
Tutorial: Sparse Recovery
Using Sparse Matrices

Piotr Indyk
MIT

Problem Formulation
(approximation theory, learning Fourier coeffs, linear sketching,

finite rate of innovation, compressed sensing...)
•  Setup:

–  Data/signal in n-dimensional space : x
 E.g., x is an 256x256 image ⇒ n=65536
–  Goal: compress x into a “sketch” Ax ,
 where A is a m x n “sketch matrix”, m << n

•  Requirements:
–  Plan A: want to recover x from Ax

•  Impossible: underdetermined system of equations
–  Plan B: want to recover an “approximation” x* of x

•  Sparsity parameter k
•  Informally: want to recover largest k coordinates of x
•  Formally: want x* such that

||x*-x||p≤ C(k) minx’ ||x’-x||q
 over all x’ that are k-sparse (at most k non-zero entries)

•  Want:
–  Good compression (small m=m(k,n))
–  Efficient algorithms for encoding and recovery

•  Why linear compression ?

= A
x

 Ax

Application I: Monitoring
Network Traffic Data Streams

•  Router routs packets
–  Where do they come from ?
–  Where do they go to ?

•  Ideally, would like to maintain a traffic
 matrix x[.,.]

–  Easy to update: given a (src,dst) packet, increment
xsrc,dst

–  Requires way too much space!
 (232 x 232 entries)
–  Need to compress x, increment easily

•  Using linear compression we can:
–  Maintain sketch Ax under increments to x, since

A(x+Δ) = Ax + AΔ
–  Recover x* from Ax

so
ur

ce

destination

x

Applications, ctd.

•  Single pixel camera

 [Wakin, Laska, Duarte, Baron, Sarvotham, Takhar,
Kelly, Baraniuk’06]

•  Pooling Experiments
[Kainkaryam, Woolf’08], [Hassibi et al’07], [Dai-
Sheikh, Milenkovic, Baraniuk], [Shental-Amir-
Zuk’09],[Erlich-Shental-Amir-Zuk’09]

Constructing matrix A
•  “Most” matrices A work

–  Sparse matrices:
•  Data stream algorithms
•  Coding theory (LDPCs)

–  Dense matrices:
•  Compressed sensing
•  Complexity/learning theory
 (Fourier matrices)

•  “Traditional” tradeoffs:
–  Sparse: computationally more efficient, explicit
–  Dense: shorter sketches

•  Recent results: the “best of both worlds”

Prior and New Results
Paper Rand.

/ Det.
Sketch
length

Encode
time

Column
sparsity

Recovery time Approx

Results
Paper R/

D
Sketch length Encode

time
Column
sparsity

Recovery time Approx

[CCF’02],
[CM’06]

R k log n n log n log n n log n l2 / l2

R k logc n n logc n logc n k logc n l2 / l2

[CM’04] R k log n n log n log n n log n l1 / l1

R k logc n n logc n logc n k logc n l1 / l1

[CRT’04]
[RV’05]

D k log(n/k) nk log(n/k) k log(n/k) nc l2 / l1

D k logc n n log n k logc n nc l2 / l1

[GSTV’06]
[GSTV’07]

D k logc n n logc n logc n k logc n l1 / l1

D k logc n n logc n k logc n k2 logc n l2 / l1

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1 / l1

[GLR’08] D k lognlogloglogn kn1-a n1-a nc l2 / l1

[NV’07], [DM’08], [NT’08],
[BD’08], [GK’09], …

D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) * log l2 / l1

D k logc n n log n k logc n n log n * log l2 / l1

[IR’08], [BIR’08],[BI’09] D k log(n/k) n log(n/k) log(n/k) n log(n/k)* log l1 / l1

Excellent Scale: Very Good Good Fair

[GLSP’09] R k log(n/k) n logc n logc n k logc n l2 / l1

Caveats: (1) most “dominated” results not shown (2) only results for general vectors x are displayed
(3) sometimes the matrix type matters (Fourier, etc)

Part I
Paper R/

D
Sketch length Encode

time
Column
sparsity

Recovery time Approx

[CM’04] R k log n n log n log n n log n l1 / l1

Theorem: There is a distribution over mxn matrices A, m=O(k logn),
such that for any x, given Ax, we can recover x* such that

||x-x*||1≤ C Err1 , where Err1=mink-sparse x’ ||x-x’||1
with probability 1-1/n.
The recovery algorithm runs in O(n log n) time.
This talk:
•  Assume x≥0 – this simplifies the algorithm and analysis; see the

original paper for the general case
•  Prove the following l∞/l1 guarantee: ||x-x*||∞≤ C Err1 /k
 This is actually stronger than the l1/l1 guarantee (cf. [CM’06], see

also the Appendix)
Note: [CM’04] originally proved a weaker statement where ||x-x*||∞≤ C||x||1 /k. The stronger

guarantee follows from the analysis of [CCF’02] (cf. [GGIKMS’02]) who applied it to Err2

First attempt
•  Matrix view:

–  A 0-1 wxn matrix A, with one
1 per column

–  The i-th column has 1 at
position h(i), where h(i) be
chosen uniformly at random
from {1…w}

•  Hashing view:
–  Z=Ax
–  h hashes coordinates into

“buckets” Z1…Zw
•  Estimator: xi*=Zh(i)

Z1 ………..Z(4/α)k

xi

xi*

0 0 1 0 0 1 0
1 0 0 0 1 0 0
0 1 0 0 0 0 1
0 0 0 1 0 0 0

Closely related: [Estan-Varghese’03], “counting” Bloom filters

Analysis
•  We show

xi
* ≤ xi ± α Err/k

 with probability >1/2
•  Assume

 |xi1| ≥ … ≥ |xim|
 and let S={i1…ik} (“elephants”)
•  When is xi

* > xi ± α Err/k ?

–  Event 1: S and i collide, i.e., h(i) in h(S-{i})
 Probability: at most k/(4/α)k = α/4<1/4 (if α<1)

–  Event 2: many “mice” collide with i., i.e.,
∑t not in S u {i}, h(i)=h(t) xt > α Err/k

 Probability: at most ¼ (Markov inequality)

•  Total probability of “bad” events <1/2

xi2

Z1 ………..Z(4/α)k

x
xik xi1 … xi

Second try

•  Algorithm:
–  Maintain d functions h1…hd and vectors Z1…Zd

–  Estimator:
Xi*=mint Zt

ht(i)

•  Analysis:
–  Pr[|xi*-xi| ≥ α Err/k] ≤ 1/2d
–  Setting d=O(log n) (and thus m=O(k log n))

ensures that w.h.p
|x*i-xi|< α Err/k

Part II
Paper R/

D
Sketch length Encode

time
Column
sparsity

Recovery time Approx

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1 / l1

[IR’08], [BIR’08],[BI’09] D k log(n/k) n log(n/k) log(n/k) n log(n/k)* log l1 / l1

•  Restricted Isometry Property (RIP) [Candes-Tao’04]
 Δ is k-sparse ⇒ ||Δ||2≤ ||AΔ||2 ≤ C ||Δ||2

•  Holds w.h.p. for:
–  Random Gaussian/Bernoulli: m=O(k log (n/k))
–  Random Fourier: m=O(k logO(1) n)

•  Consider m x n 0-1 matrices with d ones per column
•  Do they satisfy RIP ?

–  No, unless m=Ω(k2) [Chandar’07]
•  However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-

Karloff-Strauss’08]:
Δ is k-sparse ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1

•  Sufficient (and necessary) condition: the underlying graph is a
 (k, d(1-ε/2))-expander

dense vs. sparse

Expanders
•  A bipartite graph is a (k,d(1-ε))-

expander if for any left set S, |S|≤k, we
have |N(S)|≥(1-ε)d |S|

•  Objects well-studied in theoretical
computer science and coding theory

•  Constructions:
–  Probabilistic: m=O(k log (n/k))
–  Explicit: m=k quasipolylog n

•  High expansion implies RIP-1:
Δ is k-sparse ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1

 [Berinde-Gilbert-Indyk-Karloff-Strauss’08] n

m

d
S

N(S)

n
m

Proof: d(1-ε/2)-expansion ⇒ RIP-1
•  Want to show that for any k-sparse Δ we have

d (1-ε) ||Δ||1≤ ||A Δ||1 ≤ d||Δ||1
•  RHS inequality holds for any Δ
•  LHS inequality:

–  W.l.o.g. assume
|Δ1|≥… ≥|Δk| ≥ |Δk+1|=…= |Δn|=0

–  Consider the edges e=(i,j) in a lexicographic
order

–  For each edge e=(i,j) define r(e) s.t.
•  r(e)=-1 if there exists an edge (i’,j)<(i,j)
•  r(e)=1 if there is no such edge

•  Claim 1: ||AΔ||1 ≥∑e=(i,j) |Δi|re
•  Claim 2: ∑e=(i,j) |Δi|re ≥ (1-ε) d||Δ||1

n

m

d

Recovery: algorithms

Matching Pursuit(s)

•  Iterative algorithm: given current approximation x* :
–  Find (possibly several) i s. t. Ai “correlates” with Ax-Ax* . This

yields i and z s. t.
||x*+zei-x||p << ||x* - x||p

–  Update x*
–  Sparsify x* (keep only k largest entries)
–  Repeat

•  Norms:
–  p=2 : CoSaMP, SP, IHT etc (RIP)
–  p=1 : SMP, SSMP (RIP-1)
–  p=0 : LDPC bit flipping (sparse matrices)

=

i
i

A x*-x Ax-Ax*

Sequential Sparse Matching
Pursuit

•  Algorithm:
–  x*=0
–  Repeat T times

•  Repeat S=O(k) times
–  Find i and z that minimize* ||A(x*+zei)-Ax||1
–  x* = x*+zei

•  Sparsify x*
 (set all but k largest entries of x* to 0)

•  Similar to SMP, but updates done
sequentially

A

i N(i)

x-x*

Ax-Ax*

* Set z=median[(Ax*-Ax)N(I).Instead, one could first optimize (gradient) i and then z [Fuchs’09]

SSMP: Approximation
guarantee

•  Want to find k-sparse x*
that minimizes ||x-x*||1

•  By RIP1, this is
approximately the same as
minimizing ||Ax-Ax*||1

•  Need to show we can do it
greedily

a1 a2

x

a1
a2

x

Supports of a1 and a2 have small
overlap (typically)

Conclusions
•  Sparse approximation using sparse matrices
•  State of the art: deterministically can do 2 out of 3:

–  Near-linear encoding/decoding
–  O(k log (n/k)) measurements
–  Approximation guarantee with respect to L2/L1 norm

•  Open problems:
–  3 out of 3 ?
–  Explicit constructions ?

•  Expanders (i.e., RIP-1 property)
•  Matrices with RIP property

–  Recent construction yields O(k2-a) measurements for some a>0 and
certain range of k [Bourgain, Dilworth, Ford, Konyagin, Kutzarova’10]

This talk

References
•  Survey:
 A. Gilbert, P. Indyk, “Sparse recovery using

sparse matrices”, Proceedings of IEEE, June
2010.

•  Courses:
–  “Streaming, sketching, and sub-linear space

algorithms”, Fall’07
–  “Sub-linear algorithms” (with Ronitt Rubinfeld),

Fall’10
•  Blogs:

– Nuit blanche: nuit-blanche.blogspot.com/

Appendix

l∞/l1 implies l1/l1
•  Algorithm:

–  Assume we have x* s.t. ||x-x*||∞≤ C Err1 /k.
–  Let vector x’ consist of k largest (in magnitude) elements of x*

•  Analysis
–  Let S (or S*) be the set of k largest in magnitude coordinates

of x (or x*)
–  Note that ||x*S|| ≤ ||x*S*||1
–  We have

 ||x-x’||1 ≤ ||x||1 - ||xS*||1 + ||xS*-x*S*||1
 ≤ ||x||1 - ||x*S*||1 + 2||xS*-x*S*||1
 ≤ ||x||1 - ||x*S||1 + 2||xS*-x*S*||1
 ≤ ||x||1 - ||xS||1 + ||x*S-xS||1 + 2||xS*-x*S*||1
 ≤ Err + 3α/k * k
 ≤ (1+3α)Err

Experiments

256x256

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8."

SSMP: Running time
•  Algorithm:

–  x*=0
–  Repeat T times

•  For each i=1…n compute* zi that
achieves

Di=minz ||A(x*+zei)-b||1
 and store Di in a heap
•  Repeat S=O(k) times

–  Pick i,z that yield the best gain
–  Update x* = x*+zei
–  Recompute and store Di’ for all i’ such that
 N(i) and N(i’) intersect

•  Sparsify x*
 (set all but k largest entries of x* to 0)

•  Running time:
T [n(d+log n) + k nd/m*d (d+log n)]

= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

A

i

x-x*

Ax-Ax*

