An area law and sub-exponential algorithm for 1D systems.

A Basic Question

Lesson from Quantum Complexity Theory:

Finding ground/low energy states is QMA hard, even for 1D systems. So analysis of many body physics is impossible! And yet . . . condensed matter physicists do it! Heuristic techniques, DMRG, have been very successful for 1D systems. Is there a principled phenomenon behind this? Is there a clean well defined class of quantum many body systems that we can analyze?
A Basic Question

Lesson from Quantum Complexity Theory:

Finding ground/low energy states is QMA hard, even for 1D systems.
A Basic Question

Lesson from Quantum Complexity Theory:

Finding ground/low energy states is QMA hard, even for 1D systems.

So analysis of many body physics is impossible!
A Basic Question

Lesson from Quantum Complexity Theory:

Finding ground/low energy states is QMA hard, even for 1D systems.

So analysis of many body physics is impossible!

And yet . . . condensed matter physicists do it!

Heuristic techniques, DMRG, have been very successful for 1D systems.
A Basic Question

Lesson from Quantum Complexity Theory:

Finding ground/low energy states is QMA hard, even for 1D systems.

So analysis of many body physics is impossible!

And yet . . . condensed matter physicists do it!

Heuristic techniques, DMRG, have been very successful for 1D systems.

Is there a principled phenomenon behind this?

Is there a clean well defined class of quantum many body systems that we can analyze?
Gap and Area Law

The size of the gap between the lowest and second lowest eigenstate:
- QMA-complete require an inverse polynomial size gap.
- Many physical systems have a constant size gap.
Gap and Area Law

The size of the **gap** between the lowest and second lowest eigenstate:

- QMA-complete require an inverse polynomial size gap.
- Many physical systems have a constant size gap.

A first point of entry is a remarkable conjecture:

\[
\text{Area Law: } \text{Given a gapped local Hamiltonian, for any subset } S \text{ of particles, the entanglement entropy of } \rho_S \text{, the reduced density matrix of the ground state restricted to } S, \text{ is bounded by the surface area of } S \text{ i.e. the number of local interactions between } S \text{ and } \overline{S}. \]
Basic Questions

- Can you prove an area law?
- If so, do these states have small working descriptions?
- Can they be efficiently computed?
Concretely in 1D

Given:

- n d-dimensional particles on a line, $\mathcal{H} = (\mathbb{C}^d)^\otimes n$,
- local operators $0 \leq H_i \leq 1$ acting non-trivially on the ith and $i+1$st particle.
- a Hamiltonian $H = \sum_i H_i$ with a gap ϵ between the energy of the ground state and the next lowest energy.
Concretely in 1D

Given:
- n d-dimensional particles on a line, $\mathcal{H} = (\mathbb{C}^d)^\otimes n$,
- local operators $0 \leq H_i \leq 1$ acting non-trivially on the ith and $i + 1$st particle.
- a Hamiltonian $H = \sum_i H_i$ with a gap ϵ between the energy of the ground state and the next lowest energy.

Goal: structural properties of the ground state $|\Gamma\rangle$.
Result: 1D Area Law

Previous results for 1D:

- Hastings (2007) with bound $e^{O(\log d/\epsilon)}$.
 - Existence of an MPS with polynomial bond dimension.
 - Finding an approximation to the ground state is $\in NP$.
- Arad, Landau, Vazirani (2011): $\tilde{O}\left(\frac{\log d}{\epsilon}\right)^3$ for frustration free system.
Result: 1D Area Law

Previous results for 1D:
- Hastings (2007) with bound $e^{O(\log d/\epsilon)}$.
 - Existence of an MPS with polynomial bond dimension.
 - Finding an approximation to the ground state is $\in NP$.
- Arad, Landau, Vazirani (2011): $\tilde{O}\left(\frac{\log d}{\epsilon}\right)^3$ for frustration free system.

This result:

Theorem: The entanglement entropy of the ground state of a 1D gapped Hamiltonian is bounded by $\tilde{O}\left(\frac{\log^3 d}{\epsilon}\right)$

- Exponential improvement of the bound.
- Bound the cusp of a 2D sub-volume law.
- Implies a sublinear bond dimension MPS which leads to . . .
Sub-exponential algorithm

Theorem: There is a subexponential time algorithm for finding an inverse polynomial approximation to ground state of a 1D gapped Hamiltonian.

Combines sublinear bond dimension with a dynamical programing algorithm (Aharonov, Arad, Irani, 2009).
Preliminaries: Entanglement Rank

For a vector $v \in \mathcal{H}_1 \otimes \mathcal{H}_2$ with Schmidt decomposition $v = \sum_{i=1}^{D} a_i \otimes b_i$, has entanglement rank D.

Operators

Local operator H_i can only increase the entanglement rank across $i, i + 1$ by d^2.
Preliminaries: Entanglement Rank

For a vector $v \in \mathcal{H}_1 \otimes \mathcal{H}_2$ with Schmidt decomposition $v = \sum_{i=1}^{D} a_i \otimes b_i$, has entanglement rank D.

Operators

- Operators acting just on one side do not increase the entanglement rank.
Preliminaries: Entanglement Rank

For a vector \(v \in \mathcal{H}_1 \otimes \mathcal{H}_2 \) with Schmidt decomposition \(v = \sum_{i=1}^{D} a_i \otimes b_i \), has entanglement rank \(D \).

Operators

- Operators acting just on one side do not increase the entanglement rank.
- Operators of the form \(\sum_{i}^C A_i \otimes B_i \) can only increase the entanglement rank by a factor of \(C \).
Preliminaries: Entanglement Rank

For a vector $v \in \mathcal{H}_1 \otimes \mathcal{H}_2$ with Schmidt decomposition $v = \sum_{i=1}^{D} a_i \otimes b_i$, has entanglement rank D.

Operators

- Operators acting just on one side do not increase the entanglement rank.
- Operators of the form $\sum_{i=1}^{C} A_i \otimes B_i$ can only increase the entanglement rank by a factor of C.
- Local operator H_i can only increase the entanglement rank across $i, i + 1$ by d^2.
Preliminaries: Functional calculus of an operator

What does the operator $f(H) = H^2 - 2H - 1$ look like?

- Same eigenspaces as H,
- Eigenvalue x for H becomes eigenvalue $f(x)$ for $f(H)$.
Preliminaries: Functional calculus of an operator

What does the operator $f(H) = H^2 - 2H - 1$ look like?

- Same eigenspaces as H,
- Eigenvalue x for H becomes eigenvalue $f(x)$ for $f(H)$.

![Depiction of f(H)](image)

Eigenspaces of H
Preliminaries: Functional calculus of an operator

What does the operator $f(H) = H^2 - 2H - 1$ look like?

- Same eigenspaces as H,
- Eigenvalue x for H becomes eigenvalue $f(x)$ for $f(H)$.

![Depiction of $f(H)$](image)

Eigenspaces of H

(Located at corresponding eigenvalues)
Preliminaries: Functional calculus of an operator

What does the operator \(f(H) = H^2 - 2H - 1 \) look like?
- Same eigenspaces as \(H \),
- Eigenvalue \(x \) for \(H \) becomes eigenvalue \(f(x) \) for \(f(H) \).

Depiction of \(f(H) \)
Eigenspaces of \(H \)
(Located at corresponding eigenvalues)
Preliminaries: Functional calculus of an operator

What does the operator \(f(H) = H^2 - 2H - 1 \) look like?

- Same eigenspaces as \(H \),
- Eigenvalue \(x \) for \(H \) becomes eigenvalue \(f(x) \) for \(f(H) \).

Depiction of \(f(H) \)

Eigenspaces of \(H \)
Proof main idea: moving closer while not increasing entanglement too much

We are looking for an operator K with 2 properties:
Proof main idea: moving closer while not increasing entanglement too much

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:
 $$K = f(H)$$

Such an operator is a (\mathcal{D}, Δ) Approximate Ground State Projection (AGSP).

An area law and sub-exponential algorithm for 1D systems
Proof main idea: moving closer while not increasing entanglement too much

We are looking for an operator K with 2 properties:

- It approximately projects onto the ground state:
 \[K = f(H) \]

- It doesn’t increase the entanglement too much:

Such an operator is a (Δ, Δ) Approximate Ground State Projection (AGSP).
The consequence of a good AGSP: An area law

Theorem (Area Law) [Arad, Landau, Vazirani] The existence of an AGSP K for which $D \Delta < 1/2$ proves that the ground state has entropy $O(1) \log D$.
Building good AGSP’s: reduce the norm

Looking for low entanglement operators that look like:

$$f(x) \Delta \frac{\epsilon}{||H||}$$

Smaller $||H||$ would be better but we don’t want to lost the local structure around the cut.

Solution: Replace $H = \sum_i H_i$ with $H' = H_L + H_1 + H_2 + \cdots + H_s + H_R$.

$$H_L \quad \ldots \quad s+1$$
Building good AGSP’s: Chebyshev polynomials

Chebyshev polynomials: small in an interval:

Chebyshev Polynomials

T1 - brown T2 - black T3 - red T4 - pink T5 - blue T6 - green
A good AGSP

A dilation and translation of the Chebyshev polynomial gives:

\[K = C_l(H') \]

with

\[\Delta = e^{-\ell \sqrt{\epsilon}} \sqrt{||H'||}. \]
Entanglement Increase due to a single term of $(H')^\ell$

$$(H')^\ell = \sum (\text{product of } H_j).$$

For a single term:
Entanglement Increase due to a single term of \((H')^\ell\)

\[(H')^\ell = \sum (\text{product of } H_j).

For a single term:
- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell/s} \).

Cost \(d^{2\ell/s}\)
Entanglement Increase due to a single term of \((H')^\ell\)

\[(H')^\ell = \sum (\text{product of } H_j).\]

For a single term:
- Across some cut, an average number of terms are involved $\rightarrow d^{2\ell/s}$.
Entanglement Increase due to a single term of \((H')^\ell\)

\[
(H')^\ell = \sum (\text{product of } H_j).
\]

For a single term:
- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell/s}\).
- Roundtrip cost of going and coming back from center cut: \(\rightarrow d^s\).
Entanglement Increase due to a single term of \((H')^\ell\)

\[(H')^\ell = \sum (\text{product of } H_j). \]

For a single term:

- Across some cut, an average number of terms are involved \(\rightarrow d^{2\ell}/s\).
- Roundtrip cost of going and coming back from center cut: \(\rightarrow ds\).

Total: \(d^{2\ell}/s + s\)
Entanglement Increase Analysis of $(H')^\ell$

Problem: Too many (s^ℓ) terms in naive expansion of $(H')^\ell$.
Entanglement Increase Analysis of \((H')^\ell \)

Problem: Too many \((s^\ell) \) terms in naive expansion of \((H')^\ell \).

Need to group terms in a nice way but it all works out with total entanglement increase of the same order as the single term.
Putting things together: Area Law for H'

Chebyshev $C_\ell(H')$ has $\Delta \approx e^{-O(\ell\sqrt{\epsilon}/\sqrt{s})}$:

Entanglement analysis yields $D \approx O(s^{\ell/s+s})$.

Choosing $\ell = s^2$ yields $\log(D\Delta) \approx -s^{3/2}\sqrt{\epsilon} + s \log d$. Approximate equality occurs with $s \approx \log^2 d/\epsilon$ which yields $D \approx \log^3 d/\epsilon$.
From H' to H: truncation and the definition of H_L and H_R

The truncation, $A \leq^t$ of an operator A:

An area law and sub-exponential algorithm for 1D systems

18 / 21
From H' to H: truncation and the definition of H_L and H_R

The **truncation**, $A^{\leq t}$ of an operator A:

\[A^{\leq t} = f(A) \]

Definition of H_L and H_R using truncation:

\[H_L = \left(\sum_{i < s+1} H_i \right)^{\leq t} \quad \text{and} \quad H_R = \left(\sum_{i > s+1} H_i \right)^{\leq t} \]
From H' to H: robustness of truncation

Question How does the Hamiltonian $H' = H_L + H_1 + \cdots + H_s + H_R$ compare to $H = \sum_j H_j$?
From H' to H: robustness of truncation

Question How does the Hamiltonian $H' = H_L + H_1 + \cdots + H_s + H_R$ compare to $H = \sum_j H_j$?

Answer At their low energies, they are very close.
From H' to H: robustness of truncation

Question How does the Hamiltonian $H' = H_L + H_1 + \cdots + H_s + H_R$ compare to $H = \sum_j H_j$?

Answer At their low energies, they are very close.

Robustness Theorem: The gaps of H and H' are of the same order and the ground states of H and H' are within $\exp(-t)$.

From H' to H: robustness of truncation

Question How does the Hamiltonian $H' = H_L + H_1 + \cdots + H_s + H_R$ compare to $H = \sum_j H_j$?

Answer At their low energies, they are very close.

Robustness Theorem: The gaps of H and H' are of the same order and the ground states of H and H' are within $\exp(-t)$.

Area law for H now follows by starting with a constant truncation level $t = t_0$ and then letting it grow to $t = O(\log n)$.
Summary

The structural engine for these results are AGSP's.

Area law

Subexponential time algorithm

Gap
Summary

Gap

Good AGSP

Area law

Subexponential time algorithm
The structural engine for these results are AGSP’s.

Area law

Gap

Good AGSP

Subexponential time algorithm

Schuch, Cirac, Verstraete

An area law and sub-exponential algorithm for 1D systems.
Summary

Schuch, Cirac, Verstraete

The structural engine for these results are AGSP's.

Area law Subexponential time
Good AGSP
Gap
The structural engine for these results are AGSP’s.
Where to go from here

Towards an area law for 2D... any improvement in the entropy bound $\tilde{O}(\log d/\epsilon)$ would produce a sub-volume law for 2D systems.

Towards better approximation algorithms for 1D... [Landau, Vidick, Vazirani].

Towards more local algorithms in 1D... Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H_ℓ is $dO(\sqrt{\ell})$).

Of independent interest: robustness theorem of truncation.

An area law and sub-exponential algorithm for 1D systems.
Towards an area law for 2D... any improvement in the entropy bound $\tilde{O}\left(\frac{\log^3 d}{\epsilon} \right)$ would produce a sub-volume law for 2D systems.
Where to go from here

- Towards an area law for 2D . . . any improvement in the entropy bound $\tilde{O}(\frac{\log^3 d}{\epsilon})$ would produce a sub-volume law for 2D systems.
- Towards better approximation algorithms for 1D . . . [Landau, Vidick, Vazirani].
Towards an area law for 2D . . . any improvement in the entropy bound $\tilde{O}(\frac{\log^3 d}{\epsilon})$ would produce a sub-volume law for 2D systems.

Towards better approximation algorithms for 1D . . . [Landau, Vidick, Vazirani].

Towards more local algorithms in 1D. . .
Where to go from here

- Towards an area law for 2D . . . any improvement in the entropy bound $\tilde{O}\left(\frac{\log^3 d}{\epsilon}\right)$ would produce a sub-volume law for 2D systems.
- Towards better approximation algorithms for 1D . . . [Landau, Vidick, Vazirani].
- Towards more local algorithms in 1D . . .
- Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H^ℓ is $d^{O(\sqrt{\ell})}$).
Where to go from here

- Towards an area law for 2D . . . any improvement in the entropy bound $\tilde{O}\left(\frac{\log^3 d}{\epsilon}\right)$ would produce a sub-volume law for 2D systems.
- Towards better approximation algorithms for 1D . . . [Landau, Vidick, Vazirani].
- Towards more local algorithms in 1D. . .
- Of independent interest: entanglement rank has a "random walk" type behavior (added entanglement of H^ℓ is $d^{O(\sqrt{\ell})}$).
- Of independent interest: robustness theorem of truncation.