Lower bounds for combinatorial polytopes, inspired by quantum communication complexity

Ronald de Wolf

Joint with Samuel Fiorini (ULB), Serge Massar (ULB), Sebastian Pokutta (Erlangen), Hans Raj Tiwary (ULB)
Background: solving NP by LP?
Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian’79)
Background: solving NP by LP?

- Famous \(\mathbf{P} \)-problem: linear programming (Khachian’79)
- Famous \(\mathbf{NP} \)-hard problem: traveling salesman problem
Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian’79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $\mathbf{P} = \mathbf{NP}$
Background: solving \text{NP} by LP?

- Famous \text{P}-problem: \text{linear programming} (Khachian’79)
- Famous \text{NP}-hard problem: \text{traveling salesman problem}
- A polynomial-size LP for TSP would show \text{P} = \text{NP}
- Swart’86–87 claimed to have found such LPs
Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian’79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $P = NP$
- Swart’86–87 claimed to have found such LPs
- Yannakakis’88: symmetric LPs for TSP are exponential
Background: solving NP by LP?

- Famous \(\mathbf{P} \)-problem: linear programming (Khachian’79)
- Famous \(\mathbf{NP} \)-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show \(\mathbf{P} = \mathbf{NP} \)
- Swart’86–87 claimed to have found such LPs
- Yannakakis’88: symmetric LPs for TSP are exponential
- Swart’s LPs were symmetric, so they couldn’t work
Background: solving NP by LP?

- Famous P-problem: linear programming (Khachian’79)
- Famous NP-hard problem: traveling salesman problem
- A polynomial-size LP for TSP would show $P = NP$
- Swart’86–87 claimed to have found such LPs
- Yannakakis’88: symmetric LPs for TSP are exponential
- Swart’s LPs were symmetric, so they couldn’t work
- 20-year open problem: what about non-symmetric LP?
Background: solving NP by LP?

- Famous \(\mathbf{P} \)-problem: \textit{linear programming} (Khachian’79)
- Famous \(\mathbf{NP} \)-hard problem: \textit{traveling salesman problem}
- A polynomial-size LP for TSP would show \(\mathbf{P} = \mathbf{NP} \)
- Swart’86–87 claimed to have found such LPs
- Yannakakis’88: \textit{symmetric} LPs for TSP are exponential
- Swart’s LPs were symmetric, so they couldn’t work
- 20-year open problem: what about \textit{non-symmetric} LP?
- Sometimes non-symmetry helps a lot! (Kaibel et al’10)
Background: solving NP by LP?

- Famous \textbf{P}-problem: \textit{linear programming} (Khachian’79)
- Famous \textbf{NP}-hard problem: \textit{traveling salesman problem}
- A polynomial-size LP for TSP would show \(P = NP \)
- Swart’86–87 claimed to have found such LPs
- Yannakakis’88: \textit{symmetric} LPs for TSP are exponential
- Swart’s LPs were symmetric, so they couldn’t work
- 20-year open problem: what about \textit{non-symmetric} LP?
- Sometimes non-symmetry helps a lot! (Kaibel et al’10)
- Yannakakis, May 2011: “I believe in fact that it should be possible to prove that there is no polynomial-size formulation for the TSP polytope or any other NP-hard problem, although of course showing this remains a challenging task”
Basics of polytopes

Polytope P: convex hull of finite set of points in \mathbb{R}^d
Basics of polytopes

Polytope P: convex hull of finite set of points in \mathbb{R}^d

\Leftrightarrow bounded intersection of finitely many halfspaces
Basics of polytopes

Polytope P: convex hull of finite set of points in \mathbb{R}^d

\Leftrightarrow bounded intersection of finitely many halfspaces

Can be written as system of linear inequalities:

$$P = \{ x \in \mathbb{R}^d \mid Ax \leq b \}$$
Basics of polytopes

- **Polytope** \(P \): convex hull of finite set of points in \(\mathbb{R}^d \)

 ⇔ bounded intersection of finitely many halfspaces

- Can be written as system of linear inequalities:
 \[
P = \{ x \in \mathbb{R}^d \mid Ax \leq b \}
 \]

Different systems “\(Ax \leq b \)” can define the same \(P \)
Basics of polytopes

- **Polytope** P: convex hull of finite set of points in \mathbb{R}^d

 \Leftrightarrow bounded intersection of finitely many halfspaces

- Can be written as system of linear inequalities:

 $P = \{ x \in \mathbb{R}^d | Ax \leq b \}$

 Different systems “$Ax \leq b$” can define the same P

 The **size** of P is the minimal number of inequalities
Basics of polytopes

- **Polytope** P: convex hull of finite set of points in \mathbb{R}^d

 \Leftrightarrow bounded intersection of finitely many halfspaces

- Can be written as system of linear inequalities:

 $P = \{ x \in \mathbb{R}^d \mid Ax \leq b \}$

- Different systems “$Ax \leq b$” can define the same P

- The **size** of P is the minimal number of inequalities

- **TSP polytope**: convex hull of Hamiltonian cycles in K_n

 $P_{TSP} = \text{conv}\{ \chi^F \in \{0, 1\}^{\binom{n}{2}} \mid F \subseteq E_n \text{ is a tour of } K_n \}$
Basics of polytopes

- **Polytope** \(P \): convex hull of finite set of points in \(\mathbb{R}^d \)

\[\Leftrightarrow \text{bounded intersection of finitely many halfspaces} \]

- Can be written as system of linear inequalities:

\[P = \{ x \in \mathbb{R}^d \mid Ax \leq b \} \]

Different systems “\(Ax \leq b \)” can define the same \(P \)

The size of \(P \) is the minimal number of inequalities

- **TSP polytope**: convex hull of Hamiltonian cycles in \(K_n \)

\[P_{\text{TSP}} = \text{conv} \left\{ \chi^F \in \{0, 1\}^\binom{n}{2} \mid F \subseteq E_n \text{ is a tour of } K_n \right\} \]

- Solving TSP w.r.t. weight function \(w_{ij} \):

minimize the linear function \(\sum_{i,j} w_{ij} x_{ij} \) over \(x \in P_{\text{TSP}} \)
Basics of polytopes

- **Polytope** P: convex hull of finite set of points in \mathbb{R}^d

 \Leftrightarrow bounded intersection of finitely many halfspaces

- Can be written as system of linear inequalities:

 $$P = \{x \in \mathbb{R}^d \mid Ax \leq b\}$$

 Different systems “$Ax \leq b$” can define the same P

 The size of P is the minimal number of inequalities

- **TSP polytope**: convex hull of Hamiltonian cycles in K_n

 $$P_{TSP} = \text{conv}\{\chi^F \in \{0, 1\}^{n \choose 2} \mid F \subseteq E_n \text{ is a tour of } K_n\}$$

- Solving TSP w.r.t. weight function w_{ij}:
 minimize the linear function $\sum_{i,j} w_{ij}x_{ij}$ over $x \in P_{TSP}$

- P_{TSP} has exponential size, so corresponding LP is huge
Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.
Extended formulations of polytopes

Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^2 has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$.
Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^2 has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- Extended formulation of P:
 polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P = \{x \mid \exists y \text{ s.t. } (x, y) \in Q\}$
Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

 Regular n-gon in \mathbb{R}^2 has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- **Extended formulation** of P:
 polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P = \{x \mid \exists y \text{ s.t. } (x, y) \in Q\}$

- Optimizing over P reduces to optimizing over Q. If Q has small size, this can be done efficiently!
Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^2 has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

- **Extended formulation of P:**
 polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P = \{x \mid \exists y \text{ s.t. } (x, y) \in Q\}$

- Optimizing over P reduces to optimizing over Q. If Q has small size, this can be done efficiently!

- How small can size(Q) be? **Extension complexity:**
 $xc(P) = \min\{\text{size}(Q) \mid Q \text{ is an EF of } P\}$
Extended formulations of polytopes

- Sometimes extra variables/dimensions can reduce size very much.

Regular n-gon in \mathbb{R}^2 has size n, but is the projection of polytope in higher dimension, of size $O(\log n)$

Extended formulation of P:
polytope $Q \subseteq \mathbb{R}^{d+k}$ s.t. $P = \{ x \mid \exists y \text{ s.t. } (x, y) \in Q \}$

Optimizing over P reduces to optimizing over Q. If Q has small size, this can be done efficiently!

How small can size(Q) be? **Extension complexity**:
$$xc(P) = \min\{\text{size}(Q) \mid Q \text{ is an EF of } P\}$$

Our goal: strong lower bounds on $xc(P)$ for interesting P
The TSP polytope: main result
The TSP polytope: main result

\[P_{\text{TSP}} = \text{conv}\{\chi^F \in \{0, 1\}^{n \choose 2} | F \subseteq E_n \text{ is a tour of } K_n\} \]
The TSP polytope: main result

\[P_{\text{TSP}} = \text{conv}\{\chi^F \in \{0, 1\}^{n \choose 2} \mid F \subseteq E_n \text{ is a tour of } K_n\} \]

Our main result: \(xc(P_{\text{TSP}}) \geq 2^{\Omega(\sqrt{n})} \)
The TSP polytope: main result

- \(P_{\text{TSP}} = \text{conv}\{\chi^F \in \{0, 1\}^\binom{n}{2} \mid F \subseteq E_n \text{ is a tour of } K_n\} \)
- Our main result: \(xc(P_{\text{TSP}}) \geq 2^{\Omega(\sqrt{n})} \)
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time
The TSP polytope: main result

- \(P_{\text{TSP}} = \text{conv}\{\chi^F \in \{0, 1\}^{n \choose 2} \mid F \subseteq E_n \text{ is a tour of } K_n\} \)

- Our main result: \(xc(P_{\text{TSP}}) \geq 2^{\Omega(\sqrt{n})} \)

- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time

- This rules out a lot of potential algorithms
The TSP polytope: main result

\[P_{\text{TSP}} = \text{conv}\{\chi^F \in \{0, 1\}^{n \choose 2} \mid F \subseteq E_n \text{ is a tour of } K_n \} \]

Our main result: \(xc(P_{\text{TSP}}) \geq 2^{\Omega(\sqrt{n})} \)

Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time

This rules out a lot of potential algorithms

Roadmap for the proof:

\(2^n \) lower bound on \(xc \) of correlation polytope
The TSP polytope: main result

- \(P_{\text{TSP}} = \text{conv}\{ \chi^F \in \{0, 1\}^{(n/2)} \mid F \subseteq E_n \text{ is a tour of } K_n \} \)
- Our main result: \(xc(P_{\text{TSP}}) \geq 2^{\Omega(\sqrt{n})} \)
- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time
- This rules out a lot of potential algorithms

Roadmap for the proof:

- \(2^n \) lower bound on \(xc \) of correlation polytope
 [inspired by quantum communication complexity!]
The TSP polytope: main result

- $P_{TSP} = \text{conv}\{x^F \in \{0, 1\}^{\binom{n}{2}} | F \subseteq E_n \text{ is a tour of } K_n\}$

- Our main result: $xc(P_{TSP}) \geq 2^{\Omega(\sqrt{n})}$

- Hence every LP for TSP based on extended formulation of TSP-polytope needs exponential time

- This rules out a lot of potential algorithms

Roadmap for the proof:

- 2^n lower bound on xc of correlation polytope
 [inspired by quantum communication complexity!]
 \[\downarrow\] gadget-based reduction

- $2^{\sqrt{n}}$ lower bound for TSP-polytope
How to lower bound extension compl?
How to lower bound extension compl?

- Slack matrix S of a polytope $P = \text{conv}(V)$ with inequalities $\{A_i x \leq b_i\}$ and points $V = \{v_j\}$:

$$S_{ij} = b_i - A_i v_j$$
How to lower bound extension compl?

Slack matrix S of a polytope $P = \text{conv}(V)$ with inequalities $\{A_ix \leq b_i\}$ and points $V = \{v_j\}$:

$$S_{ij} = b_i - A_iv_j$$

NB: every entry is nonnegative; S is not unique
How to lower bound extension compl?

- Slack matrix S of a polytope $P = \text{conv}(V)$ with inequalities $\{A_ix \leq b_i\}$ and points $V = \{v_j\}$:

 $$S_{ij} = b_i - A_iv_j$$

 NB: every entry is nonnegative; S is not unique

- Positive factorization $S = \sum_{i=1}^{r} u_iv_i^T$, vectors $u_i, v_i \geq 0$
How to lower bound extension compl?

- Slack matrix S of a polytope $P = \text{conv}(V)$ with inequalities $\{A_i x \leq b_i\}$ and points $V = \{v_j\}$:

$$S_{ij} = b_i - A_i v_j$$

NB: every entry is nonnegative; S is not unique

- Positive factorization $S = \sum_{i=1}^{r} u_i v_i^T$, vectors $u_i, v_i \geq 0$

- Nonnegative rank: $\text{rank}_+(S) = \min \text{ such } r$
How to lower bound extension compl?

- Slack matrix S of a polytope $P = \text{conv}(V)$ with inequalities $\{A_i x \leq b_i\}$ and points $V = \{v_j\}$:
 \[S_{ij} = b_i - A_i v_j \]

 NB: every entry is nonnegative; S is not unique

- Positive factorization $S = \sum_{i=1}^{r} u_i v_i^T$, vectors $u_i, v_i \geq 0$

- Nonnegative rank: $\text{rank}_+(S) = \min \text{ such } r$

- Yannakakis’88: $xc(P) = \text{rank}_+(S)$
How to lower bound extension compl?

- Slack matrix S of a polytope $P = \text{conv}(V)$ with inequalities $\{A_ix \leq b_i\}$ and points $V = \{v_j\}$:

$$S_{ij} = b_i - A_iv_j$$

NB: every entry is nonnegative; S is not unique

- Positive factorization $S = \sum_{i=1}^{r} u_i v_i^T$, vectors $u_i, v_i \geq 0$

- Nonnegative rank: $\text{rank}_+(S) = \min_r$ such r

- Yannakakis’88: $xc(P) = \text{rank}_+(S)$

- $\text{rank}_+(S)$ has many connections with communication complexity
Communication compl. in expectation
“Computing a matrix M in expectation”
“Computing a matrix M in expectation”:
Alice gets input $a \in \{0, 1\}^n$, Bob gets input $b \in \{0, 1\}^n$,
Bob should output a nonnegative z such that $\mathbb{E}[z] = M_{ab}$
“Computing a matrix M in expectation”: Alice gets input $a \in \{0, 1\}^n$, Bob gets input $b \in \{0, 1\}^n$, Bob should output a nonnegative z such that $\mathbb{E}[z] = M_{ab}$.

Faenza et al.’11: classical communication required $= \log \text{rank}_+(M)$ bits.
“Computing a matrix M in expectation”:
Alice gets input $a \in \{0, 1\}^n$, Bob gets input $b \in \{0, 1\}^n$,
Bob should output a nonnegative z such that $\mathbb{E}[z] = M_{ab}$

Faenza et al.’11:
classical communication required $= \log \text{rank}_+(M)$ bits

Can we find a matrix M where
quantum communication is exponentially smaller?
Quantum-classical separation
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

$$M_{ab} = (1 - a^T b)^2$$
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

\[M_{ab} = (1 - a^T b)^2 \]

NB: $M_{ab} = 0$ iff $a^T b = 1$
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

 $$M_{ab} = (1 - a^T b)^2 \quad \text{NB: } M_{ab} = 0 \text{ iff } a^T b = 1$$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

 $$M_{ab} = (1 - a^T b)^2$$

 NB: $M_{ab} = 0$ iff $a^T b = 1$

- **Claim**: $2^{\Omega(n)}$ rectangles needed to cover support of M

 Proof (informally): Razborov showed that a rectangle that doesn’t contain (a, b)-pairs with $a^T b = 1$, can cover only an exponentially small fraction of disjoint (a, b).

Lower bounds for combinatorial polytopes, inspired by quantum communication complexity – p. 8/13
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

$$M_{ab} = (1 - a^T b)^2$$

NB: $M_{ab} = 0$ iff $a^T b = 1$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M

Proof (informally): Razborov showed that a rectangle that doesn’t contain (a, b)-pairs with $a^T b = 1$, can cover only an exponentially small fraction of disjoint (a, b).

\Rightarrow $2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)
 \[M_{ab} = (1 - a^T b)^2 \]
 NB: $M_{ab} = 0$ iff $a^T b = 1$

Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M

Proof (informally): Razborov showed that a rectangle that doesn’t contain (a, b)-pairs with $a^T b = 1$, can cover only an exponentially small fraction of disjoint (a, b).

$\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)

If $M = \sum_{i=1}^{r} u_i v_i^T$, $u_i, v_i \geq 0$, each $u_i v_i^T$ gives a non-zero rectangle
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

$$M_{ab} = (1 - a^T b)^2$$

NB: $M_{ab} = 0$ iff $a^T b = 1$

Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M

Proof (informally): Razborov showed that a rectangle that doesn’t contain (a, b)-pairs with $a^T b = 1$, can cover only an exponentially small fraction of disjoint (a, b).

$\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)

- If $M = \sum_{i=1}^{r} u_i v_i^T$, $u_i, v_i \geq 0$, each $u_i v_i^T$ gives a non-zero rectangle $\Rightarrow r \geq 2^{\Omega(n)}$
Quantum-classical separation

- \(2^n \times 2^n\) matrix \(M\), indexed by \(a, b \in \{0, 1\}^n\) (de Wolf’00)

\[M_{ab} = (1 - a^T b)^2\]

NB: \(M_{ab} = 0\) iff \(a^T b = 1\)

Claim: \(2^{\Omega(n)}\) rectangles needed to cover support of \(M\)

Proof (informally): Razborov showed that a rectangle that doesn’t contain \((a, b)\)-pairs with \(a^T b = 1\), can cover only an exponentially small fraction of disjoint \((a, b)\).

\[\Rightarrow 2^{\Omega(n)}\) rectangles needed to cover all disjoint \((a, b)\)

If \(M = \sum_{i=1}^{T} u_i v_i^T\), \(u_i, v_i \geq 0\), each \(u_i v_i^T\) gives a non-zero rectangle \(\Rightarrow r \geq 2^{\Omega(n)} \Rightarrow \Omega(n)\) classical communication
Quantum-classical separation

- $2^n \times 2^n$ matrix M, indexed by $a, b \in \{0, 1\}^n$ (de Wolf’00)

 $$M_{ab} = (1 - a^T b)^2$$

 NB: $M_{ab} = 0$ iff $a^T b = 1$

- Claim: $2^{\Omega(n)}$ rectangles needed to cover support of M

 Proof (informally): Razborov showed that a rectangle that doesn’t contain (a, b)-pairs with $a^T b = 1$, can cover only an exponentially small fraction of disjoint (a, b).

 $\Rightarrow 2^{\Omega(n)}$ rectangles needed to cover all disjoint (a, b)

- If $M = \sum_{i=1}^r u_i v_i^T$, $u_i, v_i \geq 0$, each $u_i v_i^T$ gives a non-zero rectangle $\Rightarrow r \geq 2^{\Omega(n)} \Rightarrow \Omega(n)$ classical communication

- There is a $O(\log n)$-qubit protocol: Alice sends $(a, 1)$, Bob measures $(b, -1)$ (ignoring normalization)
Lower bound for correlation polytope
Correlation polytope: $\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\}$
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T | b \in \{0, 1\}^n\} \)
- The following constraints hold (one for each \(a \in \{0, 1\}^n \)):

\[
\forall x \in \text{COR}(n) : \text{Tr}\left[(2\text{diag}(a) - aa^T)x\right] \leq 1
\]
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\} \)
- The following constraints hold (one for each \(a \in \{0, 1\}^n \)):
 \[\forall x \in \text{COR}(n) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1 \]

Slack of this \(a\)-constraint w.r.t. vertex \(bb^T\):
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\} \)
- The following constraints hold (one for each \(a \in \{0, 1\}^n \)):

 \[
 \forall x \in \text{COR}(n) : \text{Tr}\left[(2\text{diag}(a) - aa^T)x\right] \leq 1
 \]

 Slack of this \(a \)-constraint w.r.t. vertex \(bb^T \):

 \[
 S_{ab} = 1 - \text{Tr}\left[(2\text{diag}(a) - aa^T)bb^T\right]
 \]
Correlation polytope: $\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\}$

The following constraints hold (one for each $a \in \{0, 1\}^n$):

$$\forall x \in \text{COR}(n): \text{Tr}\left[(2\text{diag}(a) - aa^T)x\right] \leq 1$$

Slack of this a-constraint w.r.t. vertex bb^T:

$$S_{ab} = 1 - \text{Tr}\left[(2\text{diag}(a) - aa^T)bb^T\right] = (1 - a^Tb)^2$$
Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\} \)

The following constraints hold (one for each \(a \in \{0, 1\}^n \)):

\[
\forall x \in \text{COR}(n) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1
\]

Slack of this \(a \)-constraint w.r.t. vertex \(bb^T \):

\[
S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^T b)^2 = M_{ab}
\]
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T | b \in \{0, 1\}^n\} \)

- The following constraints hold (one for each \(a \in \{0, 1\}^n \)):

\[
\forall x \in \text{COR}(n) : \text{Tr} \left[(2 \text{diag}(a) - aa^T)x \right] \leq 1
\]

Slack of this \(a \)-constraint w.r.t. vertex \(bb^T \):
\[
S_{ab} = 1 - \text{Tr} \left[(2 \text{diag}(a) - aa^T)bb^T \right] = (1 - a^T b)^2 = M_{ab}
\]

- Take slack matrix \(S \) for COR, with \(2^n \) vertices \(bb^T \) for columns, \(2^n a \)-constraints for first \(2^n \) rows, remaining facets for other rows

\[
S = \begin{bmatrix}
\vdots & \vdots \\
\vdots & M_{ab} & \vdots \\
\vdots & \vdots \\
\end{bmatrix}
\]
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T | b \in \{0, 1\}^n\} \)
- The following constraints hold (one for each \(a \in \{0, 1\}^n \)):
 \[
 \forall x \in \text{COR}(n): \text{Tr}\left[(2\text{diag}(a) - aa^T)x\right] \leq 1
 \]

 Slack of this \(a \)-constraint w.r.t. vertex \(bb^T \):
 \[
 S_{ab} = 1 - \text{Tr}\left[(2\text{diag}(a) - aa^T)bb^T\right] = (1 - a^Tb)^2 = M_{ab}
 \]

- Take slack matrix \(S \) for \(\text{COR} \), with \(2^n \) vertices \(bb^T \) for columns, \(2^n \) \(a \)-constraints for first \(2^n \) rows, remaining facets for other rows

- \(xc(\text{COR}(n)) \)
Lower bound for correlation polytope

Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\} \)

The following constraints hold (one for each \(a \in \{0, 1\}^n \)):

\[\forall x \in \text{COR}(n) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1 \]

Slack of this \(a \)-constraint w.r.t. vertex \(bb^T \):

\[S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^Tb)^2 = M_{ab} \]

Take slack matrix \(S \) for \(\text{COR} \), with \(2^n \) vertices \(bb^T \) for columns, \(2^n \) \(a \)-constraints for first \(2^n \) rows, remaining facets for other rows

\[xc(\text{COR}(n)) = \text{rank}_+(S) \]
Lower bound for correlation polytope

- Correlation polytope: \(\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\} \)
- The following constraints hold (one for each \(a \in \{0, 1\}^n \)):

\[
\forall x \in \text{COR}(n) : \text{Tr} \left((2\text{diag}(a) - aa^T)x \right) \leq 1
\]

Slack of this \(a \)-constraint w.r.t. vertex \(bb^T \):
\[
S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^T b)^2 = M_{ab}
\]

- Take slack matrix \(S \) for COR, with \(2^n \) vertices \(bb^T \) for columns, \(2^n \) \(a \)-constraints for first \(2^n \) rows, remaining facets for other rows

\[
x_c(\text{COR}(n)) = \text{rank}_+(S) \geq \text{rank}_+(M)
\]
Lower bound for correlation polytope

- Correlation polytope: $\text{COR}(n) = \text{conv}\{bb^T \mid b \in \{0, 1\}^n\}$

- The following constraints hold (one for each $a \in \{0, 1\}^n$):

 $$\forall x \in \text{COR}(n) : \text{Tr} \left[(2\text{diag}(a) - aa^T)x \right] \leq 1$$

Slack of this a-constraint w.r.t. vertex bb^T:

$$S_{ab} = 1 - \text{Tr} \left[(2\text{diag}(a) - aa^T)bb^T \right] = (1 - a^Tb)^2 = M_{ab}$$

- Take slack matrix S for COR, with 2^n vertices bb^T for columns, 2^n a-constraints for first 2^n rows, remaining facets for other rows

$$S = \begin{bmatrix}
 \cdots \\
 \cdots & M_{ab} & \cdots \\
 \cdots \\
\end{bmatrix}$$

- $xc(\text{COR}(n)) = \text{rank}_+(S) \geq \text{rank}_+(M) \geq 2^{\Omega(n)}$
Consequences for other polytopes
Consequences for other polytopes

Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:
Consequences for other polytopes

Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:

- $\geq 2^n$ for the CUT polytope
Consequences for other polytopes

Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:

- $\geq 2^n$ for the CUT polytope
- $\geq 2\sqrt{n}$ for TSP polytope
Consequences for other polytopes

Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:

- $\geq 2^n$ for the CUT polytope
- $\geq 2^{\sqrt{n}}$ for TSP polytope
- $\geq 2^{\sqrt{n}}$ for Stable Set polytope for specific graph
Consequences for other polytopes

Via classical reductions we can prove lower bounds on the extension complexity of other polytopes:

- $\geq 2^n$ for the CUT polytope
- $\geq 2\sqrt{n}$ for TSP polytope
- $\geq 2\sqrt{n}$ for Stable Set polytope for specific graph

This refutes all P=NP “proofs” à la Swart
I WISH P ≠ NP WAS FINALLY PROVED!

BY ME, OF COURSE!

POOR FELLOW!
HE DOESN'T KNOW IT'S EQUAL
INDEED, CONSIDER THE TRAVELLING DOG PROBLEM...*

* SORRY, THIS CARTOON IS TOO SMALL TO CONTAIN THE PROOF

Cartoon by Pavel Pudlak
Quantum techniques as a proof-tool
Quantum techniques as a proof-tool

Did we really need quantum for this proof?
Quantum techniques as a proof-tool

Did we really need quantum for this proof?
No – but we wouldn’t have found this proof without our interest in quantum communication complexity
Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No – but we wouldn’t have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No – but we wouldn’t have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of “quantum proofs for classical theorems”
Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No – but we wouldn’t have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of “quantum proofs for classical theorems”. Also:
 - Lower bounds for locally decodable codes (K & dW)
Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No – but we wouldn’t have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of “quantum proofs for classical theorems”. Also:
 - Lower bounds for locally decodable codes (K & dW)
 - New proofs of classical complexity results: PP is closed under intersection, Permanent is #P-complete (Aaronson)
Quantum techniques as a proof-tool

Did we really need quantum for this proof?
No – but we wouldn’t have found this proof without our interest in quantum communication complexity
Wittgenstein: climb the ladder, and then throw it away
This is yet another (albeit weak) example of “quantum proofs for classical theorems”. Also:
- Lower bounds for locally decodable codes (K & dW)
- New proofs of classical complexity results:
 - PP is closed under intersection,
 - Permanent is #P-complete (Aaronson)
- Proof systems for lattice-problems (Aharonov, Regev)
Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No – but we wouldn’t have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of “quantum proofs for classical theorems”. Also:
 - Lower bounds for locally decodable codes (K & dW)
 - New proofs of classical complexity results: PP is closed under intersection, Permanent is #P-complete (Aaronson)
 - Proof systems for lattice-problems (Aharonov, Regev)
 - Proof of Varopoulos conjecture (BBLV)
Quantum techniques as a proof-tool

- Did we really need quantum for this proof?
- No – but we wouldn’t have found this proof without our interest in quantum communication complexity
- Wittgenstein: climb the ladder, and then throw it away
- This is yet another (albeit weak) example of “quantum proofs for classical theorems”. Also:
 - Lower bounds for locally decodable codes (K & dW)
 - New proofs of classical complexity results: PP is closed under intersection, Permanent is #P-complete (Aaronson)
 - Proof systems for lattice-problems (Aharonov, Regev)
 - Proof of Varopoulos conjecture (BBLV)
 - Efficient algorithms ⇒ low-degree polynomials
Summary

We studied the extension complexity of polytopes
Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity
Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity

Further research:
- Lower bound for the matching polytope? (Yannakakis: exponential LB for symmetric)
Summary

- We studied the extension complexity of polytopes
- Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity.

Further research:
- Lower bound for the matching polytope? (Yannakakis: exponential LB for symmetric)
- Lower bounds on positive semidefinite extensions? [Not shown here: this is closely connected to quantum communication complexity]
Summary

• We studied the extension complexity of polytopes

• Showed exponential lower bounds on the extension complexities of the correlation, cut, stable set, and TSP polytopes, even for non-symmetric extensions. This solves a 20-year old problem of Yannakakis, inspired by quantum communication complexity

• Further research:

 • Lower bound for the matching polytope? (Yannakakis: exponential LB for symmetric)

 • Lower bounds on positive semidefinite extensions? [Not shown here: this is closely connected to quantum communication complexity]

 • Lower bounds for approximation? [BFPS’12,BM’12]