Fast approximation algorithms
for cut-based problems in
undirected graphs

Aleksander Madry



The setup

Undirected graph G with
integer capacities u(-)

What problems one might want
to solve on G?

Popular choice:
Cut-based minimization problems




Examples of such problems

minimum cut problem

minimum s-t cut problem
(generalized) sparsest cut problem
minimum conductance cut problem
balanced separator problem
minimum bisection problem

Motivation?

These problems are everywhere!



Our example

Generalized sparsest cut:
Given a graph G=(V,E,u) and
a demand graph D=(V,F,d),
find a cut C* that minimizes:

u{€)
d(C)

— O —
—
—

T o
--ll_.-—'-

Applications:
Graph partitioning,
bounding max concurrent
flow ratio

Important special case:
If D is a complete graph = uniform sparsest cut




What questions are usually asked about such problems?

Can we solve them efficiently?
No, they both are NP-hard | IsitinP?

How well can we approximate them in poly-time?

Uniform sparsestcut : O{,/logn) [Arora Rao Vazirani '04]
Generalized sparsest cut : O(,/log n log log n) [arora Lee Naor '05]

But there is one more question we should ask as well...

How well can we approximate them when we |

want to be really efficient? Nearly-linear

Rationale: This would be the first question asked | Hme

when one wants to solve these problems in practice!

Note: we care a lot about real efficiency for problems in P,
but not so much for the ones that are NP-hard



What is known in this context?

Uniform sparsest cut:

Spectral partitioning :
O(vn)  O(m)

Flow - based algorithms :
Oflogn) O(n?)
o{,logn) O({n?)
Oflog’n) § {m-+n®?)
O{logn) O{m-+n*?)
Of{logn) O{m+n*?)
O(,/logn/c) O (m-+n*?")

[Alon Midman '85] [Andersen Peres '09]

[Leighton Rao '99]

[Arora Hazan Kale '04]

[Khandekar Rao Vazirani '06]

[Arora Kale'07]

[Orecchia Schulman Vazirani Vishnoi "08]
[Sherman "09]

Generalized sparsest cut:

Oflogn) O (n’log U)

[Leighton Rao '99]




Our result
Generalized sparsest cut:

For any integral £>0, we can afg)-approximate the

roblem in O(m+n'*€) time with afg) = loglles V/elp
p 1 ( ) ( L, g'

6(m+n(1+s)e-1 |Og U) |Gg(1+n(1))r1+lng 1/€1 i

k=1 - (log!1*e(2) n)-approx in O(n2log U) time
k=2 > (log2*(1) n)-approx in O(m+n*3log U) time
k=3 - (log3*°(1) n)-approx in O(m+n&7log U) time

We get time arbitrarily close to nearly-linear,
but pay accordingly in approximation guarantee

(even better trade-off for uniform version)

We can do even more!




Our result (cont.)

Let us call a minimization problem P

cut-based if we can cast it as:
Given an instance P of P and G=(V,E,u),

find a cut C* being argmin, u(C)f,(C),
where f,(C) depends only on P

Examples:
Minimum s-t cut problem:
fo(C)=1 if C separatess and t;
fo(C)= +eo otherwise.

Generalized sparset cut problem:
fo(C)=1/d(C)




Our result (simplified)

For any cut-based minimization problem 2,
given an algorithm A that B-approximates P

only on tree instances, for any €>0, we get
an (og)-B)-approximation for P
on general graphs in time O(m+n{1*e))+ time
needed to run A on =1/ tree instances

Moral: When aiming at (fast) poly-log
approximation of a minimization cut-based
problem: just focus on tree instances

Example: On trees we can solve generalized sparsest
cut optimally (in O(m) time) © our result follows




How to go about proving such theorem?

[Récke ’08] (simplified): For any graph G=(V,E,u), we can find in
poly-time a convex combination {(A,T;)}; of trees* s.t. for any cut C:
(cut lower-bounding) u.(C)2u{C) foralli
(cut upper-bounding) E,[u(C)]:=3, A, u,{C) < O(log n) u{C)

Idea for lifting: Find {(A,, T;)}. as above and sample
a tree T equal to T; with probability A,
output an a-optimal solution C for instance Pon tree T

Why should it work? Let C* be the optimal solution
with prob. 2 1/2: u(C*)< O(log n) u(C*)
But u(C) f,(C) < u(C) f,(C) £ a u{C*)f,(C*)<
O(a log n) u(C*)f,(C*)=O(a log n) OPT

Note: Choice of T is oblivious to
the problem we want to solve!




How to go about proving such theorem?

[Récke ’08] (simplified): For any graph G=(V,E,u), we can find in
poly-time a convex combination {(A,T;)}; of trees* s.t. for any cut C:
(cut lower-bounding) u.(C)2u{C) foralli
(cut upper-bounding) E,[u(C)]:=3, A, u,{C) < O(log n) u{C)

Idea for lifting: Find {(A,, T;)}. as above and sample
a tree T equal to T; with probability A,
output an a-optimal solution C for instance Pon tree T

Lifting works great! How about running time?

Racke’s algorithm runs in O(m min{mn,n®)) time

Prohibitive from our point of view!

Can speed it up to O({m?2) time while losing a bit in quality

But this is still not enough!



What to do now?
The approach looked very promising but got stuck...
Maybe we are asking for too much?

Idea: Decompose G into objects that are
more complicated than trees,
but still simpler than general graphs

H is a j-tree if it is a union of:
— forest F (envelope)
— arbitrary graph R (core)
and:
1) |V(R)|<]
2) for each connected component
F' of F, | V(F')nV(R)|=1

Note: 1-tree is just a tree




Decomposing graphs into j-trees

Theorem (simplified): For any graph G=(V,E,u) and j21, we can find in
O(m?2/j) a convex combination {(A,T:)} of j-trees s.t. for any cut C:
(cut lower-bounding) u.(C)z u{C) foralli
(cut upper-bounding) E,[u({C)]:=3; A u(C) < O(log n) u(C)

If we tak j=1 then we recover Racke’s result with faster running
time, but slightly worse quality

But the ability to vary j gives a lot of flexibility!

IH'

Rough intuition: The “real” complexity of a cut-based
problem on a j-tree with n vertices is j notn

If A works in O(m+n{*9) time on general graphs

J (heuristically)J
It can be made to work in O(m+j{*9) time on j-trees

This allows speeding up such algorithms!




.. c* Our lifting:

\ O(m?/j) time
. +sampling

With prob. 1/2, cut C* is
Input graph O(log n)-preserved
We now run our algorithm on T instead of G to get a speed up!

j-tree

But there is even a better way of leveraging this flexibility!

Instead of reducing G to T in one big step...
..we do it in a series of small recursive steps

We get a running time arbitrarily close to nearly-linear

...but at a price of approximation ratio growing accordingly



Conclusions and open problems

We presented a general method of
obtaining fast poly-log approximation algorithms for
minimization cut-based problems

(Our method is oblivious to actual problem we want to solve)

Can one get a better trade-off?

Maybe some fixed poly-log approximation
in nearly-linear time?

..at least for some specific problem (e.g. sparsest cut)?

Can one extend this method to flow problems?

Key take-away question: How well can we approximate
fundamental problems while being really efficient?




Thank you!

Questions?



