Tutorial: Sparse Recovery Using Sparse Matrices

> Piotr Indyk MIT

Problem Formulation

(approximation theory, learning Fourier coeffs, linear sketching,

- finite rate of innovation, compressed sensing...)
- Setup:
 - Data/signal in n-dimensional space : x
 - E.g., x is an 256x256 image \Rightarrow n=65536
 - Goal: compress x into a "sketch" Ax , where A is a m x n "sketch matrix", m << n
- Requirements:
 - Plan A: want to recover x from Ax
 - Impossible: underdetermined system of equations
 - Plan B: want to recover an "approximation" x* of x
 - Sparsity parameter k
 - Informally: want to recover largest k coordinates of x
 - Formally: want x* such that

$||x^*-x||_{p} \le C(k) \min_{x'} ||x'-x||_{q}$

over all x' that are k-sparse (at most k non-zero entries)

- Want:
 - Good compression (small m=m(k,n))
 - Efficient algorithms for encoding and recovery
- Why linear compression ?

Α x

Application I: Monitoring Network Traffic Data Streams

- Router routs packets
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic

matrix x[.,.]

- Easy to update: given a (src,dst) packet, increment
 x_{src,dst}
- Requires way too much space!
 (2³² x 2³² entries)
- Need to compress x, increment easily
- Using linear compression we can:
 - Maintain sketch Ax under increments to x, since

 $\mathsf{A}(\mathsf{x}{+}\Delta) = \mathsf{A}\mathsf{x} + \mathsf{A}\Delta$

Recover x* from Ax

Χ

Applications, ctd.

Single pixel camera

[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar, Kelly, Baraniuk'06]

Pooling Experiments

[Kainkaryam, Woolf'08], [Hassibi et al'07], [Dai-Sheikh, Milenkovic, Baraniuk], [Shental-Amir-Zuk'09],[Erlich-Shental-Amir-Zuk'09]

Constructing matrix A

- "Most" matrices A work
 - Sparse matrices:
 - Data stream algorithms
 - Coding theory (LDPCs)
 - Dense matrices:
 - Compressed sensing
 - Complexity/learning theory (Fourier matrices)
- "Traditional" tradeoffs:
 - Sparse: computationally more efficient, explicit
 - Dense: shorter sketches
- Recent results: the "best of both worlds"

Prior and New Results

Paper	Rand.	Sketch	Encode	Column	Recovery time	Approx
	/ Det.	length	time	sparsity		

Scale: Excellent Very Good Good Fair

Results

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[CCF'02], [CM'06]	R	k log n	n log n	log n	n log n	12 / 12
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	12 / 12
[CM'04]	R	k log n	n log n	log n	n log n	11 / 11
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	1 / 1
[CRT'04] [RV'05]	D	k log(n/k)	nk log(n/k)	k log(n/k)	n ^c	12 / 11
	D	k log ^c n	n log n	k log ^c n	n ^c	12 / 11
[GSTV'06] [GSTV'07]	D	k log ^c n	n log ^c n	log ^c n	k log ^c n	1 / 1
	D	k log ^c n	n log ^c n	k log⁰ n	k² log ^c n	12 / 11
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	1 / 1
[GLR'08]	D	k logn ^{logloglogn}	kn ^{1-a}	n ^{1-a}	n ^c	12 / 11
[NV'07], [DM'08], [NT'08], [BD'08], [GK'09],	D	k log(n/k)	nk log(n/k)	k log(n/k)	nk log(n/k) * log	12 / 11
	D	k log ^c n	n log n	k log ^c n	n log n * log	12 / 11
[IR'08], [BIR'08],[BI'09]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)* log	11 / 11
[GLSP'09]	R	k log(n/k)	n log ^c n	log ^c n	k log ^c n	12 / 11

Caveats: (1) most "dominated" results not shown (2) only results for general vectors x are displayed (3) sometimes the matrix type matters (Fourier, etc)

Part I

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[CM'04]	R	k log n	n log n	log n	n log n	11 / 11

Theorem: There is a distribution over mxn matrices A, $m=O(k \log n)$, such that for any x, given Ax, we can recover x* such that

 $||\mathbf{x}-\mathbf{x}^*||_1 \le C \operatorname{Err}_1$, where $\operatorname{Err}_1 = \min_{k-\text{sparse } \mathbf{x}^*} ||\mathbf{x}-\mathbf{x}^*||_1$

with probability 1-1/n.

The recovery algorithm runs in $O(n \log n)$ time.

This talk:

- Assume x≥0 this simplifies the algorithm and analysis; see the original paper for the general case
- Prove the following $|_{\infty}/|_{1}$ guarantee: $||x-x^*||_{\infty} \le C \operatorname{Err}_{1}/k$

This is actually stronger than the $|_1/|_1$ guarantee (cf. [CM'06], see also the Appendix)

Note: [CM'04] originally proved a weaker statement where $||x-x^*||_{\infty} \leq C||x||_1$ /k. The stronger guarantee follows from the analysis of [CCF'02] (cf. [GGIKMS'02]) who applied it to Err₂

First attempt

- Matrix view:
 - A 0-1 wxn matrix A, with one 1 per column
 - The i-th column has 1 at position h(i), where h(i) be chosen uniformly at random from {1...w}
- Hashing view:
 - Z=Ax
 - h hashes coordinates into "buckets" Z₁...Z_w
- Estimator: x_i*=Z_{h(i)}

Analysis

• We show

 $x_i^* \le x_i \pm \alpha \text{ Err/k}$

- with probability >1/2
- Assume

 $|x_{i1}| \ge ... \ge |x_{im}|$ and let S={i1...ik} ("elephants")

- When is $x_i^* > x_i \pm \alpha \text{ Err/k}$?
 - **Event 1**: S and i collide, i.e., h(i) in $h(S-\{i\})$ Probability: at most $k/(4/\alpha)k = \alpha/4 < 1/4$ (if $\alpha < 1$)
 - **Event 2**: many "mice" collide with i., i.e., $\sum_{t \text{ not in } S \text{ u } \{i\}, h(i)=h(t)} x_t > \alpha \text{ Err/k}$ Probability: at most ¹/₄ (Markov inequality)
- Total probability of "bad" events <1/2

Second try

- Algorithm:
 - Maintain d functions $h_1...h_d$ and vectors $Z^1...Z^d$
 - Estimator:

 $X_i^* = \min_t Z_{ht(i)}^t$

- Analysis:
 - $\Pr[|x_i^*-x_i| \ge \alpha \operatorname{Err/k}] \le 1/2^d$
 - Setting d=O(log n) (and thus m=O(k log n)) ensures that w.h.p

 $|x_{i}^{*}-x_{i}| < \alpha \text{ Err/k}$

Part II

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	1 / 1
[IR'08], [BIR'08],[BI'09]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)* log	1 / 1

VS.

• Restricted Isometry Property (RIP) [Candes-Tao'04]

dense

 $\Delta \text{ is k-sparse } \Rightarrow ||\Delta||_2 \le ||A\Delta||_2 \le \mathbb{C} ||\Delta||_2$

- Holds w.h.p. for:
 - Random Gaussian/Bernoulli: m=O(k log (n/k))
 - Random Fourier: m=O(k log^{O(1)} n)
- Consider m x n 0-1 matrices with d ones per column
- Do they satisfy RIP ?
 - No, unless $m=\Omega(k^2)$ [Chandar'07]
- However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-Karloff-Strauss'08]:

 Δ is k-sparse \Rightarrow d (1- ϵ) $||\Delta||_1 \le ||A\Delta||_1 \le d||\Delta||_1$

Sufficient (and necessary) condition: the underlying graph is a
 (k, d(1-ε/2))-expander

Expanders

- Objects well-studied in theoretical computer science and coding theory
- Constructions:
 - Probabilistic: m=O(k log (n/k))
 - Explicit: m=k quasipolylog n
- High expansion implies RIP-1:

 $\Delta \text{ is } \text{k-sparse } \Rightarrow \text{d} (1-\epsilon) ||\Delta||_1 \le ||A\Delta||_1 \le \text{d} ||\Delta||_1$ [Berinde-Gilbert-Indyk-Karloff-Strauss'08]

Proof: $d(1-\epsilon/2)$ -expansion \Rightarrow RIP-1

• Want to show that for any k-sparse Δ we have

 $d (1-\epsilon) \|\Delta\|_{1} \leq \|A \Delta\|_{1} \leq d\|\Delta\|_{1}$

- RHS inequality holds for $any \Delta$
- LHS inequality:
 - W.I.o.g. assume

 $|\Delta_1| \ge \dots \ge |\Delta_k| \ge |\Delta_{k+1}| = \dots = |\Delta_n| = 0$

- Consider the edges e=(i,j) in a lexicographic order
- For each edge e=(i,j) define r(e) s.t.
 - r(e)=-1 if there exists an edge (i',j)<(i,j)
 - r(e)=1 if there is no such edge
- Claim 1: $||A\Delta||_1 \ge \sum_{e=(i,j)} |\Delta_i| r_e$
- Claim 2: $\sum_{e=(i,j)} |\Delta_i| r_e \ge (1-\epsilon) d||\Delta||_1$

Recovery: algorithms

- Iterative algorithm: given current approximation x* :
 - Find (possibly several) i s. t. A_i "correlates" with Ax-Ax*. This yields i and z s. t.

 $||x^{+}ze_{i}-x||_{p} << ||x^{+}-x||_{p}$

- Update x*
- Sparsify x* (keep only k largest entries)
- Repeat
- Norms:
 - p=2 : CoSaMP, SP, IHT etc (RIP)
 - p=1 : SMP, SSMP (RIP-1)
 - p=0 : LDPC bit flipping (sparse matrices)

Sequential Sparse Matching Pursuit

- Algorithm:
 - x*=0
 - Repeat T times
 - Repeat S=O(k) times
 - Find i and z that minimize* $||A(x^*+ze_i)-Ax||_1$
 - $x^* = x^* + ze_i$
 - Sparsify x*

 (set all but k largest entries of x* to 0)
- Similar to SMP, but updates done sequentially

* Set z=median[(Ax*-Ax)_{N(I)}.Instead, one could first optimize (gradient) i and then z [Fuchs'09]

SSMP: Approximation guarantee

- Want to find k-sparse x* that minimizes ||x-x*||₁
- By RIP1, this is approximately the same as minimizing ||Ax-Ax*||₁
- Need to show we can do it greedily

X O

Supports of a_1 and a_2 have small overlap (typically)

Conclusions

- Sparse approximation using sparse matrices
- State of the art: deterministically can do 2 out of 3:

 - Near-linear encoding/decoding
 O(k log (n/k)) measurements
 - Approximation guarantee with respect to L2/L1 norm
- Open problems:
 - 3 out of 3 ?
 - Explicit constructions ?
 - Expanders (i.e., RIP-1 property)
 - Matrices with RIP property
 - Recent construction yields $O(k^{2-a})$ measurements for some a>0 and certain range of k [Bourgain, Dilworth, Ford, Konyagin, Kutzarova'10]

References

• Survey:

A. Gilbert, P. Indyk, "Sparse recovery using sparse matrices", Proceedings of IEEE, June 2010.

- Courses:
 - "Streaming, sketching, and sub-linear space algorithms", Fall'07
 - "Sub-linear algorithms" (with Ronitt Rubinfeld), Fall'10
- Blogs:
 - Nuit blanche: nuit-blanche.blogspot.com/

Appendix

I_{∞}/I_1 implies I_1/I_1

- Algorithm:
 - Assume we have x^* s.t. $||x-x^*||_{\infty} \leq C \operatorname{Err}_1 / k$.
 - Let vector x' consist of k largest (in magnitude) elements of x^*
- Analysis
 - Let S (or S*) be the set of k largest in magnitude coordinates of x (or x*)
 - Note that $||x_{S}^{*}|| \leq ||x_{S^{*}}^{*}||_{1}$
 - We have

$$\begin{aligned} \|\mathbf{x}-\mathbf{x}'\|_{1} &\leq \|\mathbf{x}\|_{1} - \|\mathbf{x}_{S^{*}}\|_{1} + \|\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}\|_{1} \\ &\leq \|\mathbf{x}\|_{1} - \|\mathbf{x}^{*}_{S^{*}}\|_{1} + 2\|\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}\|_{1} \\ &\leq \|\mathbf{x}\|_{1} - \|\mathbf{x}^{*}_{S}\|_{1} + 2\|\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}\|_{1} \\ &\leq \|\mathbf{x}\|_{1} - \|\mathbf{x}_{S}\|_{1} + \|\mathbf{x}^{*}_{S}-\mathbf{x}_{S}\|_{1} + 2\|\mathbf{x}_{S^{*}}-\mathbf{x}^{*}_{S^{*}}\|_{1} \\ &\leq \operatorname{Err} + 3\alpha/k^{*} k \\ &\leq (1+3\alpha)\operatorname{Err} \end{aligned}$$

Experiments

256x256

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

SSMP: Running time

- Algorithm:
 - x*=0
 - Repeat T times
 - For each i=1...n compute* z_i that achieves

 $D_i = min_z ||A(x^*+ze_i)-b||_1$

and store D_i in a heap

- Repeat S=O(k) times
 - Pick i,z that yield the best gain
 - Update $x^* = x^* + ze_i$
 - Recompute and store D_i for all i such that N(i) and N(i') intersect
- Sparsify x*

 (set all but k largest entries of x* to 0)
 (set all but k largest entries of x* to 0)
- Running time:

T [n(d+log n) + k nd/m*d (d+log n)]

= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

