊗k in which both the symmetric group Sk and
tripartite quantum states are at home. Using Schur–Weyl duality, we can express the recoupling
coefficients in terms of the overlap of two incompatible (i.e., non-commuting) decompositions into
irreducibles, and the connection to quantum states uses the spectrum estimation theorem [24]
(cf. [17, 26, 27]), which says that k copies of a quantum state ρ on Cd are mostly supported on
the irreducible representations satisfying λ = λ/k ≈ spec ρ = r. Finally, in the proof of the
converse we also use the post-selection technique [25, 28]. The inherent non-commutativity of the
tripartite setup—not present in the bipartite situation—is the main mathematical challenge we
needed to overcome (it is as well the central obstacle for multipartite joint typicality). Geometrically,
the study of recoupling coefficients involves moment maps for non-commuting group actions, and
hence the algebro-geometric methods of [18, 19, 29] are not applicable; our representation-theoretic
characterization of spectra therefore goes beyond these results.
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We now describe how to prove the strong subadditivity of the von Neumann entropy using
Theorem 1 and symmetry considerations. For this, we note that the recoupling coefficients can be
conveniently expressed in the graphical notation of the fusion basis states, commonly employed in
topological quantum computation (see e.g. [30, 31]):

[
α β µ
γ λ ν

]kl
ij

=
1

dim[λ]

i

j
kl

α β

γ
µ

ν

λ

. (6)

The right-hand side diagram can also be interpreted as the contraction of a tensor network built
from four Clebsch–Gordan transformations. Using the properties of the graphical calculus, it is easy
to deduce the following symmetry property:

‖
[
α β µ
γ λ ν

]
‖HS =

√
dim[µ] dim[ν]

dim[β] dim[λ]
‖
[
α µ β
γ ν λ

]
‖HS. (7)

That is, by swapping two columns (corresponding to reflecting the diagram about the α-axis), we
pick up a dimension factor according to the corresponding irreducible representations. We remark
that this relation has a well-known counterpart for SU(2): there, the Clebsch–Gordan series is
multiplicity-free and (7) holds for the absolute values.

Therefore, given a tripartite quantum state ρABC , Theorem 1, the symmetry relation (7) and a
polynomial upper bound imply that

dim[µ] dim[ν]

dim[β] dim[λ]
≥ 1

poly(k)
(8)

for a sequence of normalised Young diagrams converging to the respective spectra for the reduced
density matrices. Since for large k, 1

k log2 dim[λ] → H(r) =
∑

i−λ̄i log2 λ̄i, we conclude that the
von Neumann entropy is strongly subadditive [32],

H(ρAB) +H(ρBC) ≥ H(ρB) +H(ρABC) (9)

for all quantum states ρABC . Weak monotonicity, H(ρAB) + H(ρBC) ≥ H(ρA) + H(ρC), follows
similarly by swapping the columns (α, γ)↔ (µ, ν) instead of (β, λ)↔ (µ, ν) in (7).

In conclusion, we have shown that the existence of tripartite quantum states with certain marginal
eigenvalues determines the asymptotic behavior of the recoupling coefficients of the symmetric
group. Our methods directly generalise to higher recoupling coefficients (the analogs of general
Wigner 3nj-symbols) and quantum states of several particles: just as Theorem 1 characterizes six
of the seven marginal spectra (with rAC missing), in general a linear number of marginal spectra
can be fixed—suggesting that higher-order representation-theoretic structures might play a role
in the characterization of all marginal spectra. In this sense, our result may be regarded as a
partial quantum-mechanical version of Chan and Yeung’s description of the set of local Shannon
entropies in terms of sizes of Young subgroups [33]. We hope that our work might provide some
useful perspective in the search for new entropy inequalities for the von Neumann entropy, the “laws
of quantum information theory” [34–36].
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