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Problem Formulation 
(approximation theory, learning Fourier coeffs, linear sketching, 

finite rate of innovation, compressed sensing...) 
•  Setup: 

–  Data/signal in n-dimensional space : x 
         E.g., x is an 256x256 image ⇒ n=65536 
–  Goal: compress x into a “sketch” Ax ,  
     where A is a m x n “sketch matrix”, m << n  

•  Requirements: 
–  Plan A: want to recover x from Ax 

•  Impossible: underdetermined system of equations 
–  Plan B: want to recover an “approximation” x* of x  

•  Sparsity parameter k 
•  Informally: want to recover largest k coordinates of x  
•  Formally: want x* such that  

||x*-x||p≤ C(k)  minx’ ||x’-x||q  
     over all x’ that are k-sparse (at most k non-zero entries) 

•  Want: 
–  Good compression (small m=m(k,n)) 
–  Efficient algorithms for encoding and recovery 

•  Why linear compression ?   
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Application I: Monitoring 
Network Traffic Data Streams 

•  Router routs packets  
–  Where do they come from ? 
–  Where do they go to ? 

•  Ideally, would like to maintain a traffic  
     matrix x[.,.]  

–  Easy to update: given a (src,dst) packet, increment 
xsrc,dst 

–  Requires way too much space! 
    (232 x 232 entries) 
–  Need to compress  x, increment easily 

•  Using linear compression we can:   
–  Maintain sketch Ax under increments to x,  since  

A(x+Δ) = Ax + AΔ  
–  Recover x* from Ax 
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Applications, ctd. 

•  Single pixel camera 

  [Wakin, Laska, Duarte, Baron, Sarvotham, Takhar, 
Kelly, Baraniuk’06] 

•  Pooling Experiments  
[Kainkaryam, Woolf’08], [Hassibi et al’07], [Dai-
Sheikh, Milenkovic, Baraniuk], [Shental-Amir-
Zuk’09],[Erlich-Shental-Amir-Zuk’09] 



Constructing matrix A 
•  “Most” matrices A work 

–  Sparse matrices:  
•  Data stream algorithms 
•  Coding theory (LDPCs) 

–  Dense matrices:  
•  Compressed sensing  
•  Complexity/learning theory 
    (Fourier matrices)  

•  “Traditional” tradeoffs: 
–  Sparse: computationally more efficient, explicit 
–  Dense: shorter sketches 

•  Recent results: the “best of both worlds” 
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Results  
Paper R/

D 
Sketch length Encode 

time 
Column 
sparsity 

Recovery time Approx 

[CCF’02], 
[CM’06] 

R k log n n log n log n n log n l2 / l2 

R k logc n n logc n logc n k logc n l2 / l2 

[CM’04] R k log n n log n log n n log n l1 / l1 

R k logc n n logc n logc n k logc n l1 / l1 

[CRT’04] 
[RV’05] 

D k log(n/k) nk log(n/k) k log(n/k) nc l2 / l1 

D k logc n n log n k logc n nc l2 / l1 

[GSTV’06] 
[GSTV’07] 

D k logc n n logc n logc n k logc n l1 / l1 

D k logc n n logc n k logc n k2 logc n l2 / l1 

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1 / l1 

[GLR’08] D k lognlogloglogn  kn1-a n1-a nc l2 / l1 

[NV’07], [DM’08], [NT’08], 
[BD’08], [GK’09], … 

D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) * log l2 / l1 

D k logc n n log n k logc n n log n * log l2 / l1 

[IR’08], [BIR’08],[BI’09] D k log(n/k) n log(n/k) log(n/k) n log(n/k)* log l1 / l1 

Excellent Scale:  Very Good Good Fair 

[GLSP’09] R k log(n/k) n logc n logc n k logc n l2 / l1 

Caveats: (1) most “dominated” results not shown (2) only results for general vectors x are displayed  
(3) sometimes the matrix type matters (Fourier, etc) 



Part I 
Paper R/

D 
Sketch length Encode 

time 
Column 
sparsity 

Recovery time Approx 

[CM’04] R k log n n log n log n n log n l1 / l1 

Theorem: There is a distribution over mxn matrices A, m=O(k logn), 
such that for any x, given Ax, we can recover x* such that 

||x-x*||1≤ C Err1 , where Err1=mink-sparse x’ ||x-x’||1 
with probability 1-1/n.  
The recovery algorithm runs in O(n log n) time. 
This talk: 
•  Assume x≥0 – this simplifies the algorithm and analysis; see the 

original paper for the general case 
•  Prove the following l∞/l1 guarantee: ||x-x*||∞≤ C Err1 /k 
     This is actually stronger than the l1/l1 guarantee (cf. [CM’06], see 

also the Appendix) 
Note: [CM’04] originally proved a weaker statement where ||x-x*||∞≤ C||x||1 /k. The stronger 

guarantee follows from the analysis of [CCF’02] (cf. [GGIKMS’02]) who applied it to Err2 



First attempt 
•  Matrix view: 

–  A 0-1 wxn matrix A, with one 
1 per column 

–  The i-th column has 1 at 
position h(i), where h(i) be 
chosen uniformly at random 
from {1…w} 

•  Hashing view: 
–  Z=Ax 
–  h hashes coordinates into  

“buckets” Z1…Zw  
•  Estimator: xi*=Zh(i) 

Z1 ………..Z(4/α)k 

xi 

xi* 

0 0 1 0 0 1 0  
1 0 0 0 1 0 0  
0 1 0 0 0 0 1 
0 0 0 1 0 0 0    

Closely related: [Estan-Varghese’03], “counting” Bloom filters  



Analysis 
•  We show  

xi
* ≤ xi ± α Err/k 

      with probability >1/2 
•  Assume  

 |xi1| ≥ … ≥ |xim| 
     and let S={i1…ik} (“elephants”) 
•  When is xi

* > xi ± α Err/k ? 

–  Event 1: S and i collide, i.e., h(i) in h(S-{i}) 
     Probability: at most k/(4/α)k = α/4<1/4 (if α<1) 

–  Event 2: many “mice” collide with i., i.e.,  
∑t not in S u {i}, h(i)=h(t) xt > α Err/k  

     Probability: at most ¼ (Markov inequality) 

•  Total probability of “bad” events <1/2 

xi2 

Z1 ………..Z(4/α)k 

x 
xik xi1 … xi 



Second try 

•  Algorithm: 
–  Maintain d functions h1…hd and vectors Z1…Zd 

–  Estimator: 
Xi*=mint Zt

ht(i) 

•  Analysis: 
–  Pr[|xi*-xi| ≥ α Err/k ] ≤ 1/2d 
–  Setting d=O(log n) (and thus m=O(k log n) ) 

ensures that w.h.p 
|x*i-xi|< α Err/k 



Part II 
Paper R/
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Sketch length Encode 

time 
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Recovery time Approx 

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1 / l1 

[IR’08], [BIR’08],[BI’09] D k log(n/k) n log(n/k) log(n/k) n log(n/k)* log l1 / l1 



•  Restricted Isometry Property (RIP) [Candes-Tao’04]  
 Δ is k-sparse  ⇒ ||Δ||2≤ ||AΔ||2 ≤ C ||Δ||2 

•  Holds w.h.p. for: 
–  Random Gaussian/Bernoulli: m=O(k log (n/k)) 
–  Random Fourier: m=O(k logO(1) n) 

•  Consider m x n 0-1 matrices with d ones per column  
•  Do they satisfy RIP ? 

–  No, unless m=Ω(k2) [Chandar’07] 
•  However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-

Karloff-Strauss’08]: 
Δ is k-sparse  ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1 

•  Sufficient (and necessary) condition: the underlying graph is a  
    ( k, d(1-ε/2) )-expander 

dense    vs.    sparse 



Expanders 
•  A bipartite graph is a (k,d(1-ε))-

expander if for any left set S, |S|≤k, we 
have |N(S)|≥(1-ε)d |S| 

•  Objects well-studied in theoretical 
computer science and coding theory 

•  Constructions: 
–  Probabilistic: m=O(k log (n/k)) 
–  Explicit: m=k quasipolylog n 

•  High expansion implies RIP-1: 
Δ is k-sparse  ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1 

            [Berinde-Gilbert-Indyk-Karloff-Strauss’08] n 

m 

d 
S
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Proof: d(1-ε/2)-expansion ⇒ RIP-1  
•  Want to show that for any k-sparse Δ we have 

d (1-ε) ||Δ||1≤ ||A Δ||1 ≤ d||Δ||1 
•  RHS inequality holds for any Δ 
•  LHS inequality: 

–  W.l.o.g. assume  
|Δ1|≥… ≥|Δk| ≥ |Δk+1|=…= |Δn|=0 

–  Consider the edges e=(i,j) in a lexicographic 
order 

–  For each edge e=(i,j) define r(e) s.t.  
•  r(e)=-1 if there exists an edge (i’,j)<(i,j) 
•  r(e)=1 if there is no such edge 

•  Claim 1: ||AΔ||1 ≥∑e=(i,j) |Δi|re 
•  Claim 2: ∑e=(i,j) |Δi|re ≥ (1-ε) d||Δ||1 

n 

m 

d 



Recovery: algorithms 



Matching Pursuit(s) 

•  Iterative algorithm: given current approximation x* : 
–  Find (possibly several) i s. t. Ai “correlates” with Ax-Ax* . This 

yields i and z s. t.  
||x*+zei-x||p << ||x* - x||p 

–  Update x* 
–  Sparsify x*  (keep only k largest entries) 
–  Repeat 

•  Norms: 
–  p=2 : CoSaMP, SP, IHT etc (RIP) 
–  p=1 : SMP, SSMP (RIP-1)  
–  p=0 : LDPC bit flipping (sparse matrices) 

= 

i 
i 

A x*-x Ax-Ax* 



Sequential Sparse Matching 
Pursuit 

•  Algorithm: 
–  x*=0 
–  Repeat T times 

•  Repeat S=O(k) times 
–  Find i and z that minimize* ||A(x*+zei)-Ax||1 
–  x* = x*+zei 

•  Sparsify x* 
   (set all but k largest entries of x*  to 0) 

•  Similar to SMP, but updates done 
sequentially 

A 

i N(i) 

x-x* 

Ax-Ax* 

* Set z=median[ (Ax*-Ax)N(I).Instead, one could first optimize (gradient) i and then z [ Fuchs’09] 



SSMP: Approximation 
guarantee 

•  Want to find k-sparse x* 
that minimizes ||x-x*||1 

•  By RIP1, this is 
approximately the same as 
minimizing ||Ax-Ax*||1 

•  Need to show we can do it 
greedily 

a1 a2 

x 

a1 
a2 

x 

Supports of a1 and a2 have small 
overlap (typically) 



Conclusions 
•  Sparse approximation using sparse matrices 
•  State of the art: deterministically can do 2 out of 3: 

–  Near-linear encoding/decoding 
–  O(k log (n/k)) measurements 
–  Approximation guarantee with respect to L2/L1 norm 

•  Open problems:  
–  3 out of 3 ? 
–   Explicit constructions ? 

•  Expanders (i.e., RIP-1 property) 
•  Matrices with RIP property 

–  Recent construction yields O(k2-a) measurements for some a>0  and 
certain range of k [Bourgain, Dilworth, Ford, Konyagin, Kutzarova’10] 

This talk 
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Appendix 



l∞/l1 implies l1/l1  
•  Algorithm: 

–  Assume we have x* s.t. ||x-x*||∞≤ C Err1 /k. 
–  Let vector x’ consist of k largest (in magnitude) elements of  x* 

•  Analysis 
–  Let S (or S* ) be the set of k largest in magnitude coordinates 

of x (or x* ) 
–  Note that ||x*S||  ≤ ||x*S*||1  
–  We have 

 ||x-x’||1  ≤ ||x||1 - ||xS*||1 + ||xS*-x*S*||1    
   ≤ ||x||1 - ||x*S*||1 + 2||xS*-x*S*||1 
   ≤ ||x||1 - ||x*S||1 + 2||xS*-x*S*||1    
   ≤ ||x||1 - ||xS||1 + ||x*S-xS||1 + 2||xS*-x*S*||1 
   ≤ Err + 3α/k * k 
   ≤ (1+3α)Err 



Experiments 

256x256 

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8."



SSMP: Running time  
•  Algorithm: 

–  x*=0 
–  Repeat T times 

•  For each i=1…n compute* zi that 
achieves 

Di=minz ||A(x*+zei)-b||1 
   and store Di in a heap 
•  Repeat S=O(k) times 

–  Pick  i,z that yield the best gain 
–  Update x* = x*+zei 
–  Recompute and store Di’ for all i’ such that 
    N(i) and N(i’) intersect 

•  Sparsify x* 
   (set all but k largest entries of x*  to 0) 

•  Running time: 
T [ n(d+log n) + k nd/m*d (d+log n)] 

= T [ n(d+log n) + nd (d+log n)] = T [ nd (d+log n)]  

A 

i 

x-x* 

Ax-Ax* 


