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Introduction. For many years, some of the most vexatious open problems of quantum information
theory have concerned maximum output p-norms of quantum channels. If A/ is a quantum channel
(i.e. completely positive, trace-preserving map), the maximum output p-norm of N is defined as

INMl[1p := max{[IN(p)lp, p = 0, trp =1},

where || X||, := (tr|X[?)}/P is the Schatten p-norm. It was a long-standing conjecture in quantum
information theory [1] that, for any two quantum channels N7, N>,

?
N1 ® Nall1p = [IN1[l1pIN2]l1-5p,

at least for p fairly close to 1. This is equivalent to the question of additivity of minimum output
Rényi p-entropies, which are defined in terms of maximum output p-norms as

1

HP) = o IV,
The minimum output Rényi oc-entropy of A is defined as HR"(N) = —log | V]|1—c0, While the

minimum output (von Neumann) entropy H™"(N) is obtained by taking the limit p — 1 [1]. This
case of the additivity question was of particular interest due to its connections with many other
additivity problems in quantum information theory [10]. All of these multiplicativity /additivity
conjectures are now known to be false [11, 12, 7, 8, 6].

As well as the limit p — 1, another important special case of the multiplicativity question is
p = oo, which turns out to be closely related to a number of other quantities studied in quantum
information theory, as we now discuss. By the Stinespring dilation, any quantum channel perform-
ing a map from a d4-dimensional quantum system A to a dp-dimensional quantum system B can
be written as N'(p) = trg VpVT for some isometry V : C%4 — C?8 @ C?®. Let SEP C B(C% @C%»)
be the set of dp x dp-dimensional separable quantum states. For any operator M € B(C?8 @ C%#)
such that 0 < M < I, the quantity

h M) := max tr M
sep(M) X, p
is known as the support function of the separable states, evaluated at M. This quantity has the
following connection to maximum output p-norms of quantum channels, which can easily be proven
using the Schmidt decomposition:

Fact 1. Let N be a quantum channel with corresponding isometry V., and set M = VV'. Then
hsep(M) = |IN 1500

The quantity hggp is crucially important in the study of multiple-prover quantum Merlin-Arthur
games [9, 5]. Indeed, projectors M such that hggp(M®™) = hggp(M)" correspond to measurement
operators occurring in two-prover quantum Merlin-Arthur games (called QMA(2) protocols) which
obey perfect parallel repetition, i.e. where Arthur can simply repeat the protocol n times in parallel
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to reduce a soundness error (failure probability) of s to a soundness error of s™. The failure of
multiplicativity of || N1 implies that such a precise form of parallel repetition cannot hold in
general; however, it could still be the case that a weaker form of parallel repetition holds, where
hsgp(M®™) necessarily decreases exponentially with n.

Counterexamples to multiplicativity. The construction used by [8] to falsify p-norm multi-
plicativity for all p > 1 is to choose the first channel N’s corresponding subspace S C C? @ C¢ at
random from the set of all subspaces of dimension 7 = O(d't/P) (i.e. according to Haar measure
on the unitary group), and to take A as the second channel.

In the case p = oo, the violation of multiplicativity displayed by this construction is near-
maximal. That is,

IV @ N1o0 & [V 100

However, this example leaves open the question of the general behaviour of |N®"||;_,, for larger n.
To the author’s knowledge, two extreme situations are still possibilities: on the one hand, it might
hold that

.
: 2
INE |1 < N1

1—p

for all NV; alternatively, there might be no universal constant a such that, for all channels N,
IV 10p < INITS,.

The former possibility would imply that the largest possible violation of multiplicativity is quite
mild, and in the case p = oo that a form of parallel repetition holds for QMA(2) protocols; the
latter would mean that severe violations are possible and parallel repetition fails.

Main result. The main result of this work is that, even though in certain regimes almost all quan-
tum channels do not obey multiplicativity, the violations of multiplicativity displayed by random
channels are in some sense actually very weak. The result can be summarised informally as follows.
For random channels N satisfying some mild dimensionality constraints, and for any n > 1, with
high probability

IV 1y < AT

—p
We stress that this result holds for all n, and the o(1) term goes to 0 with the dimension of the

space on which A acts, rather than with n. In the case p = oo, this implies that almost all QMA(2)
protocols obey a form of parallel repetition.

In certain regimes, by monotonicity of Rényi entropies our results imply a weak additivity result
for the minimum output von Neumann entropy. Let the dimension of the output subspace of N in
the Stinespring picture be r. Then if r = ©(dp) = O(dg) (roughly speaking, this is the setting of
the random counterexamples to additivity given in [8, 6]), we obtain that

1 1
7Hm1n('/\/'®n) > 5I{mm(./v') _ 0(1)
n
with high probability. This is perhaps the strongest additivity result one could expect for random

channels, given the counterexamples of [8, 6] (although, strictly speaking, in this prior work the
pair (N, N) is considered rather than multiple copies of N).



Proof techniques. The proof of the main result is based on a general upper bound strategy for
hsgp(M). Maximising over the set of separable states is a daunting task, and a useful relaxation
is to maximise over the larger set of PPT states (bipartite quantum states p such that pt' > 0,
where I denotes the partial transpose operation, i.e. the transpose operation performed only on the
second subsystem) and consider

hppr(M) = prenpag(T tr M p.

We observe the following upper bound on this quantity.
Proposition 2. hppr(M) < | M.

A key property of ||[M"| s which we use is that it is multiplicative: for any operators M, N,
(M @ N) oo = [|MF @ N|oo = |MY||oo||N'||oo- Thus, if we can show that ||[M'|. < & for
some ¢, we immediately have that hggp(M®™) < §™. If § is small enough with respect to hsgp (M),
this can be used to prove that the channel corresponding to M obeys a weak version of co-norm
multiplicativity. By Holder’s inequality, this implies weak multiplicativity results for all other
maximum output p-norms.

It is easy to find a suitable general lower bound on hggp(M); the main technical contribution of
this paper is to show a strong upper bound on || M| which holds with high probability. In order
to do this, we prove tail bounds on ||M'||, using the method of moments from random matrix
theory. In other words, we develop bounds on the quantity Etr[(MT)*] for arbitrary even k, where
M is the projector onto a Haar-random subspace of C%8 @ C%#. This is equivalent to bounding
the quantity tr[D(k)"M®)], where x € Sj is a cyclic permutation, D(x) is the corresponding
permutation of k (dpdg)-dimensional systems, and

MW = Eg[UFMEF(UT)®H],
with My being the projector onto an arbitrary fixed dimension r subspace of C?8 ® C?. By Schur-

Weyl duality, the operator M®*) can be expanded in terms of permutations D(w) of k (dpdg)-
dimensional systems, where w € S, i.e.

M® = 3" a,D(n)

TESk
for some coefficients a,;. This implies that
alD(x) M) = Y g™y Ve, (1)
TES

where ¢(7) is the number of cycles of m € Si. The coefficients o, = 7™ /(dpdg)* can be explicitly
calculated in terms of the so-called Weingarten function [4]. In order to find a strong enough bound
on these coefficients, we give a new upper bound on the Weingarten function, which we hope will
find uses elsewhere. And to finally complete the upper bound on eqn. (1), we prove bounds on the
combinatorics of permutations.

Conclusions. We have shown that random channels obey a weak variant of multiplicativity with
high probability. When combined with the results of Christandl, Schuch and Winter [2, 3] on the
antisymmetric subspace, this implies that two of the constructions of channels which display the
strongest known two-copy multiplicativity violations are in fact weakly multiplicative when the
number of copies increases. This naturally leads one to conjecture that in fact all channels satisfy
some form of weak multiplicativity (see [6] for a similar conjecture). This is an intriguing open
problem.
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