Tutorial: Sparse Recovery
Using Sparse Matrices

Piotr Indyk
MIT

Problem Formulation

(approximation theory, learning Fourier coeffs, linear sketching,

Setup: finite rate of innovation, compressed sensing...)

— Datal/signal in n-dimensional space : x
E.g., x is an 256x256 image = n=65536
— Goal: compress x into a “sketch” Ax
where A is a m x n “sketch matrix”, m <<n
Requirements:
— Plan A: want to recover x from Ax
» Impossible: underdetermined system of equations
— Plan B: want to recover an “approximation” x* of x
» Sparsity parameter k
» Informally: want to recover largest k coordinates of x
« Formally: want x* such that A
|Ix*-x[|,= C(k) min, [|x-x|],
over all X’ that are k-sparse (at most k non-zero entries)

Want:
— Good compression (small m=m(k;,n))
— Efficient algorithms for encoding and recovery

Why linear compression ?

= | AX

Application |: Monitoring
Network Traffic Data Streams

« Router routs packets
— Where do they come from ?
— Where do they go to ?
« Ideally, would like to maintain a traffic
matrix x[.,.]

— [Easy to update: given a (src,dst) packet, increment

Xere gt destination
— Requires way too much space!
(232 x 232 entries)
— Need to compress x, increment easily
* Using linear compression we can:
— Maintain sketch Ax under increments to x, since
A(x+A) = Ax + AA
— Recover x* from Ax

source

Applications, ctd.

« Single pixel camera i’& -
' N , /T ,7°k
Input ‘ < 4 / \‘ Folc::sing

[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar, .
Kelly, Baraniuk’06] ﬂ

Digital Micromirror Device

* Pooling Experiments
[Kainkaryam, Woolf'08], [Hassibi et al’'07], [Dai-
Sheikh, Milenkovic, Baraniuk], [Shental-Amir-
Zuk’09],[Erlich-Shental-Amir-Zuk’09]

Constructing matrix A

 “Most’” matrices A work

— Sparse matrices:
« Data stream algorithms
* Coding theory (LDPCs)
— Dense matrices:
« Compressed sensing
« Complexity/learning theory
(Fourier matrices)

 “Traditional” tradeoffs:
— Sparse: computationally more efficient, explicit
— Dense: shorter sketches

 Recent results: the “best of both worlds”

Prior and New Results

Paper

Rand.
/ Det.

Sketch
length

Encode
time

Column
sparsity

Recovery time

Approx

Scale: [EXCelleRfivery Good Good [N

Results

Paper R/ | Sketch length | Encode
time

Column Recovery time
sparsity

[CCF02], nlog n
[CM’06]

mmp | [CM04]

[CRT’04]
[RV'05]

[GSTV'06]
[GSTV'07]

mmp | [BGIKS'08]
[GLR08]

[N\'07], [DM’08], [NT'08],
[BD'08], [GK'09], ...

mmmp | [IR'08], [BIR'08],[BI'09]
[GLSP’09]

log n

Caveats: (1) most “dominated” results not shown (2) only results for general vectors x are displayed

(3) sometimes the matrix type matters (Fourier, etc)

Part |

Paper R/ | Sketch length | Encode Column Recovery time Approx
time sparsity

D

Theorem: There is a distribution over mxn matrices A, m=0(k logn),
such that for any x, given Ax, we can recover x* such that
|[x-x*[|4= C Erry , where Erry=min_gpare x |1X-X]|4
with probability 1-1/n.
The recovery algorithm runs in O(n log n) time.

This talk:

« Assume x=0 — this simplifies the algorithm and analysis; see the
original paper for the general case

* Prove the following |../I, guarantee: ||x-x*||..< C Err, /k

This is actually stronger than the |./|, guarantee (cf. [CM’06], see
also the Appendix)

Note: [CM’04] originally proved a weaker statement where ||x-x*||..= C||x||, /k. The stronger
guarantee follows from the analysis of [CCF’'02] (cf. [GGIKMS’02]) who applied it to Err,

First attempt

« Matrix view: 0010010
— A 0-1 wxn matrix A, with one 1000100
1 per column
— The i-th column has 1 at 8 (1) 8 ? 8 8 (1)
position h(i), where h(i) be
chosen uniformly at random
from {1...w} X;
« Hashing view: /
~ Z=Ax
— h hashes coordinates into X"
“bUCketS” Z1 .. 'ZW Z1 Z(4/Oc)k

» Estimator: x*=Z,

Closely related: [Estan-Varghese’03], “counting” Bloom filters

Analysis

We show

X, < x = o Err/k
with probability >1/2
Assume

X 2 .. 2 X
and let S={i1...ik} (“"elephants”)
When is x; > x, = o Err/k ?

— Event 1: S and i collide, i.e., h(i) in h(S-{i})
Probability: at most k/(4/a)k = a/4<1/4 (if a<1)

— Event 2: many “mice” collide with i., i.e.,

y Dt notin S u {i}, h()=h(t) X;> O Err/.k
Probability: at most "2 (Markov inequality)

Total probability of “bad” events <1/2

Second try

 Algorithm:
— Maintain d functions h,...h and vectors Z'...Z¢
— Estimator:
X *=min, Ztht(i)
* Analysis:

— Pr[|x*-x| = a Err/k] < 1/24

— Setting d=0O(log n) (and thus m=0(k log n))
ensures that w.h.p

IX*-x;|< a Err/k

Part I

Paper

[BGIKS'08]

[IR'08], [BIR'08],[BI'09]

o' d

Sketch length

Encode
time

Column
sparsity

Recovery time

Approx

VS.

Restricted Isometry Property (RIP) [Candes-Tao’04]
A'is k-sparse = |[|A||,= ||AA|l, = C |[|A]l,

Holds w.h.p. for:

— Random Gaussian/Bernoulli: m=0(k log (n/k))

— Random Fourier: m=0(k log®™" n)
Consider m x n 0-1 matrices with d ones per column
Do they satisfy RIP ?

— No, unless m=Q(k?) [Chandar’07]

However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-
Karloff-Strauss’08]:

Ais k-sparse = d (1-¢) [|Al| = ||[AA]], = d||A]l4
Sufficient (and necessary) condition: the underlying graph is a
(k, d(1-¢/2))-expander

Expanders

A bipartite graph is a (k,d(1-¢))-
expander if for any left set S, [S|<k, we
have [N(S)|=(1-g)d |S|

Objects well-studied in theoretical
computer science and coding theory

Constructions:

— Probabilistic: m=0(k log (n/k))

— Explicit: m=k quasipolylog n
High expansion implies RIP-1:

Ais k-sparse = d (1-¢) ||Al] = ||AAl], = d]|All4 N
[Berinde-Gilbert-Indyk-Karloff-Strauss’08]

Proof: d(1-¢/2)-expansion = RIP-1

Want to show that for any k-sparse A we have
d (1-¢) [|All4= [|IA All; = d][A]l4
RHS inequality holds for any A
LHS inequality:
— W.l.o.g. assume
IA2... 2|A] 2 |As]=...= |A,|=0

— Consider the edges e=(i,j) in a lexicographic
order

— For each edge e=(i,j) define r(e) s.t.
- r(e)=-1 if there exists an edge (i",j)<(i,))
« r(e)=1if there is no such edge
C|a?m T [[AA[l1 22) AT n
Claim 2: 5 . [Aro = (1-¢) d|A]|,

Recovery: algorithms

Matchmg Pursmt(s)

X*-x AxX-Ax*

[}imz[g}

[-I] K /]] *
* lterative algorithm: given current approximation x

— Find (possibly several) i s. t. A, “correlates” with Ax-Ax* . This
yieldsiand z s. t.

[IX*+ze-x||, << [Ix* - x|,

— Update x*
— Sparsify x* (keep only k largest entries)
— Repeat
« Norms:
— p=2:CoSaMP, SP, IHT etc (RIP)
— p=1:SMP, SSMP (RIP-1)
— p=0: LDPC bit flipping (sparse matrices)

Sequential Sparse Matching
Pursuit

* Algorithm:
— x*=0
— Repeat T times
* Repeat S=0(k) times
— Find i and z that minimize* ||A(x*+ze,)-Ax||,
— X* = X*+ze,
« Sparsify x*
(set all but k largest entries of x* to 0)

« Similar to SMP, but updates done
sequentially

* Set z=median[(Ax*-Ax)y.Instead, one could first optimize (gradient) i and then z [Fuchs’09]

SSMP: Approximation
guarantee

* Want to find k-sparse x*
that minimizes ||x-x*||, O X
By RIP1, this is
approximately the same as a, a,
minimizing ||Ax-Ax*||,

* Need to show we can do it
greedily

O
a,

dy
Supports of a, and a, have small
overlap (typically)

Conclusions

« Sparse approximation using sparse matrices

« State of the art: deterministically can do 2 out of 3:
— Near-linear encoding/decoding 7
— O(k log (n/k)) measurements
— Approximation guarantee with respect to L2/L1 norm

* Open problems:

— 3outof 37

— Explicit constructions ?
« Expanders (i.e., RIP-1 property)
« Matrices with RIP property

— Recent construction yields O(k?-2) measurements for some a>0 and
certain range of k [Bourgain, Dilworth, Ford, Konyagin, Kutzarova’10]

. This talk

References
« Survey:

A. Gilbert, P. Indyk, “Sparse recovery using
sparse matrices”, Proceedings of IEEE, June
2010.

* Courses:

— “Streaming, sketching, and sub-linear space
algorithms”, Fall'07

— “Sub-linear algorithms” (with Ronitt Rubinfeld),
Fall’'10

* Blogs:
— Nuit blanche: nuit-blanche.blogspot.com/

Appendix

/1, implies I./1.

» Algorithm:
— Assume we have x* s.t. ||x-x*||..= C Err, /k.
— Let vector x’ consist of k largest (in magnitude) elements of x

*

* Analysis
— Let S (or S*) be the set of k largest in magnitude coordinates
of x (or x*)
— Note that [|x*5|| = [[x"s|4
— We have
|[%-X]]4 Xge[1 + XX g+

-
1= X sl + 2|[XgX s[4

1= IXslly + 2][XgXT s[4

1 Xslly + [IXFsXsll4 + 2[[Xge=Xg-||4
Err + 3o/k * k

(1+3a)Err

IANIN IN IA IN DA
X X X X

Experiments

256x256

28 ‘ T , -
—A— SSMP k=0.05m
- SMP k=0.05m
—+— SSMP k=0.1m
26 ® « + == SMP k=0.1m
@ -®=-LP
2 10™}
o9
24} 2
[}
=
£
o [}
Zz 22 e
o o
L, 33|
£10
20 S
3
2
—A— SSMP k=0.05m -
18} ; - =l SMP k=0.05m ||
~—— SSMP k=0.1m
- == SMP k=0.1m 10%2
-#-LP
"85 1 1.5 2 25 3 05 1 1.5 2 25 3
Number of measurements (m) « 10" Number of measurements (m) T

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

SSMP: Running time

» Algorithm:
— x*=0
— Repeat T times

* For each i=1...n compute* z, that
achieves

Di=min, ||[A(x"+ze))-b||,
and store D,in a heap
* Repeat S=0(k) times
— Pick i,z that yield the best gain
— Update x* = x"+ze,
— Recompute and store D, for all i” such that
N(i) and N(i') intersect

« Sparsify x*
(set all but k largest entries of x* to 0)
* Running time:
T [n(d+log n) + k nd/m*d (d+log n)]
=T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

