Rank-one and Quantum XOR Games

T. Cooney1 M. Junge2 C. Palazuelos3 D. Pérez García1 and O. Regev4 T. Vidick5

1Universidad Complutense de Madrid
2University of Illinois at Urbana Champaign
3Instituto de Ciencias Matemáticas, CSIC, Madrid
4CNRS, Paris, and Tel Aviv University
5Massachusetts Institute of Technology

QIP 2013, Tsinghua University, Beijing, China
Two Player, One Round Games

Alice

Referee

Bob

\[V(a, b, x, y) \in \{0, 1\} \]

- Computational Complexity
 - Interactive proof systems
 - Efficient proof verification
 - PCP theorem
 - Hardness of approximation
Two Player, One Round Games

\[V(a, b, x, y) \in \{0, 1\} \]

- Computational Complexity
 - Interactive proof systems
 - Efficient proof verification
 - PCP theorem
 - Hardness of approximation
- Nonlocality/Bell inequalities
Classical XOR Games

Classical XOR games: \(\{a, b\} \in \{0, 1\} \)

\[V(a, b, x, y) = V(a \oplus b, x, y). \]
Biases of (Classical) XOR Games

- Bias = $2 \times$ Maximum Success Probability $- 1$
Biases of (Classical) XOR Games

- Bias = 2 × Maximum Success Probability − 1
- Unentangled bias $\omega(G)$ (with classical resources)
Biases of (Classical) XOR Games

- Bias = $2 \times$ Maximum Success Probability -1
- Unentangled bias $\omega(G)$ (with classical resources)
- Maximally entangled bias $\omega^{me}(G)$
 (Players can share maximally entangled state of arbitrary dimension)
Biases of (Classical) XOR Games

- Bias = $2 \times$ Maximum Success Probability $- 1$
- Unentangled bias $\omega(G)$ (with classical resources)
- Maximally entangled bias $\omega^{me}(G)$
 (Players can share maximally entangled state of arbitrary dimension)
- Entangled bias $\omega^*(G)$
Classical XOR Games versus Quantum XOR

- For all classical XOR games G, we have
 $$\omega(G) \leq \omega^*(G) \leq K \omega(G),$$
 where $1.67 \leq K \leq 1.783$, [CHTW04].

Quantum XOR: Unbounded advantage provided by entanglement

Classical XOR: Maximally entangled states are optimal resource. [CHTW04]

Quantum XOR: Unbounded advantage over maximally entangled states
Classical XOR Games versus Quantum XOR

- For all classical XOR games G, we have
 \[\omega(G) \leq \omega^*(G) \leq K \omega(G), \]
 where $1.67 \leq K \leq 1.783$, [CHTW04]. ✓

- Quantum XOR: Unbounded advantage provided by entanglement X
 \[\omega^*(T_n) = \sqrt{n} \omega(T_n) \]
Classical XOR Games versus Quantum XOR

- For all classical XOR games G, we have
 \[\omega(G) \leq \omega^*(G) \leq K \omega(G), \]

 where $1.67 \leq K \leq 1.783$, [CHTW04].

- Quantum XOR: Unbounded advantage provided by entanglement

 \[\omega^*(T_n) = \sqrt{n} \omega(T_n) \]

- Classical XOR: Maximally entangled states are optimal resource. [CHTW04]
Classical XOR Games versus Quantum XOR

- For all classical XOR games G, we have
 \[\omega(G) \leq \omega^*(G) \leq K \omega(G), \]
 where $1.67 \leq K \leq 1.783$, [CHTW04].

- Quantum XOR: Unbounded advantage provided by entanglement
 \[\omega^*(T_n) = \sqrt{n} \omega(T_n) \]

- Classical XOR: Maximally entangled states are optimal resource. [CHTW04]

- Quantum XOR: Unbounded advantage over maximally entangled states
 \[\omega^*(T_n) = \sqrt{n} \omega^{me}(T_n) \]
Classical XOR Games versus Quantum XOR

- For Classical XOR games G, $\omega^*(G)$ can be efficiently computed using SDP. [CHTW04] ✓
Classical XOR Games versus Quantum XOR

- For Classical XOR games G, $\omega^*(G)$ can be efficiently computed using SDP. [CHTW04]
- For Quantum XOR games G, $\omega^*(G)$ can be approximated up to a constant multiplicative factor using SDP.
Classical XOR Games versus Quantum XOR

- For Classical XOR games G, $\omega^*(G)$ can be efficiently computed using SDP. [CHTW04]

- For Quantum XOR games G, $\omega^*(G)$ can be approximated up to a constant multiplicative factor using SDP.

- [CSUU08] Classical XOR games satisfy Perfect Parallel Repetition:

 $$\omega^*(G^\otimes n) = (\omega^*(G))^n$$
Classical XOR Games versus Quantum XOR

- For Classical XOR games G, $\omega^*(G)$ can be efficiently computed using SDP. [CHTW04] ✓
- For Quantum XOR games G, $\omega^*(G)$ can be approximated up to a constant multiplicative factor using SDP. ✓
- [CSUU08] Classical XOR games satisfy *Perfect Parallel Repetition*: ✓
 \[\omega^*(G \otimes^n) = \omega^*(G)^n \]
- Quantum XOR: Unbounded Violation of Perfect Parallel Repetition
 \[\omega^*(C_n \otimes^2) \geq \frac{n}{2} \omega^*(C_n)^2 \]
Quantum XOR Games

Referee prepares (known) state $|\psi_i\rangle_{AB} |i\rangle_R \in \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_R$ and sends register A to Alice, B to Bob.
Referee has private register \mathcal{H}_R.

$\sum_i p_i^{1/2} |\psi_i\rangle_{AB} |i\rangle_R \in \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_R$
Quantum XOR Games

Referee prepares (known) state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_R$ and sends register A to Alice, B to Bob.
Referee has private register \mathcal{H}_R.
Quantum XOR Games

Alice and Bob share an entangled state $|\xi\rangle \in \mathcal{H}_{A'} \otimes \mathcal{H}_{B'}$. Alice and Bob apply ±1-observables $X_{AA'} = X^0 - X^1$, $Y_{BB'} = Y^0 - Y^1$. Return outcomes $a, b \in \{0, 1\}$ to Referee.
Quantum XOR Games

If $a \oplus b = 0$, \(\{ \Pi_0^{ACC}, \text{id}_R - \Pi_0^{ACC} \} \)

If $a \oplus b = 1$, \(\{ \Pi_1^{ACC}, \text{id}_R - \Pi_1^{ACC} \} \)

Referee measures private register, depending on parity of Alice and Bob’s responses.
Example: T_n

Let $|\psi_n\rangle$ be the maximally entangled state in n dimensions.

T_n: Alice and Bob sent one of

$$|\phi_0\rangle = \frac{1}{\sqrt{2}} (|0\rangle|0\rangle + |\psi_n\rangle)$$

$$|\phi_1\rangle = \frac{1}{\sqrt{2}} (|0\rangle|0\rangle - |\psi_n\rangle)$$

with equal probability.

If $|\phi_0\rangle$, respond with answers of even parity.

If $|\phi_1\rangle$, respond with answers of odd parity.

Orthogonal ✓ Locally distinguishable ?
Unbounded advantage of $\omega^*(G)$ over $\omega^{me}(G)$ and $\omega(G)$

\[\omega(T_n) = \omega^{me}(T_n) = \frac{1}{\sqrt{n}} \]

\[\omega^*(T_n) = 1 \]
Unbounded advantage of $\omega^*(G)$ over $\omega^{me}(G)$ and $\omega(G)$

\[
\omega(T_n) = \omega^{me}(T_n) = \frac{1}{\sqrt{n}}
\]

\[
\omega^*(T_n) = 1
\]

$\omega^*(T_n) = 1$ can only be achieved in limit of infinite entanglement.
($T_2 \leftrightarrow$ LTW’s coherent state exchange game.)
Unbounded advantage of $\omega^*(G)$ over $\omega^{me}(G)$ and $\omega(G)$

$$\omega(T_n) = \omega^{me}(T_n) = \frac{1}{\sqrt{n}}$$

$$\omega^*(T_n) = 1$$

$\omega^*(T_n) = 1$ can only be achieved in limit of infinite entanglement.

($T_2 \leftrightarrow$ LTW’s coherent state exchange game.)

Classical XOR games: maximally entangled states are optimal resource.

Entanglement provides advantage of at most small constant multiplicative factor: Grothendieck/Tsirelson.
Referee chooses $k \in \{1, \ldots, n\}$ randomly.
Sends one of the two states

$$|\phi_{0k}\rangle = \frac{1}{\sqrt{2}} (|0\rangle|k\rangle + |k\rangle|0\rangle)$$

$$|\phi_{1k}\rangle = \frac{1}{\sqrt{2}} (|0\rangle|k\rangle - |k\rangle|0\rangle)$$

each chosen with probability $\frac{1}{2}$ to Alice and Bob.

If $|\phi_{0k}\rangle$, respond with answers of even parity.
If $|\phi_{1k}\rangle$, respond with answers of odd parity.
Suppose Alice and Bob play two games simultaneously and must win both “sub-games” in order to win.

For classical XOR games, we have

\[
\omega^*(G \otimes G) = \omega^*(G)^2.
\]
Large Violation of Perfect Parallel Repetition

- Suppose Alice and Bob play two games simultaneously and must win both “sub-games” in order to win.

For classical XOR games, we have

$$\omega^*(G \otimes G) = \omega^*(G)^2.$$

However for Rank-one Quantum & Quantum XOR games:

$$\omega^*(C_n) = \frac{1}{n}$$

$$\omega^*(C_n \otimes C_n) \geq \frac{1}{2n} \gg (\omega^*(C_n))^2$$
Theorem

There exists a polynomial-time algorithm which, given as input an explicit description of a quantum XOR game G, outputs two numbers $\omega^{nc}(G)$ and $\omega^{os}(G)$ such that

$$\omega(G) \leq \omega^{me}(G) \leq \omega^{nc}(G) \leq 2\sqrt{2}\omega(G),$$

$$\omega^{*}(G) \leq \omega^{os}(G) \leq 2\omega^{*}(G).$$
Techniques

Theorem (Grothendieck’s Inequality)

Suppose that s_i and t_j are real numbers such that $|s_i|, |t_j| \leq 1$.

Suppose that a_{ij} are real numbers such that $\left| \sum_{i,j} a_{ij} s_i t_j \right| \leq 1$. Then

$$\left| \sum_{ij} a_{ij} \langle \xi_i | \eta_j \rangle \right| \leq k,$$

for all vectors ξ_i, η_j in the unit ball of a real Hilbert space \mathcal{H}. It is known that $1.67 \leq k \leq 1.782$.

From this it follows that for a classical XOR game,

$$\omega^*(G) \leq k \omega(G).$$
Techniques

Theorem (Grothendieck’s Inequality)

Suppose that s_i and t_j are real numbers such that $|s_i|, |t_j| \leq 1$.

Suppose that a_{ij} are real numbers such that $\left| \sum_{i,j} a_{ij}s_it_j \right| \leq 1$. Then

$$\left| \sum_{ij} a_{ij} \langle \xi_i | \eta_j \rangle \right| \leq k,$$

for all vectors ξ_i, η_j in the unit ball of a real Hilbert space \mathcal{H}. It is known that $1.67 \leq k \leq 1.782$.

Noncommutative and Operator-space extensions of Grothendieck’s inequality allow us to relate biases of Quantum XOR games to SDP’s.
Quantum Games

Referee prepares (known) state \(|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \otimes \mathcal{H}_R \) and sends register \(A \) to Alice, \(B \) to Bob.
Alice and Bob share an entangled state $|\xi\rangle \in \mathcal{H}_{A'} \otimes \mathcal{H}_{B'}$. Alice and Bob apply arbitrary local unitaries $U_{AA'}, V_{BB'}$ and then send registers A and B back to referee.
Quantum Games

Referee performs measurement with projective measurements:

\[\{ P_{\text{ACCEPT}}, P_{\text{REJECT}} = \text{Id} - P_{\text{ACCEPT}} \} \]

\[(U_{AA'} \otimes V_{BB'} \otimes \text{id}_R) |\psi\rangle |\xi\rangle \]
Referee performs measurement with projective measurements:

\[\{ P_{\text{ACCEPT}} = |\gamma\rangle\langle\gamma|, P_{\text{REJECT}} = \text{Id} - P_{\text{ACCEPT}} \} \]

Maximum Success Probability = \(\omega_1^*(G) \)
Rank-one Quantum Games \leftrightarrow Quantum XOR Games

To each Quantum XOR Game G, one can associate a Rank-one Quantum Game G' such that

$$ (\omega^*(G))^2 = \omega^*_1(G) $$

To each Rank-one Quantum Game G', one can associate a Quantum XOR Game G'' such that

$$ (\omega^*(G''))^2 = \omega^*_1(G') $$

Thus the previous results about SDP’s and Parallel repetition can be phrased in terms of either Rank-one Quantum Games or Quantum XOR games.
Summary 1

- Classical: $\omega^*(G) \leq K\omega(G)$ ✓
- Quantum: Unbounded advantage $\omega^*(T_n) = \sqrt{n}\omega(T_n)$ ✗
- Classical: Maximally entangled state is optimal resource. ✓
- Quantum: Unbounded advantage $\omega^*(T_n) = \sqrt{n}\omega^{me}(T_n)$ ✗
- Classical: $\omega^*(G)$ can be computed using SDP ✓
- Quantum: $\omega^*(G)$ can be approximated up to constant factor using SDP ✓
- Classical: Satisfies Perfect Parallel Repetition: ✓

$$\omega^*(G^\otimes 2) = \omega^*(G)^2$$

Quantum: Unbounded Violation of Perfect Parallel Repetition

$$\omega^*(C_n^\otimes 2) \geq \frac{n}{2}\omega^*(C_n)^2$$
Summary 2

- Generalization of classical XOR games using quantum messages.
Summary 2

- Generalization of classical XOR games using quantum messages.
- Rich class of games that displays properties of entanglement not seen in classical case.
Summary 2

- Generalization of classical XOR games using quantum messages.
- Rich class of games that displays properties of entanglement not seen in classical case.
- Remain tractable with efficient approximation algorithms for biases.
Generalization of classical XOR games using quantum messages.

Rich class of games that displays properties of entanglement not seen in classical case.

Remain tractable with efficient approximation algorithms for biases.

Application of deep generalizations of Grothendieck’s Inequality to problems in quantum information theory.
Summary 2

- Generalization of classical XOR games using quantum messages.
- Rich class of games that displays properties of entanglement not seen in classical case.
- Remain tractable with efficient approximation algorithms for biases.
- Application of deep generalizations of Grothendieck’s Inequality to problems in quantum information theory.
- Operator space theory provides both examples and techniques for studying these quantum games.
Thank You!

- Rank-one Quantum Games, arXiv: 1112.3563
- Quantum XOR Games, arXiv: 1207.4939

Research partially supported by:
- Spanish grants QUITEMAD, I-MATH, MTM2011-26912, S2009/ESP-1594
- European project QUEVADIS
- NSF DMS-0901457
- ERC Starting Grant
- NSF DMS-0844626