
Innovations in Computer Science 2010

Cryptography by Cellular Automata
or

How Fast Can Complexity Emerge in Nature?
Benny Applebaum1 Yuval Ishai2 Eyal Kushilevitz2

1Computer Science Department, Princeton University
2Computer Science Department, Technion and UCLA

benny.applebaum@gmail.com yuvali@cs.technion.ac.il eyalk@cs.technion.ac.il

Abstract: Computation in the physical world is restricted by the following spatial locality constraint: In a
single unit of time, information can only travel a bounded distance in space. A simple computational model
which captures this constraint is a cellular automaton: A discrete dynamical system in which cells are placed
on a grid and the state of each cell is updated via a local deterministic rule that depends only on the few cells
within its close neighborhood. Cellular automata are commonly used to model real world systems in nature
and society.
Cellular automata were shown to be capable of a highly complex behavior. However, it is not clear how fast this
complexity can evolve and how common it is with respect to all possible initial configurations. We examine this
question from a computational perspective, identifying “complexity” with computational intractability. More
concretely, we consider an n-cell automaton with a random initial configuration, and study the minimal number
of computation steps t = t(n) after which the following problems can become computationally hard:
• The inversion problem. Given the configuration y at time t, find an initial configuration x which leads

to y in t steps.
• The prediction problem. Given an arbitrary sequence of � > n intermediate values of cells in the

computation, predict some value in the sequence based on the previous values with a significant advantage
over guessing.

These two problems capture the natural goals of inferring the past from the present and predicting the future
based on partial observations of the past. Our main results show that, under widely believed conjectures, there
are cellular automata for which both problems become hard even after a single computation step. This is done
by constructing cryptographic one-way functions and pseudorandom generators which are computed by a single
step of a cellular automaton. Our results support the view that computational forms of complexity can emerge
from simple local interactions in a very common and immediate way.
Our results build on and strengthen previous results of Applebaum et al. (FOCS 2004, CRYPTO 2007) on the
parallel complexity of cryptography. These previous works implement cryptographic primitives by circuits with
constant depth, constant fan-in and constant fan-out, but inherently fail to satisfy the strong spatial locality
requirement.

Keywords: Cryptography; Cellular Automata; Natural Computation; Constant Parallel Time.

1 Introduction
Computation in the physical world is restricted by

the following spatial locality constraint: In a single
unit of time, information can only travel a bounded
distance in space. A simple computational model
which captures this constraint is a cellular automa-
ton (CA): A discrete dynamical system in which cells
are placed on a grid and the state of each cell is up-
dated via a local deterministic rule that depends only
on the few cells within its close neighborhood. Con-
way’s Game of Life [1] is a famous instance of CA in

which each cell is initialized to be either “alive” or
“dead,” and in each time step each cell interacts with
the eight neighboring cells surrounding it and deter-
mines whether to live or die based on the number of
its living neighbors.

CAs were introduced by von Neumann and Ulam in
an attempt to model natural physical and biological
systems [2]. Despite their simple structure, CAs were
shown to exhibit complex computational and dynami-
cal phenomena such as self-replication, universal com-
putation, synchronization, fractality, and chaos [2–6].

1

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

The ability to generate complex behaviors by using
simple basic rules makes CAs a powerful tool: Scien-
tists use them to simulate and analyze real world sys-
tems in nature and society, and engineers view them
as massive parallel processing machines that can effi-
ciently solve complicated algorithmic tasks. (See [7]
for a survey on CAs and their applications.) Indeed,
in the last few decades CAs have become the focus of
extensive research efforts with specialized conferences
and journals devoted to their study.

Being a universal computational model, CAs are
capable of a highly complex behavior. However, it
is not clear how fast this complexity can evolve and
how common it is with respect to all possible ini-
tial configurations. We examine this question from a
computational perspective, identifying “complexity”
with computational intractability. We focus on two
fundamental notions of computational intractability:
“one-wayness” [8], which captures the intractability
of inferring the past from the present; and “pseudo-
randomness” [9, 10] which roughly corresponds to the
intractability of making informed predictions about
the future based on partial observations of the past.
Our main results show that, under widely accepted
conjectures, even a single step of a CA is capable of
generating one-wayness and pseudorandomness with
respect to almost all initial configurations. This is
formally captured by the ability to compute crypto-
graphically strong functions by a single step of CA.
Our results show that, at least from a computational
point of view, the evolution of complexity can be both
common and fast.

1.1 The Inversion Problem
Can the present be used to make inferences about

the past? Consider a two-dimensional CA in which
each of the n cells takes a binary value of 0 or 1,
and the local update rules need not be identical for
all grid cells [11, 12]. We assume that the full de-
scription of the CA, including all the local rules, is
known. Initialize the CA with a random configura-
tion x = (x1, . . . , xn) by assigning a randomly chosen
value to each cell, and let the CA evolve for t steps
to a configuration y = (y1, . . . , yn). Is it possible to
efficiently recover the initial configuration x from the
observed configuration y, or alternatively some other
initial configuration x′ which leads to y in t steps?

While it is easy to efficiently emulate the computa-
tion in the forward direction (that is, compute y given
x), it is not clear how to do the same in the back-
ward direction, and it seems plausible that, if we wait
long enough (i.e., let t be sufficiently large), the inver-
sion problem becomes computationally hard. Since

we would like to know how fast intractability evolves,
let us consider the extreme case where t = 1. As
each cell only affects and depends on its close neigh-
borhood, finding x boils down to solving a system of
equations yi = fi(x) of a very simple form: each equa-
tion involves a small number (say 9) of unknown vari-
ables, and each unknown variable xj participates in
a small number of equations. Furthermore, these de-
pendencies are dictated by a simple geometrical struc-
ture implied by the spatial locality. One can show
that when the CA is one-dimensional (embedded on
a line) the inversion problem is easy – a consistent ini-
tial configuration can always be found in time poly-
nomial in n [13]. (Note that a Turing Machine can
be viewed as an instance of a one-dimensional CA
over a large alphabet.) Moreover, even in the case of
two-dimensional CAs, one can exploit the geometri-
cal structure and obtain non-trivial algorithmic short-
cuts. Specifically, by using the techniques of [14, 15],
one can find a consistent initial configuration in sub-
exponential time of 2O(

√
n), or alternatively, find in

polynomial time an approximate solution: an initial
configuration x′ that leads to a configuration y′ which
differs from y only in an arbitrary small constant frac-
tion of the cells. (See Proposition 3.2 for formal de-
tails.)

Despite this evidence for simplicity, the proof of
Cook’s theorem [16] shows that, even for a single
computation step, the inversion problem of a two-
dimensional CA is NP-hard. While NP-hardness sug-
gests that there are some hard instances, it says noth-
ing about their frequency. It might still be the case
that only a tiny fraction of the instances are hard,
and there exists an efficient algorithm that solves the
inversion problem with probability which is extremely
close to 1. A more satisfactory notion of hardness will
be to show that for some CAs the problem is almost
always intractable – namely, the question is whether
CAs are capable of computing one-way functions in a
small number of steps.

Assuming the intractability of decoding a random
linear code (DRLC), we give an affirmative answer
to this question and construct a two-dimensional CA
that computes a one-way function in a single compu-
tation step. We conclude that, barring a major break-
through in coding theory, there are CAs for which the
inversion problem is hard with respect to almost all
initial configurations even when t = 1.

1.2 Pseudorandomness and Predictability
One may try to capture irregularity and chaotic be-

havior via the cryptographic notion of pseudorandom-
ness. Let us consider the following experiment: a CA

2

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

is initialized with an unknown random configuration
x ∈ {0, 1}n and runs for t computation steps. Suppose
that we have only a partial view of the computation,
that is, we are given only a sequence of � intermediate
values y = y1, . . . , y� collected from several sites dur-
ing the computation. How random can this sequence
look like? Can we identify regular patterns or predict
some values of the sequence based on previous val-
ues? Equivalently, is it possible to distinguish y from
a truly random binary sequence z of length �?

To make the question meaningful, let us assume
that the number of observations � is larger than n,
the amount of randomness that was used to initialize
the system. In this case, y is statistically far from
being truly random and with no computational lim-
itations it is easy to distinguish y from a uniformly
chosen �-bit string. This also implies that it is possi-
ble in principle to predict some values in the sequence
based on previous values with a significant advantage
over guessing [10]. However, it might be the case that
no such efficient procedures exist. In cryptographic
terms, we ask whether the distribution of y can be
pseudorandom.

Wolfram [17] suggested a heuristic construction of
a CA which can generate a long pseudorandom se-
quence from a random initial configuration. Con-
cretely, he suggested to let yi be the value of the
middle cell in a simple one-dimensional CA at the be-
ginning of the i-th computation step.1 In this case, a
non-trivial pseudorandom sequence of length � = n+1
may be generated in t = n steps. Following Wolfram
many other candidates were suggested [18–22]. How-
ever, to the best of our knowledge, all these construc-
tions require t to be relatively large, at least linear in
n. In addition, none of these constructions is proven
to be secure under a well studied intractability as-
sumption. We show that unpredictable behavior can
evolve very fast — even a single computation step of a
CA is capable of generating a pseudorandom sequence
of length � > n. The sequence includes some cells
from the initial configuration together with all cells
of the next configuration. Again, this construction
is based on the conjectured intractability of decoding
random linear codes.

1.3 Other Cryptographic Primitives
We also study the possibility of performing other

useful cryptographic computations by a single step
of a CA. In addition to one-way functions and pseu-
dorandom generators, we show that commitment
schemes, symmetric encryption schemes and private-

1Interestingly, his construction is being used as the pseudo-
random generator of the software Mathematica.

key identification schemes can all be computed in this
model under the DRLC assumption.

We also show that, assuming the security of the
McEliece cryptosystem [23], it is possible to construct
a semantically-secure public-key cryptosystem [24]
whose encryption algorithm can be computed by a sin-
gle step of a CA. The possibility of basing a public-key
cryptosystem on the hardness of inverting different
models of automata (including CAs) was suggested
in the past [18, 25–27]. However, previous attempts
resulted in ad-hoc constructions (with no proof of se-
curity) that were not computable in a constant num-
ber of steps. Our construction is the first to avoid
these drawbacks.

On the negative side, we describe a 2O(
√
n) attack

against CA-based primitives which tightly matches
the security of our constructions. We also show that
functions which are computable by CAs in a constant
number of steps cannot realize several other primitives
such as pseudorandom generators with linear stretch
and encryption schemes of a constant rate. (See Corol-
lary 3.3.) This should be contrasted with the previous
positive results from [28] – see Section 1.5 below for
discussion. We also note that other negative results
that were proved for weaker notions of parallel cryp-
tography [29–31] apply to our setting as well. These
negative results imply that cryptographic tasks such
as decryption, signing, and verifying signatures (in
both the private key and the public key world) can-
not be implemented by a CA in a constant number
of steps. The combination of our positive results and
these negative results provides a fairly complete pic-
ture as to which major cryptographic primitives can
be implemented by CAs in a constant number of steps.

1.4 Application: Cryptography with Con-
stant Physical Latency

Traditional theoretical measures of circuit complex-
ity treat circuits as topological rather than physical
objects. As such they do not take into account the
size of gates and the distances traveled by signals in
an actual embedding of a circuit in physical space.
In particular, parallel time complexity is measured
by counting the maximal number of gates, or equiv-
alently wires, traversed by an input signal on its way
to an output, without considering the physical length
of the wires.

In reality, however, chips with long wires are slower
and harder to power than chips with short wires [32].
On a more fundamental level, barriers on the speed
of light and minimal size of devices impose inherent
limitations on parallel time complexity in the physical
world. This discrepancy between theoretical measures
of parallel complexity and physical limitations has

3

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

drawn a considerable amount of attention in the areas
of VLSI design and parallel computing (see [33, 34]
and references therein). It has also led to criticism
against the meaningfulness of the complexity class NC
(as a model for “efficient” parallel computation).

The possibility of fast cryptographic computations
by CAs allows to address this limitation. Our CA con-
structions yield implementations of several primitives
(i.e., one-way functions, pseudorandom generators,
symmetric/public-key encryption schemes, commit-
ment schemes and symmetric identification schemes)
with constant physical latency – i.e., the circuit fam-
ilies that compute these primitives can be embedded
on a two-dimensional grid such that the maximal dis-
tance traveled by an input signal on its way to an
output gate is bounded by an absolute constant that
does not grow with the input length or the level of
security. This shows that, at least in principle, use-
ful cryptographic computations can be carried out in
constant parallel time even when the geometry of the
physical world is taken into account. (An additional
discussion of the physical latency model appears in
Section 7.)

1.5 Previous Notions of Parallelism
It is instructive to compare the models considered

in this paper to previous notions of highly parallel
cryptography. For this, it will be useful to view the
input-output dependencies of a function f as a bipar-
tite graph G in which left nodes correspond to input
variables, right nodes correspond to output variables,
and an edge connects an input node to an output node
if and only if the corresponding input variable affects
the corresponding output variable. The function has
constant output locality (resp., constant input locality)
if the degree of the output nodes (resp., input nodes)
is bounded by a constant.

In [30] it was shown that, under standard in-
tractability assumptions, many useful cryptographic
tasks can be implemented by functions with con-
stant output locality. This positive result was later
strengthened for a subclass of these tasks to allow im-
plementations with both constant input locality and
constant output locality [31]. In contrast, the current
work mainly deals with constant spatial locality: it
should be possible to embed the graph G (via an in-
jective mapping) on the two dimensional grid ℕ × ℕ

such that the Euclidean distance between each pair
of adjacent nodes is bounded by some constant d. It
can be shown that this notion of locality is strictly
stronger than the previous ones (see Proposition 3.1).
More importantly, as we argue below, this distinc-
tion makes a qualitative difference even from a cryp-

tographic point of view.

The spatial locality property prevents G from hav-
ing good connectivity properties. In particular, G is a
poor expander which has relatively small separators.
This limitation does not apply to graphs with low in-
put and output locality, as constant-degree bipartite
graphs can have a very good expansion. From a cryp-
tographic perspective, good expansion makes crypt-
analysis harder and, indeed, several previous cryp-
tographic constructions of low input/output locality
were based on such expander graphs [28, 35, 36]. The
good expansion of these constructions prevents them
from having spatially local embedding. To the best of
our knowledge, all previous implementations of non-
trivial cryptographic primitives in the literature (even
parallel constructions that do not rely on expanders)
can be proved to have super-constant spatial locality.

In fact, the existence of small separators for spa-
tially local graphs leads to some actual attacks. As
already mentioned, spatially local functions can be
inverted in sub-exponential time, or alternatively, ap-
proximately inverted in polynomial time. This vul-
nerability can be used to show that variants of some
primitives (e.g., pseudorandom generators with lin-
ear stretch) that can be computed with constant in-
put and output locality [28], cannot be realized by
spatially local functions. (See Section 3.4.) All in
all, one may suspect that spatially local functions are
too weak to perform any cryptographic computation.
Still, our results show that many cryptographic prim-
itives can be implemented in this class.

Finally, we mention that, as a byproduct of our
techniques, we also obtain some improvement over
previous results on the input locality of cryptographic
primitives. Previous constructions from [31] only
yield a collection of primitives (e.g., one-way func-
tions and pseudorandom generators) with constant
input locality, where a random function from the col-
lection is secure with high probability. In this work,
we obtain the first explicit one-way functions and
pseudorandom generators in which each bit of the in-
put influences only a constant number of output bits.
(As in [31], our constructions achieve optimal input-
locality and output-locality simultaneously.) Simi-
larly, our symmetric encryption scheme is the first en-
cryption scheme in which each bit of the input, secret
key, or randomness influences only a constant number
of output bits. A previous construction from [31] only
has this property for any fixed key (i.e., by allowing
the topology of the encryption circuit to depend on
the key).

4

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

1.6 Organization
We begin with an overview of our techniques (Sec-

tion 2). Then, we formally present the notions of
cellular automata and spatially local functions, and
make some initial observations regarding these com-
putational models (Section 3). Our main results re-
garding the average-case hardness of CAs are proven
in three steps (Section 4– 6): First we show that spa-
tially local primitives can be constructed based on
“algebraically simple” cryptographic functions (Sec-
tion 4), then we argue that, under the DRLC assump-
tion, “algebraically simple” functions can achieve
cryptographic hardness (Section 5), and finally we
show how to convert spatially local cryptographic
primitives into primitives that can be implemented
by a single computation step of a CA (Section 6). We
end the paper by showing that our results give rise
to cryptographic hardware with constant physical la-
tency (Section 7).

2 Overview of Techniques
At the heart of our results is a new randomization

method for “algebraically simple” functions. Before
describing our construction and its relation to previ-
ous works, let us briefly recall the notion of a random-
ized encoding of functions from [30, 37].

We say that a function f(x) is encoded by a ran-
domized mapping f̂(x, r) if for every x the value f(x)
is “information-theoretically equivalent” to the dis-
tribution f̂(x, r) induced by a random choice of r.
Specifically, one should be able to decode f(x) given
a sample from f̂(x, r), and vice versa: given f(x) it
should be possible to sample the distribution f̂(x, r).
We mention that, syntactically, the input length and
output length of f̂ are typically larger than those of
f . We will later elaborate more on the notion of ran-
domized encoding and its usefulness for low complex-
ity cryptography. For now, let us just mention that,
by the results of [30], in order to implement a crypto-
graphic primitive by a function with constant spatial
locality (CSL), it suffices to show that functions with
CSL can encode some non-trivial class of functions
STRONG in which cryptographic functions exist.

To illustrate our main technique, consider the fol-
lowing problem. We are given a linear function L :
𝔽
n
2 → 𝔽

�
2 which maps a column vector x to the vector

Mx where M is some matrix in 𝔽
�×n
2 . Our goal is to

encode the function L by a function L̂ which can be
computed with CSL. Recall that the spatial locality of
L̂ is d if the dependencies graph Ĝ of L̂ can be embed-
ded (via an injective mapping) on a two dimensional
grid ℕ×ℕ such that the Euclidean distance between

each pair of adjacent nodes is at most d. Note that
constant spatial locality implies, in particular, that
the degrees of all output nodes and the degrees of
all input nodes of Ĝ are bounded by a constant (i.e.,
O(d2)).
1) The encoding of [31].

An encoding that achieves the low-degree proper-
ties was suggested in [31]. This encoding relies on two
“gadgets”: an output-reduction gadget which replaces
an output node of large degree with a (larger) sub-
graph of low degree, and an input-reduction gadget
which does the same for a high-degree input node. (In
both cases, new inputs and outputs are introduced.)
These gadgets can be used to reduce the degree of
some specific node without increasing the degree of
other nodes. Hence, they allow to gradually improve
the encoding by applying a sequence of local opera-
tions. In the end of this process, one gets an encoding
whose dependency graph Ĝ has a constant degree. It
is natural to try to obtain a dense embedding of Ĝ
in which the edges are short (e.g., by “squeezing” the
graph). However, it can be shown that this is, in gen-
eral, impossible — we will always have some adjacent
nodes u and v which are placed far from each other.2

2) Shortening edges via randomization.
We cope with the above problem by making an ad-

ditional use of randomization: Instead of moving the
adjacent nodes, u and v, one towards the other, we
will bridge the distance by adding new intermediate
(random) inputs and outputs that will fill the gap. In-
deed, this is possible (in the case of linear functions)
by splitting a single output u = v + (w1 + . . . + wk)
into a “chain” of k + 1 outputs of the form (u1 =
v + r1, u2 = r1 + r2, . . . , uk = rk−1 + rk, uk+1 =
rk+(w1+. . .+wk)) where r = (r1, . . . , rk) are new ran-
dom inputs. However, these new intermediate nodes
occupy area and therefore this transformation is pos-
sible only if the area between the two problematic
nodes is free.
3) A problematic local approach.

We can try to take care of each “long” edge e =
(u, v) locally by pushing away the nodes which are
placed along e. However, this may lengthen other
edges that we already took care of. Hence, we need a
global strategy that keeps the area “under” the edges
free. Furthermore, we should avoid having a long edge
e which crosses a large number of other long edges, as

2This can be proven by letting M be the adjacency matrix
of a good (bipartite) expander of fixed degree. In this case, the
encoding of [31] has linear number of variables and low (loga-
rithmic) diameter. Hence, any planar, or even 3-dimensional,
embedding of its dependency graph suffers from long (non-
constant) edges. See also Proposition 3.1.

5

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

in this case our edge shortening procedure will place
many vertices along e. In general, it seems hard to
satisfy these requirements. Nevertheless, it turns out
that the special structure of the encoding of [31] gives
rise to such a nice arrangement.

4) Aligning the graph to the matrix M .
The important observation here is that both the

output-reduction and the input-reduction gadgets re-
sult in a “chain” or “comb”-like graph structures.
Hence, we can place them along the rows and columns
of the grid. Specifically, we will associate each row
of the grid with one original output of L, and each
column with an original input variable — similarly
to the structure of the matrix M which defines the
linear function. Our encoding is now constructed as
follows: (1) Apply the output gadget to the i-th out-
put and place the resulting chain-like graph along the
i-th row. Do this while keeping the adjacent inputs
aligned to their columns. This leads to long horizontal
edges whenever the i-th row ofM has a large number
of consecutive zeroes; (2) Apply the input gadget to
the i-th input and place the resulting comb-like graph
along the i-th column. Do this while keeping the adja-
cent outputs aligned to their rows. This leads to long
vertical edges whenever the i-th column of M has a
large number of consecutive zeroes; (3) Since the long
edges (and in fact all edges) are stretched over free
area, we can apply our transformation and replace a
long edge with a sequence of new random inputs and
new outputs.

5) Encoding the universal linear function.
While the encoding of [31] works for every fixed lin-

ear function, it falls short of encoding the universal
linear function L(M,x) = (M,Mx), which takes the
matrixM as part of its input. As a result, the crypto-
graphic constructions of [31] allow fast parallel imple-
mentation only after some additional preprocessing.
Due to the correspondence between the embedding of
our current encoding and the structure of the matrix
M , we are capable of dealing with L, and as a result
get new implementations of primitives that do not re-
quire any preprocessing.

3 CAs and Spatial Locality
In this section we formally define the notions of cel-

lular automata and spatial locality. We also provide
some basic observations regarding these notions.

3.1 Cellular Automata
We will consider two-dimensional CAs over

the binary alphabet with inhomogeneous updating

rules [11, 12].3 In such a CA, cells are ordered on
an � × n grid and they can take a binary value of 0
or 1. A configuration of the CA consists of binary
assignments to each of its cells. At the beginning,
an initial configuration x = (xi,j)1≤i≤�,1≤j≤n is se-
lected by assigning a value for each cell. At the t+ 1
time step, the state of each cell is updated by ap-
plying some fixed function fi,j to the current state
of the cell and the states of the cells in its neighbor-
hood. We will assume that the neighborhood consists
of the ρ-th closest cells for some small fixed integer
ρ which is called the radius of the CA. Different cells
are allowed to use different updating functions fi as
long as the function remains fixed over time. Ev-
ery CA naturally defines a next configuration func-
tion δ : {0, 1}�·n → {0, 1}�·n which maps a configura-
tion to its successor. We will sometimes abuse nota-
tion and refer to δ as mapping N -bit strings to N -bit
strings where N = � ·n. We say that a function family
g =
{
gn : {0, 1}N(n) → {0, 1}N(n)}

n∈ℕ is computable
by a CA in t(n) steps if there exists a sequence of CAs
{Cn}n∈ℕ for which the following conditions hold. For
each n and initial configuration x ∈ {0, 1}N(n), the
CA Cn reaches the configuration gn(x) after t(n) com-
putation steps. Furthermore, we require the existence
of a fixed integer ρ which upper-bounds the radius of
all the Cn’s. In this work, we construct cryptographic
functions that can be computed by a CA in a single
step.

6) Uniformity.
We will always assume that CA families (resp., cir-

cuit families) are polynomial-time uniform: there ex-
ists a probabilistic polynomial time Turing machine
T which given 1n outputs the description of n-th CA
(resp., circuit) in the family. In fact, most of our con-
structions satisfy a stronger notion of DLOGTIME
uniformity [38, 39] which means that given (1n, 1i)
the machine T outputs the description of the i-th cell
(resp. gate) of the n-th CA (resp., circuit) in loga-
rithmic time.

3.2 Spatial Locality
Instead of proving our results by directly construct-

ing suitable families of CAs, it will be more conve-
nient to use the following notion of spatial locality.
We view the input-output dependencies of a func-
tion g : {0, 1}N → {0, 1}N ′ as a bipartite directed
graph Gg = ((In,Out), E) where the set of input
nodes In correspond to input variables, the set of out-
put nodes Out correspond to output variables, and

3The CAs we construct are inhomogeneous in that they ap-
ply different update rules to different cells. However, the pat-
tern of the update rules is highly regular.

6

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

the i-th input node is connected to the j-th output
node if and only if the i-th input influences the j-
th output. We say that the spatial locality of g is d
if its dependencies graph Gg can be embedded (via
an injective mapping) on a two dimensional grid such
that the Euclidean distance between each pair of ad-
jacent nodes is at most d. We say that a function
family g =

{
gn : {0, 1}N(n) → {0, 1}N ′(n)

}
n∈ℕ

is spa-
tially local if it has constant spatial locality, i.e., there
exists a constant d which bounds the spatial locality
of gn for all n ∈ ℕ.

Spatial locality is closely related to the CA model:
if the function family g is computable by a CA in O(1)
steps then it is also spatially local. Our construction
will first be formulated as spatially local functions,
and then implemented via a CA.

3.3 Relation to Other Notions of Locality
Cryptographic functions which satisfy other notions

of locality were studied in [30, 31]. In particular, the
function family f = fn has output locality (resp. in-
put locality) d if the outdegrees (resp. indegrees) of
the graph family Gfn is bounded by d. It is not hard
to see that spatial locality of d implies an O(d2) up-
per bound on both input and output locality. Hence,
the class of spatially local functions is a sub-class of
the class of functions for which both the input locality
and the output locality are constant. The converse is
however not true — there are functions with constant
input and output locality whose dependency graphs
cannot be embedded on the grid with constant spatial
locality. For instance, this is the case with functions
whose dependency graph is a good (constant-degree)
expander with low diameter. As shown in the next
proposition, such functions do not have spatial local-
ity.

Proposition 3.1. Let Gf be the dependency graph of
a function f : {0, 1}n → {0, 1}m. If Gf has diame-
ter d then the spatial locality of f is no smaller than√
n+m/d.

Proof. Fix some embedding of Gf . Assume, without
loss of generality, that the leftmost bottom node u is
placed in position (1, 1). Since there are m+n nodes,
there exists at least a single node v which lies outside
of the square [1..

√
n+m−1]×[1..

√
n+m−1]. Hence,

v and u are
√
n+m far from each other. Since u and v

are connected in Gf via a path of length d, it follows
that at least one of the edges of the path connects
two nodes which are at least

√
n+m/d-far from each

other.

Proposition 3.1 implies that previous constructions
of highly parallel cryptographic functions from [28,

30, 31] are not spatially local, and hence cannot be
computed by a CA in a constant number of steps.

3.4 Inverting a CA in the Worst-case
Consider the problem InvertCA1 (resp.

InvertCA2) whose input consists of a one-
dimensional CA (resp. two-dimensional CA) which
computes the function f : {0, 1}N → {0, 1}N in a
single step and a string y ∈ {0, 1}N , and the output
should be a preimage x of y under f or a ⊥ symbol
if such a preimage does not exist.

Proposition 3.2. The worst-case intractability of
InvertCA is summarized as follows:

1. InvertCA1 can be solved in polynomial time.
Moreover, we can efficiently output a random
preimage which is uniformly distributed over the
set f−1(y).

2. InvertCA2 is NP-hard. In fact, it is even NP-
hard to decide whether y is in the image of f .

3. InvertCA2 has a PTAS. That is, given an ar-
bitrary constant proximity parameter ε > 0 and a
string y ∈ {0, 1}N in the image of f , it is possible
to find in polynomial time a string x′ ∈ {0, 1}N
for which ∆(y, f(x′)) ≤ ε, where ∆(·, ·) denotes
the relative Hamming distance.

4. InvertCA2 can be solved in 2
√
N time.

Proof. (1) The proof is similar to the algorithm
of [13] for inverting functions that can be com-
puted by a ring-protocol of low communication com-
plexity. Assume that the inputs x = (x1, . . . , xN)
and outputs (f1, . . . , fN) of f are ordered on a line
from left to right. Let ρ be the radius of the
CA. We partition the inputs to distinct blocks of
length 2ρ where the i-th block Bi contains the in-
puts x2ρ(i−1)+1, x2ρ(i−1)+2, . . . , x2ρ(i−1)+2ρ. (We pad
the inputs with additional dummy variables to make
n a multiple of 2ρ.) The important observation is that
each bit of the string y impose a constraint on inputs
that lie in (at most) two consecutive input blocks.
Let Yi be the set of constraints which are imposed
by y on the blocks Bi and Bi+1. We reduce the in-
version problem to a connectivity problem. We con-
struct a layered graph G with k = N/2ρ layers, where
each layer contains 22ρ nodes labeled by strings in
{0, 1}2ρ. We connect a node v ∈ {0, 1}2ρ of the i-th
layer to a node u ∈ {0, 1}2ρ in the i + 1-th layer if
the assignment (u, v) is consistent with all the con-
straints in Yi. It is not hard to verify that v1, . . . , vk
is a path from the first to the last layer if and only
if v = (v1, . . . , vk) ∈ {0, 1}n is a preimage of y under
f . Clearly, we can find such a path, or even a ran-
domly chosen path, in polynomial-time and thus the
first part of the proposition follows.

7

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

(2) The Cook-Levin Theorem [16, 40] shows that it
is NP-hard to decide whether the following constraints
satisfaction problem (CSP) is satisfiable.
• Variables: (Xi,j)1≤i≤t,1≤j≤m, where t = t(n)

and m = m(n) are polynomials and the domain
of Xi,j is some constant-size alphabet Σ.
• Constraints: (Yi,j)1≤i≤t,1≤j≤m where Yi,j in-

volves the variables Xi,j , Xi−1,j−1, Xi−1,j and
Xi−1,j+1 (where X0,i and Xi,0 are set to be
dummy variables with some fixed arbitrary
value).

We reduce this CSP to InvertCA2. We define
f ′ : Σtm → {0, 1}tm as follows. For each Xi,j we
put an input xi,j and for each Yi,j we put an output
f ′i,j which is 1 if the value of xi,j , xi−1,j−1, xi−1,j and
xi−1,j+1 satisfies the constraint Yi,j , and 0 otherwise.
The function f ′ can be computed by a CA in a sin-
gle computation step over the alphabet Σ. Since the
size of Σ is constant, f ′ can be also implemented by
single step of a binary CA f (by replacing each xi,j
with �log |Σ|� new boolean variables). We complete
the proof by noting that y = 1tm is in the image of f
if and only if the CSP problem is satisfiable.

(3, 4) To prove the last items of the theorem,
note that the inversion problem can be described
as a CSP problem whose constraint graph is “al-
most planar” and, it trivially has a relatively small
(O(
√
N)) separator S which partition the graph into

two roughly equal parts A and B. (Just “cut” the
grid horizontally or vertically into two halves by re-
moving the middle ρ rows/columns.) Such a CSP
can be approximated in polynomial time or solved in
sub-exponential time by using standard divide-and-
conquer techniques, e.g. [14, 15]. For completeness,
let us describe the 2O(

√
N)-time algorithm. Try each

of all possible 2O(
√
N) assignments for the variables

in S, and for each such partial assignment recur-
sively solve the two sub-problems which correspond
to the variables in A and B (these instances are in-
duced by the partial assignment for S). The time
complexity of this attack is given by the recursion:
T (N) = poly(N) + 2O(

√
N)T (N/2) which solves to

2O(
√
N).

We will later show that if a random linear code of
constant rate cannot be decoded in sub-exponential
time (an assumption which is consistent with the cur-
rent state of knowledge), then there exists a 2Ω(

√
N)-

secure one-way function which can be computed by
a single computation step of a two-dimensional CA.
This matches the upper-bound of item 4.

Proposition 3.2 can be easily generalized to the case
of spatially local functions. By combining item 3 of

(this generalized version of) Proposition 3.2 with the
results of [28] we derive the following corollary.

Corollary 3.3. The following primitives cannot be
computed by a single step of CA (or by a spatially
local function): (1) pseudorandom generator with lin-
ear stretch (i.e., n bits of inputs are expanded into
n + Ω(n) pseudorandom bits); (2) an encryption al-
gorithm of an error-free public-key cryptosystem with
constant expansion factor (i.e., plaintexts of size n
are encrypted by O(n) size ciphertexts); and (3) a
non-interactive string commitment with constant ex-
pansion factor (i.e., commitments to n-bit strings are
of length O(n)).

4 Encoding Functions with CSL
4.1 Overview

We say that a function f(x) is encoded by a ran-
domized mapping f̂(x, r) if, for every x, the value f(x)
is “information-theoretically equivalent” to the distri-
bution f̂(x, r), induced by a random choice of r (a for-
mal definition is given below). In [30], it was shown
that the security of most cryptographic primitives is
inherited by their randomized encoding. Therefore,
in order to implement a cryptographic primitive by a
function with constant spatial locality (CSL), it suf-
fices to show that functions with CSL can encode some
non-trivial class of functions STRONG in which cryp-
tographic functions exist. If this is indeed the case,
then one can convert a cryptographic function f in
STRONG into a cryptographic function f̂ with CSL.
A similar approach was used in [30, 31, 41].

A useful observation of [31] is that, assuming in-
tractability assumptions related to error-correcting
codes, one can implement cryptographic primitives
by “algebraically simple” functions. Hence, we can
let STRONG be the class of such functions. We will
follow this approach and construct a CSL encoding
for a class of “semi-linear” functions, which is slightly
weaker than the class of functions that was considered
in [31], but is still sufficiently strong to achieve cryp-
tographic hardness. In Section 4.2, we describe the
encoding for the case of linear functions, and then, in
Section 4.3, extend this encoding to handle a larger
class of functions. Before that, let us formally define
the notion of randomized encoding.

Definition 4.1. (Perfect randomized encod-
ing [30]) Let f : {0, 1}n → {0, 1}l be a function. We
say that a function f̂ : {0, 1}n × {0, 1}m → {0, 1}s is
a perfect randomized encoding of f , if there exist an
algorithm B, called a decoder, and a randomized al-
gorithm S, called a simulator, for which the following
hold:

8

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

• perfect correctness. B(f̂(x, r)) = f(x), for
any input x ∈ {0, 1}n, r ∈ {0, 1}m.
• perfect privacy. S(f(x)) ≡ f̂(x, Um), for any
x ∈ {0, 1}n.
• balance. S(Ul) ≡ Us.
• stretch preservation. s− (n+m) = l − n or,

equivalently, s = l +m,
where Un denotes a random variable uniformly dis-
tributed over {0, 1}n, and the notation X ≡ Y indi-
cates that the random variables X and Y are identi-
cally distributed.

The first input of f̂ is referred to as the (determin-
istic) input and the second input of f̂ is referred to
as the random input. We refer to m and s as the
randomness complexity and the output complexity of
f̂ , respectively. The complexity of f̂ is defined to be
m+ s.

Definition 4.1 naturally extends to infinite functions
f : {0, 1}∗ → {0, 1}∗. In this case, the parameters
l,m, s are all viewed as functions of the input length
n, and the algorithms B,S receive 1n as an additional
input. By default, we require f̂ to be computable in
poly(n) time whenever f is. In particular, both m(n)
and s(n) are polynomially bounded. We also require
both the decoder and the simulator to be efficient.

4.2 Encoding Linear Functions
Let M = (Mi,j) be a matrix in 𝔽

�×n
2 and v =

(v1, . . . , vn) be a vector in 𝔽
n
2 . The universal linear

function Ln,� : 𝔽
�n+n
2 → 𝔽

�n+�
2 takes input (M, v)

and outputs the pair (M,Mv). We construct a CSL
encoding for this function. It will be convenient to
embed the encoding on a “virtual” grid in which each
point can hold six nodes (a 2 × 3 grid). A spatially
local encoding over a standard grid can then be ob-
tained by scaling up the virtual grid. In the following,
let [n] denotes the set {1, . . . , n}. We will sometimes
identify binary strings with vectors over 𝔽2.

Construction 4.2. (spatially local encoding for
linear functions) Let n, � be positive integers. The
encoding L̂n,� : 𝔽�n+n

2 ×𝔽
�·n+�·(n−1)
2 → 𝔽

3�n
2 is defined

as follows:
• Deterministic inputs: (Mi,j)i∈[�],j∈[n] and

(vj)j∈[n] (we will also refer to vj as w0,j).
• Random inputs: (wi,j)i∈[�],j∈[n], as well as

(si,j)i∈[�],j∈[n−1].
• Embedding: We use an (� + 1) × n grid indexed

by (i, j) ∈ {0, . . . , �} × [n]. For each j ∈ [n], we
will place the input vj in the point (0, j). Addi-
tionally, in the point (i, j) ∈ [�] × [n] we’ll have
the inputs (Mi,j , wi,j , si,j) and the outputs:

mi,j = Mi,j ,

ci,j = wi−1,j − wi,j ,
ri,j = si,j − si,j−1 +Mi,j · wi,j ,

where si,0 = si,n = 0 for all i’s. We refer to
mi,j , ci,j and ri,j as the matrix-entry, column-
entry and row-entry, respectively.

The construction is outlined in Figure 1. Clearly,
the spatial locality of the encoding L̂n,� is constant
(d =

√
10 over a “standard” grid), and it has input-

locality of 3 and output-locality of 4. Also note that
the inputs v = (v1, . . . , vn) lie on the boundary of the
grid, have input-locality 1 and participate in outputs
of locality 2.

Lemma 4.3. For every n, � ∈ ℕ, the function
L̂n,� defined in Construction 4.2 perfectly encodes the
universal-linear function Ln,�.
Proof. Fix n and � and let L = Ln,� and L̂ = L̂n,�.
The encoding L̂ is stretch-preserving since the num-
ber of random inputs equals the number of addi-
tional outputs (i.e., 2�n− �). Moreover, given a string
(mi,j , ci,j , ri,j)i,j = L̂(M, v,w, s), we can decode the
value of L̂(v) as follows: to computeMi,j , simply take
mi,j and, to recover the i-th entry ofMv, sum-up the
row-entries of the i-th row together with the column-
entries in locations (k, j) for which k ≤ i andMi,j = 1.
Indeed, this results in∑

j∈[n]

Mi,j · wi,j +
∑
k∈[i]
j:Mi,j=1

wk−1,j − wk,j

=
∑

j:Mi,j=1

wi,j +
∑
k∈[i]
j:Mi,j=1

wk−1,j − wk,j

=
∑

j:Mi,j=1

w0,j =
∑

j:Mi,j=1

vj ,

as required. Hence, the decoder never errs.
Fix some v ∈ 𝔽

n
2 and M ∈ 𝔽

�×n
2 . Let (M, y)

= L(M, v) and let (mi,j , ci,j , ri,j)i,j denote the distri-
bution L̂(M, v, U�n+�(n−1)). To prove perfect privacy,
we will need the following simple claim.

Claim 4.4. (1) the entries (mi,j)i∈[�],j∈[n] are
fixed and equal to (Mi,j)i∈[�],j∈[n]; (2) the entries
(ci,j)i∈[�],j∈[n] and (ri,j)i∈[�],j∈[n−1] are independently
uniformly distributed; (3) the remaining entries
(ri,n)i∈[�] are uniquely determined by M, y and the
previous outputs. In particular, for each i ∈ �, we
have ri,n = yi − (

∑n−1
j=1 ri,j +

∑
1≤k≤i,j:Mi,j=1 ck,j).

9

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

𝑣1 𝑣2 𝑣3

𝑐1,1 𝑟1,1 𝑚1,1 𝑐1,2 𝑟1,2 𝑚1,2 𝑐1,3 𝑟1,3 𝑚1,3

𝑤1,1 𝑠1,1 𝑀1,1 𝑤1,2 𝑠1,2 𝑀1,2 𝑤1,3 𝑀1,3

𝑐2,1 𝑟2,1 𝑚2,1 𝑐2,2 𝑟2,2 𝑚2,2 𝑐2,3 𝑟2,3 𝑚2,3

𝑤2,1 𝑠2,1 𝑀2,1 𝑤2,2 𝑠2,2 𝑀2,2 𝑤2,3 𝑀2,3

𝑐3,1 𝑟3,1 𝑚3,1 𝑐3,2 𝑟3,2 𝑚3,2 𝑐3,3 𝑟3,3 𝑚3,3

𝑤3,1 𝑠3,1 𝑀3,1 𝑤3,2 𝑠3,2 𝑀3,2 𝑤3,3 𝑀3,3

Figure 1: Randomized Encoding for the Universal-Linear Function L3,3(M,v) = (M,Mv). Arrows connect inputs to
outputs. Rows are ordered from top to bottom.

of Claim. The first item is trivial. To see (2), observe
that each of these outputs is a linear function that
contains a fresh random bit. Namely, the output ci,j
(respectively, ri,j) depends on wi,j (respectively, si,j).
Item (3) follows from the perfect correctness of the
decoder as for every i ∈ [�], we have yi =

∑n
j=1 ri,j +∑

1≤k≤i,j:Mi,j=1 ck,j .

Hence, define a perfect simulator as follows. Given
(M, y) ∈ {0, 1}�n+�, the simulator S chooses two ran-
dom strings (σi,j)i∈[�],j∈[n] and (ρi,j)i∈[�],j∈[n−1], and
outputs:

mi,j =Mi,j , ci,j = σi,j , ri,j = ρi,j ,

where (i, j) ∈ [�]× [n− 1], and, for i ∈ [�]

mi,n =Mi,n, ci,n = σi,n,

and

ri,n = yi −
⎛
⎝n−1∑
j=1
ri,j +

∑
1≤k≤i,Mi,j=1

ck,j

⎞
⎠ .

This simulator is also balanced as each of its outputs
is a linear function that contains a fresh random bit.
Namely, the output bitmi,j depends onMi,j, the out-
put ci,j depends on σi,j , and ri,j depends on ρi,j if
1 ≤ j ≤ n− 1 and on yi if j = n.

The above proof also shows that when �(·) is poly-
nomial, the family L̂n,�(n) forms a uniform perfect
encoding for the family Ln,�(n).

Remark 4.5. The output locality of the above con-
struction can be reduced to 3 by adding additional

� · n random inputs (pi,j) and � · n additional outputs
(qi,j). The new encoding g is similar to L̂, except that
we let qi,j = Mi,j · wi,j − pi,j and redefine ri,j to be
si,j − si,j−1 + pi,j. It is not hard to adopt Lemma 4.3
to show that g perfectly encodes L̂. (Alternatively, one
can show that g encodes L̂ and use the Composition
Lemma of [30, Lemma 4.6] to conclude that g encodes
L.)

Remark 4.6. It is instructive to note that the proof
of Lemma 4.3 crucially relies on the fact that the en-
tries of the matrix M are given in the output. Indeed,
it was shown in [31] that when M is hidden one can-
not achieve constant input locality and, in particular,
the function f(M, v) =Mv does not have such a ran-
domized encoding.

4.3 Encoding Semi-Linear Functions
We show how to use the basic construction to derive

spatially local encoding for other functions. Consider,
for example, the case of a fixed linear function f(v) =
Av where A is a fixed matrix. Our construction can be
trivially modified to encode this function (with CSL)
by fixing the inputsMi,j to be Ai,j and omitting them
from the output. More generally, some entries of the
matrixM can be fixed and some can be given as part
of the input. Construction 4.2 will work as long as
the mapping from the input to the entries of M is
injective.

Another useful extension is obtained by replacing
the vector v with the result of some simple func-
tion. For example, consider the function f(M,x) =
(M,Mv) where vi = xi ·xi+1. Again, it is not hard to
obtain an encoding with CSL by modifying the basic

10

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

construction. The following definition captures these
variations.

Definition 4.7. A function f : 𝔽t+k2 → 𝔽
t+�
2 is semi-

linear if it maps the pair (z, x) ∈ 𝔽
t
2 × 𝔽

k
2 to the pair

(z,M(z) · v(x)), where:
• The mapping M : 𝔽

t
2 → 𝔽

�×n
2 takes a t-length

vector z and outputs a matrixM(z) whose entries
are either fixed to some constant or equal to some
entry of z. Moreover, each entry of z appears in
a single entry of M .
• The mapping v : 𝔽

k
2 → 𝔽

n
2 is a function that

can be computed with CSL with respect to a 1-
dimensional embedding of its dependencies graph.

Theorem 4.8. A semi-linear function f(z, x) =
(z,M(z)·v(x)) can be perfectly encoded with CSL on a
grid in which the input nodes x are located in the first
row. Moreover, if the input locality of the function v
is a and its output locality is b, then the input and
output locality of f are max(3, a) and max(3, b + 1),
respectively.

To prove the theorem, we will need the following
simple properties of randomized encodings.

Lemma 4.9. Let f : {0, 1}n → {0, 1}l be a func-
tion which is perfectly encoded by the function f̂(x, r).
Consider the function h(w) def= f(g(w)) where w ∈
{0, 1}k and g : {0, 1}k → {0, 1}n. Then, the func-
tion ĥ(w, r) def= f̂(g(w), r) perfectly encodes h.

Proof. It is not hard to verify that both the original
decoder and the simulator of f̂ allow perfect decod-
ing and simulation for ĥ. Indeed, given ŷ = ĥ(w, r) =
f̂(g(w), r), by the perfect correctness of f̂ , the de-
coder returns y = f(g(w)) = h(w). Similarly, on an
input y = h(w) = f(g(w)), the simulator samples the
distribution f̂(g(w), Um) ≡ ĥ(w,Um). Finally, ĥ is
stretch-preserving since: (1) f̂ is stretch-preserving;
(2) f and h have the same output length; and (3)
ĥ and f̂ have the same randomness complexity and
output complexity.

Lemma 4.10. Let f : {0, 1}n → {0, 1}l+k be a func-
tion of the form f(x) = (g(x), σ) where g : {0, 1}n →
{0, 1}l is a function and σ ∈ {0, 1}k is a fixed string.
Suppose that f is perfectly encoded by a function
f̂ : {0, 1}n×{0, 1}m→ {0, 1}s+k of the form f̂(x, r) =
(ĝ(x, r), σ) where ĝ : {0, 1}n × {0, 1}m → {0, 1}s.
Then, ĝ perfectly encodes g.

Proof. Let B and S be the decoder and simulator of
f̂ . We define a new decoder B′ (respectively, new

simulator S′) which, given ŷ ∈ {0, 1}s (respectively,
y ∈ {0, 1}l), pads it with the string σ, hands the
padded string to the original decoder (respectively,
simulator) and outputs the result with the last k bits
omitted. It is not hard to verify perfect correctness
and privacy as well as stretch preservation. We prove
that the new simulator S′ is balanced. Assume, to-
wards a contradiction, that S′ is not balanced. Then,
since S′ is distributed over {0, 1}s, there exists a string
α ∈ {0, 1}s for which Pr[S′(Ul) = α] > 2−s. By def-
inition, S′(Ul) is equivalent to the s-length prefix of
S(Ul, σ). Also, by the perfect privacy of f̂ , the k-
length suffix of S(Ul, σ) is fixed to σ. It follows that
Pr[S(Ul+k) = (α, σ)] > 2−(s+k), which contradicts
the fact that S is balanced.

of Thm.4.8. By Lemma 4.9, f ′ is perfectly encoded
by the function

f̂ ′((z, x), (w, s)) def= L̂n,�((M(z), v(x)), (w, s)).

Observe that f is derived from f ′ by omitting from
the output the fixed entries of M(z). Hence, by
Lemma 4.10, the encoding f̂ which results from f̂ ′
by omitting the fixed entries of M(z) from the out-
put, perfectly encodes f . The CSL implementation of
f̂ is evident from the definition of f̂ and the spatial
locality of L̂. The “Moreover” part follows by using
the modification of Remark 4.5, and by noting that
the entries of v(x) participate at a single output entry
of the form vj − w1,j and so they contribute output
locality of b+ 1 and input locality of a.

Theorem 4.8 can be extended to work for more gen-
eral definitions of semi-linear functions (e.g., whereM
is computed by a 1-dimensional CPL circuit). How-
ever, the current definition suffices for our applica-
tions.

5 Primitives with CSL
In this section, we provide a CSL implementa-

tion for several primitives. We will mainly focus
on one way functions and pseudorandom generators
(Section 5.2), and only briefly mention extensions to
other primitives (i.e. commitment schemes, symmet-
ric and public-key encryption schemes and identifica-
tion schemes) in Section 5.3. Most of our construc-
tions are based on the intractability of decoding a ran-
dom binary linear code. In the following subsection
we formalize this assumption. The reader is referred
to [31] for more background on the problem.

11

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

5.1 Main Assumption: Intractability of
Decoding Random Linear Code

An (m,n, δ) binary linear code is a n-dimensional
linear subspace of 𝔽m2 in which the Hamming distance
between any two distinct vectors (codewords) is at
least δm. We refer to the ratio n/m as the rate of the
code and to δ as its (relative) distance. Such a code
can be defined by an m × n generator matrix whose
columns span the space of codewords. Let H2(·) de-
note the binary entropy function, i.e., for 0 < p < 1,
H2(p) def= −p log(p) − (1 − p) log(1 − p). It follows
from the Gilbert–Varshamov bound [42] that when-
ever n/m < 1−H2(δ)− ε, all but a 2−(ε/2)m fraction
of the m× n generator matrices form (m,n, δ)-linear
codes (cf. [43, Lecture 5]).

In the following, we follow the standard crypto-
graphic convention and refer to a function ε(·) as neg-
ligible if ε(n) < n−c for any constant c > 0 and suffi-
ciently large n.

Definition 5.1. Let m(n) ≤ poly(n) be a code-length
parameter, and 0 < µ(n) < 1/2 be a noise parameter.
The problem Decode(m,µ) is defined as follows:
• Input: (C,Cx+ e), where arithmetic is over 𝔽2

and C is an m(n) × n random binary generator
matrix, x R← Un, and e ∈ {0, 1}m is a random
vector of error rate µ, i.e., each of its entries is
chosen to be 1 with probability µ independently of
other entries.
• Output: x.

We say that Decode(m,µ) is intractable if ev-
ery polynomial-size circuit family A = {An} solves
the problem with no more than negligible probabil-
ity in n. We say that Decode(µ) is intractable
if Decode(m,µ) is intractable for every polynomial
m(·).

The hardness of Decode(m,µ) is well studied [44–
50]. It can be also formulated as the problem of
learning parity with noise, and it is known to be NP-
complete in the worst-case [51]. It is widely believed
that the problem is hard for every fixed µ and ev-
ery m(n) = Θ(n), or even m(n) = poly(n). Similar
assumptions were put forward in [44, 46, 49, 52–55].
The plausibility of such an assumption is supported
by the fact that a successful attack would imply a ma-
jor breakthrough in coding theory. We mention that
the best known algorithm for Decode(m,µ), due to
Blum et al. [47], runs in time 2O(n/ logn) and requires
m to be 2O(n/ logn). Lyubashevsky [48] showed how
to reduce m to be only super-linear, i.e., n1+α, at the
cost of increasing the running time to 2O(n/ log logn).
When m = Θ(n) (and µ is constant), the problem is
only known to be solved in exponential time.

5.2 One-way Functions and Pseudorandom
Generators

A one-way function (OWF) is an efficiently com-
putable function f : {0, 1}n → {0, 1}m(n) which can-
not be efficiently inverted with non-negligible suc-
cess probability. Formally, for any efficient adver-
sary (modeled as a polynomial-size circuit family)
A = {An}, the inversion probability with respect to
a uniformly chosen input

εA(n) = Pr
x
R←Un,y=f(x)

[An(y) ∈ f−1(y)]

should be negligible in n.
A pseudorandom generator (PRG) is an efficiently

computable function G : {0, 1}n → {0, 1}m(n) which
expands its input (i.e., m(n) > n) and its output dis-
tribution G(Un) is pseudorandom, that is, for every
(non-uniform) polynomial-size circuit family {An},
the distinguishing advantage

|Pr[An(G(Un)) = 1]− Pr[An(Um(n)) = 1]|
is negligible in n.

We show that, under the appropriate assumptions,
pseudorandom generators can be realized by CSL
functions. This also gives a one-way function with
CSL, as any PRG is also one-way. We rely on the
following construction of [31].

Construction 5.2. Let m = 13n and let t = �1.1 ·
m�. Define the function

G(A,C, x, ρ) def= (A,C,Cx + e(ρ), A · ρ)
where A ∈ 𝔽

t×2m
2 , C ∈ 𝔽

m×n
2 , x ∈ 𝔽

n
2 , ρ ∈ 𝔽

2m
2 , and

e(ρ) = (ρ2i−1 · ρ2i)mi=1.

The function G was shown to be a PRG, as-
suming that Decode(6n, 1/4) is intractable.4 The
idea was to first argue that, under assumption
Decode(6n, 1/4), the distribution (C,Cx + e(ρ)) is
pseudorandom but not expanding (as ρ is too long);
and then use the mapping (A, ρ)
→ (A,Aρ) to extract
more random outputs from ρ via the leftover hashing
lemma of [56]. We use G to prove the following theo-
rem:

Theorem 5.3. Suppose that the problem
Decode(6n, 1/4) is intractable, then there exist
a PRG and a OWF with CSL.

4This assumption roughly says that it is intractable to cor-
rect n/4 random errors in a random linear code of relative dis-
tance 1/4 + ε, for some constant ε > 0. (The rate n/m = 1/6
is strictly smaller than 1−H2(1/4), and therefore, except with
negligible probability, the relative distance is larger than 1/4.
This assumption is very conservative as coding theory does not
have any explicit constructions that achieves such parameters.)

12

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

Proof. We show that the function G from Construc-
tion 5.2 is a semi-linear function. Let v(x, ρ) be the
n+ 3m column vector

(x, (g(ρ1, ρ2), g(ρ3, ρ4), · · · , g(ρ2m−1, ρ2m)),

where g(ρi, ρi+1) denotes the triplet (ρi, ρi·ρi+1, ρi+1).
Also, let M(A,C) be the (m + t) × (n + 3m) matrix
whose first n leftmost columns are

(
C

0t×n
)

and the
remaining 3m columns are(

0m e1 0m 0m e2 0m · · · 0m em 0m
A1 0t A2 A3 0t A4 · · · A2m−1 0t A2m

)
,

where 0k is the all zeroes vector of length k, ei is the
i-th unit vector of lengthm, and Ai is the i-th column
of A. Then, G can be written as

G(A, x,C, ρ) = ((A,C),M(A,C) · v(x, ρ)).
It is not hard to see that this formulation satisfies Def-
inition 4.7. It follows that G is a semi-linear function
and therefore, by Theorem 4.8, can be perfectly en-
coded by a CPL circuit Ĝ. By [31, Thm. 6], the func-
tion G is a PRG and therefore, by [30, Lemma 6.1],
the encoding Ĝ is also a PRG. Since any PRG is also
one-way, Ĝ is also OWF.

Remark 5.4. (Optimal Locality) Since the input
locality and output locality of v are 3 and 2 (respec-
tively), we can use the modification described in Re-
mark 4.5 and, by Theorem 4.8, get a PRG whose
input-locality and output-locality are both 3. These pa-
rameters are optimal as shown in [31]. This slightly
improves the results of [31] which construct a PRG
collection with similar parameters.5

Remark 5.5. (Optimal Stretch) Our PRG has
only sublinear stretch as it maps N input bits to
N + o(N) pseudorandom bits. This is essentially op-
timal as, by Corollary 3.3, spatially local PRGs can-
not have linear stretch (i.e., cannot map N inputs
to N + Ω(N) outputs). Interestingly, this limitation
does not apply to functions with constant input and
output locality as it is shown in [28] that, under some
intractability assumptions, such functions can imple-
ment PRGs with linear stretch.

Remark 5.6. (Optimal Security) If
Decode(6n, 1/4) is exponentially hard — a plausible
assumption which is consistent with the current
state of knowledge — then, by the analysis of [31],

5That is, [31] construct a collection {Gz}z∈{0,1}∗ such that:
(1) for every z the function Gz expands its input; (2) the dis-
tribution (z, Gz(x)) is pseudorandom for random x and z; and
(3) for every z the input-locality and output-locality of Gz are
3.

Construction 5.2 achieves exponential security. Since
the overhead which is involved in Theorem 5.3 is
quadratic, we derive a 2Ω(

√
n)-secure PRG with

constant spatial locality, and similarly, as shown
in Section 6, a 2Ω(

√
n)-secure PRG which can be

computed by a single step of CA. By Proposition 3.2
this security is optimal.

5.3 More Cryptographic Primitives
By relying on the works of [31, 46, 57] it is possi-

ble to construct semi-linear implementations of sev-
eral other primitives (symmetric encryption, commit-
ment scheme, and private-key identification scheme)
under the DRLC assumption. Furthermore, we can
also construct public-key encryption scheme with a
semi-linear encryption function. For this, we rely on
the well known McEliece assumption [23]. That is, we
assume the existence of a family C of efficiently decod-
able linear codes in which decoding is infeasible given
a “scrambled” version of a code C in C. The scram-
bling is obtained by randomly permuting the coordi-
nates of C and representing it by a random generating
matrix (uniformly chosen from all the matrices that
generates C).

Theorem 5.7 (informal statement). Under the in-
tractability of Decode(1/8), there exist:

1. semantically-secure symmetric encryption
scheme with semi-linear encryption function;

2. non-interactive commitment scheme whose
sender computes a semi-linear function;

3. one-round symmetric identification scheme
whose prover computes a semi-linear function.

Moreover, assuming the McEliece assumption with
respect to some family of codes with constant rela-
tive distance6, we can also get a semantically-secure
public-key encryption scheme with semi-linear en-
cryption function.

Proof sketch. The proof of the first three items follows
by a close inspection of the constructions of [31, 46,
57, 60]. (Details omitted.)

To prove the last item, recall that McEliece pro-
vides a cryptosystem with one-way security whose en-
cryption function has the following form: To encrypt
a vector u ∈ 𝔽

n
2 under the key C′ ∈ 𝔽

m×n
2 , which is a

garbled generating matrix of a good code C, output
6The McEliece scheme is usually instantiated with binary

classical Goppa Codes (cf. [58], for analysis and suggestions of
concrete parameters). Unfortunately, these codes are known to
have an efficient decoding only for subconstant noise rate and
therefore we cannot use them in Theorem 5.7. Instead, we sug-
gest using algebraic-geometric (AG) codes which generalize the
classical Goppa Codes and enjoy an efficient decoding algorithm
for constant noise rate. It seems that the use of such codes does
not decrease the security of the McEliece cryptosystem [59].

13

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

the ciphertext c = C′u + e where e ∈ 𝔽
m
2 is a ran-

dom error vector of fractional weight 2−k for a con-
stant k. It is not hard to see that this function has
a semi-linear implementation by writing fC′(u, ρ) =
(Im) · (u ◦ e(ρ))T where ρ ∈ 𝔽

m×k
2 , and e(ρ) =

(ρi,1 ·ρi,2 ·. . .·ρi,k)i∈[m]. Hence, we get a one-way cryp-
tosystem (or a trapdoor function) with semi-linear im-
plementation. To obtain a semantically-secure public-
key encryption scheme (for a single bit), we take the
exclusive-or of a hardcore predicate of fC and a one-
bit plaintext b. (This transformation is standard,
cf. [61, Construction 5.3.13].) By using the Goldreich-
Levin hardcore bit [62], we get the following encryp-
tion function: EC′(b;u, ρ, s) = (C′u+e(ρ), s, 〈s, u〉+b)
where u, s R← Un, ρ R← Um×k, 〈·, ·〉 denotes inner prod-
uct (over 𝔽2), and e(·) is defined as before. (Decryp-
tion can be done by relying on the decryption function
of McEliece.) A standard argument shows that the
scheme is semantically-secure. Again, it is not hard
to observe that EC′ is semi-linear as we can rewrite
it as: EC′(b;u, ρ, s) = (s,M(C′, s) · v(u, ρ, b)), where
M(C′, s) is the (m+ 1)× (n+m+ 1) matrix(

C′ Im 0m,1
sT 01,m 1

)
,

and v(u, ρ, b) = (u ◦ e(ρ) ◦ b)T. In order to support
polynomially long plaintexts one can use standard
concatenation.

We can apply the CSL encoding of Theorem 4.8 to
the semi-linear primitives of Theorem 5.7 and, since
randomized encoding preserves the security of all the
above primitives [30], we get implementations with
constant spatial locality.7

6 From Spatial Locality to CA
6.1 One-wayness of CAs

We will show how to construct a CA which com-
putes a one-way function in a single step from a spa-
tially local OWF. In particular, it is possible to con-
vert a function family with spatial locality to a func-
tion family f ′ which is computable by a single step
of a CA by adding “dummy” inputs (which do not

7 For the case of encryption, commitment, identification and
trapdoor function, Theorem 5.7 yields semi-linear implementa-
tions only for the encryption function, the sender’s computa-
tion, the prover’s computation, and the evaluation algorithm re-
spectively. Accordingly, spatial locality holds only with respect
to the sender (i.e., the commitment, encryption and prover’s
functions), while the receiver’s computation (i.e., the verifi-
cation and decryption functions) is not computed with CSL.
However, this limitation is inherent even if one aims only for
constant output locality [30].

affect the output) as well as “dummy” constant out-
puts. The security of most cryptographic primitives
are not affected by such a padding.

Proposition 6.1. Let f : {0, 1}n → {0, 1}s be
a function with spatial locality d. Then, there ex-
ists a CA with radius d which computes a function
f ′ : {0, 1}k → {0, 1}k in a single step, such that the
function f ′ is a padded version of f in the following
sense: for every x ∈ {0, 1}n and y ∈ {0, 1}k−n it holds
that f ′(x, y) = (f(x), 0k−s).

Proof. Let H be the dependencies graph of f . Con-
sider an optimal embedding of H which achieves spa-
tial locality of d. In this embedding each connected
component of size t lies in a grid of size at most td×td,
hence (by possibly rearranging disconnected compo-
nents), we may assume that the whole embedding is
placed on a k× k grid where k ≤ d(n+ s). We define
a CA over a k × k grid as follows: if there exists an
output node v of H in the position (i, j) then set the
local updating function of this cell to be the function
that computes the v-th entry of f ; otherwise, if this
position is not occupied or contains an input node,
set the corresponding local updating function to be
the constant zero function. By definition, the radius
of this CA is d. Also, it is not hard to verify that
it computes the padded version f ′ of f in a single
step.

A standard argument shows that the above padding
preserves the security of OWFs. Hence, by Theo-
rem 5.3, we have:

Corollary 6.2. Suppose that the problem
Decode(6n, 1/4) is intractable. Then there ex-
ist a CA which computes a OWF in a single step.

It follows that, under the Decode(6n, 1/4) as-
sumption, one cannot invert a single step of CA with
non-negligible success probability with respect to a
uniformly chosen initial configuration.

Remark 6.3. (Other primitives) The security
of all the primitives listed in Section 5.3 (com-
mitments, identification, symmetric and public-key
encryption schemes) is preserved under the above
padding scheme. Hence, by Proposition 6.1 and The-
orem 5.7, these primitives can be computed in a single
step of CA.

6.2 Pseudorandomness of CAs
Defining what it means for a CA to compute a

PRG is a bit more delicate. Syntactically, we de-
fined CAs to always compute functions of the form

14

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

g : {0, 1}N → {0, 1}N while PRGs, by definition, ex-
tend their input. To meaningfully define the compu-
tation of PRGs by CAs we adopt the following con-
vention. Suppose that a CA computes a function g :
{0, 1}N → {0, 1}N which ignores some of its inputs,
i.e, there exists a function g′ : {0, 1}N−k → {0, 1}N
for which g(x, y) = g′(x) for any x ∈ {0, 1}N−k and
y ∈ {0, 1}k. Then, we may say that the CA computes
g′.

Under this convention, a CA with N cells computes
a PRG in a single step if the function G : {0, 1}N →
{0, 1}N associated with the CA satisfies the following:
(1) the distribution G(UN) is pseudorandom; and (2)
there exists at least a single cell whose state never
affects the state of any cell (including itself) in the
next time step — that is, this cell can be treated as
an “output” cell whose input is completely ignored.
We remark that the existence of such a PRG implies
that the prediction problem described in the abstract
and in Section 1.2 can be hard. If we initialize the
CA to a random configuration and observe the initial
values of the “output” cells together with the values
of all the cells (including the output cells) after a sin-
gle step, then we get a pseudorandom sequence y of
length larger than N .

In the following we show that such a PRG can
be constructed from any spatially local PRG G =
{Gn : {0, 1}n → {0, 1}m} that satisfies an additional
property called strong spatial locality. A function G
satisfies this property if the dependencies graph Hn
of Gn can be embedded with CSL such that there ex-
ists an injection Γ : [n]→ [m] which maps each input
node v of Hn to an output node u. Moreover, the
distance between v and u should be bounded by a
constant (independent of n).

Proposition 6.4. Let G : {0, 1}n → {0, 1}m be a
PRG with strong spatial locality. Then, there exists a
CA which computes a PRG in a single step.

Proof. Let H be the dependencies graph of G. Con-
sider the embedding of H which achieves spatial lo-
cality of d and strong spatial locality via the local
injection Γ which maps each input to an output of
distance at most e. As in Proposition 6.1, we may
assume that the embedding is placed on a k × k grid
for k ≤ d(n + s). We define a CA over a k × k grid
as follows: if there exists an input node v of H in the
position (i, j) then set the local updating function of
this cell to be the function that computes the Γ(v)-th
entry of G. (Call such a cell regular.) If there exists
an output node u in the position (i, j) that is not in
the image of Γ then set the local updating function
of this cell to be the function that computes the u-th

entry of G. (Call such a cell output.) Finally, if the
position (i, j) is occupied with an output node which
appears in the image of Γ, or if the position is empty,
then let the (i, j) cell compute the identity function
that sets the value of the cell to be the same value it
had at the previous time step. (Call such a cell pad.)

It is not hard to verify that each cell depends on a
neighborhood of distance at most e+d. We prove that
the CA computes a PRG. Indeed, if we let x, y and z
denote the content of regular, output and pad cells, re-
spectively, then the resulting function G′(x, y, z) can
be written as (G(x), z) which is pseudorandom ac-
cording to our assumption (padding by z does not
violate this). Hence, G′ satisfies our definition.

We will show that the PRG constructed in Theo-
rem 5.3 has strong spatial locality by relying on the
following useful claim.

Claim 6.5. Suppose we have a(a + 1) red to-
kens {ri,j}i∈[a+1],j∈[a] and a(a + 1) yellow tokens
{yi,j}i∈[a],j∈[a+1] placed on the plane where ri,j (re-
spectively, yi,j) is placed in the position (i, j). Then,
there is a bijection between red and yellow tokens such
that each yellow token is mapped to a red token which
lies in a neighboring position.

Proof. Consider the main diagonal which begins at
(1, 1) and ends at (a, a). A yellow token yi,j which is
placed on the right side of the diagonal will be mapped
to its left neighbor ri,j−1. A yellow token yi,j which
is placed on the diagonal or left to the diagonal will
be mapped to the token ri+1,j which is located below
him.

Theorem 6.6. The PRG constructed in Theorem 5.3
has strong spatial locality.

Proof. Let Ĝ be the PRG constructed in Theorem 5.3.
We describe an injective mapping Γ from the inputs
of Ĝ to its outputs such that the distance between
an input node v and the output node Γ(v) is con-
stant. Recall that Ĝ is obtained by applying the
encoding of Theorem 4.8 to the semi-linear function
G(A, x,C, ρ) = ((A,C),M(A,C)·v(x, ρ)) where v and
M are as defined in the proof of Theorem 5.3.

Let us take a close look at the structure of Ĝ. Re-
call that the encoding Ĝ allocates (at most) 3 inputs
and 3 outputs to each entry of the matrix M . For
simplicity, let us assume that each of these 6-tuples is
placed on a single point on a “virtual” grid. (We can
later scale up this grid to a standard grid.) Each (non-
fixed) entry (i, j) of the matrixM(A,C) appears both
as an input node and as an output node at location
(i, j). Naturally, we will match these entries to each

15

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

other. Also, we match each column entry ci,j of Ĝ
to the random-input wi,j , as ci,j and wi,j are located
next to each other at the (virtual) point (i, j). For
all columns of the form

(ei
0t
)

, we also match the row
entry ri,j to the random input si,j . Let us “remove”
these columns of the grid.

We are left with an (m + t) × (n + 2m − 1) grid
whose (i, j) point contains an input entry si,j and an
output entry ri,j . We also have an additional column
(the n+2m-th rightmost column) which contains only
output entries (ri,n+2m)i∈[m+t] with no si,j ’s, and an
additional row (the topmost 0-th row) that contains
only n+2m inputs x = (x1, . . . , n), ρ = (ρ1, . . . , ρ2m).
Since n+2m < m+t we can apply Claim 6.5 to the top
(n+ 2m)× (n+ 2m) square, and get a short-distance
mapping from all these inputs to the outputs. Finally,
for the entries below the top square, we match each
row entry ri,j to the random input si,j .

By combining Theorem 6.6 and Proposition 6.4 we
derive the following corollary:

Corollary 6.7. Suppose that the problem
Decode(6n, 1/4) is intractable. Then there ex-
ists a CA which computes a PRG in a single
step.

7 Circuits with Constant Latency
A circuit of physical latency d is a standard Boolean

circuit of bounded fan-in and bounded fan-out which
can be embedded in the plane (e.g., in ℕ

2) such
that the length of the longest directed path in the
graph (measured with respect to the Euclidean met-
ric) is bounded by d. We assume that gates have
area and wires have width and therefore, in each lo-
cation (i, j) ∈ ℕ

2 there exists at most a single gate
and a constant number of wire crossovers. (A sim-
ilar notion was studied in [33].) A circuit family{
Cn : {0, 1}n → {0, 1}m(n)}

n∈ℕ has constant physical
latency (CPL in short) if there exists a constant, d
such that every Cn has latency d.

By simple manipulations (such as scaling up) one
can show that a function can be computed by a CPL
circuit if and only if it is spatially local.8 Hence, the

8Spatial locality does not specify any restriction on the
edge/wire layout. Nevertheless, edges can be laid out with-
out violating the crossover limitation. For example, stretching
the edges along the shortest paths ensures that in each point
the number of crossovers is bounded by (π · d2)2. (In this case,
a node u is a member of an edge that crosses a point p only
if u is d-close to p. Hence, since nodes are placed on integer
coordinates, the number of potential nodes with an edge over p
is bounded by the area of a d-radius circle, and the number of
possible edges crossing p is at most quadratic in this number.)

results of Section 5 implies that many cryptographic
primitives can be implemented with CPL.

Theorem 7.1 (informal statement). Suppose that
Decode(1/8) is intractable. Then there exist CPL
implementations of: (1) one-way function; (2) pseu-
dorandom generator; (3) semantically-secure symmet-
ric encryption scheme; (4) non-interactive commit-
ment scheme; and (5) one-round symmetric identi-
fication scheme. Moreover, under the McEliece as-
sumption we can also get a CPL semantically-secure
public-key encryption scheme and CPL trapdoor func-
tion.9

It should be mentioned that, in CPL circuits, inputs
and outputs do not have to be placed on the boundary
of the circuit. This may be justified by the possibility
of using the third dimension to “stack” circuits on top
of each other.10

7.1 Discussion
Our main goal here is to explore the theoretical

limits of parallelism achievable in cryptography. We
do not attempt (nor do we feel qualified) to address
the multitude of challenges and considerations that
arise when implementing cryptographic hardware in
the real world. Still, it is interesting to discuss some
conceptual and practical questions that relate to the
constant latency model.

For concreteness, let us focus on cryptographic
primitives such as encryption or identification which
involve two parties: a “sender”, who performs the en-
cryption or proof of identity, and a “receiver” who
performs the decryption or identity verification. In
this case, one may criticize our model by claiming
that we only optimize the “internal latency” of the
sender’s device, while the overall latency is dominated
by other parameters such as the “external” distance
between the sender and the receiver, and the “inter-
nal latency” of the receiver. (Recall that our constant
latency implementations apply only to the sender’s
side.)

We argue that despite these valid concerns, the no-
tion of constant physical latency is still conceptually
meaningful, at least in some scenarios. For instance,

9Again, in the cases of encryption, commitment and iden-
tification, we refer only to the efficiency of the “sender”. See
Footnote 7.

10This convention is essential for cryptographic constructions
as, by Proposition 3.2, when inputs (or outputs) are placed
on the boundary the resulting function can be easily inverted.
However, in the case of randomized primitives (such as random-
ized encryption), whose input consists of deterministic input
and random input, our constructions allow to position all de-
terministic inputs on the boundary, placing only output gates,
logical AND/OR gates and randomness gates in the interior.

16

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

consider the case of an RFID tag authentication, or
a smart card that communicates encrypted data to a
card reader. In these cases, the physical distance be-
tween the sender’s output gates and the receiver out-
put gates is small and independent of the input length
or the security parameter (imagine the parties as two
large planar devices aligned in parallel to each other).
Furthermore, in these cases the receiver is much more
powerful than the sender. One can also imagine other
meaningful scenarios in which the above concerns do
not apply (e.g., secure devices whose physical medium
requires information to travel very slowly, or cases
in which the receiver’s computation is applied only
to a small sample of the messages computed by the
sender). In such scenarios, the sender’s latency may
become more significant than (and can be measured
independently of) the additional latency correspond-
ing to the receiver and to the physical distance be-
tween the parties.

Taking a more pragmatic point of view, even in the
typical case where the above best-case scenarios do
not fully apply, the type of constructions we present
might provide useful efficiency tradeoffs. For instance,
our private-key identification scheme is based on the
HB scheme [46] which was suggested as suitable for
implementation on weak devices such as RFID tags.
Comparing the concrete cost of our constant latency
implementation to the original construction, our im-
plementation achieves a much better physical latency
at the expense of a moderate cost in hardware size
and communication. Whether this type of tradeoffs
can be useful in practice remains for further study.

Acknowledegment
We thank Sanjeev Arora for useful discussions.

The first author was supported by NSF grants CNS-
0627526, CCF-0426582 and CCF-0832797. The sec-
ond and third authors were supported in part by
ISF grant 1310/06, BSF grants 2004361, 2008411.
The second author was also supported by NSF grants
0830803, 0716835, 0456717, 0627781.

References
[1] ER Berlekamp, JH Conway, and RK Guy. Winning

Ways for Your Mathematical Plays. Academic Press,
New York, 1983.

[2] John Von Neumann. Theory of Self-Reproducing Au-
tomata. University of Illinois Press, Champaign, IL,
USA, 1966.

[3] Edward F. Moore, editor. Sequential Machines: Se-
lected Papers. Addison-Wesley Longman Ltd., Essex,
UK, UK, 1964. ISBN B0000CMBI0.

[4] Stephen Wolfram. Universality and complexity in cel-
lular automata. Physica D: Nonlinear Phenomena, 10
(1-2):1–35, 1984.

[5] Gerard Y. Vichniac. Simulating physics with cellular
automata. Physica D: Nonlinear Phenomena, 10(1-
2):96–115, 1984.

[6] C. Bennett and C. Grinstein. Role of irreversibility
in stabilizing complex and nonenergodic behavior in
locally interacting discrete systems. Physical Review
Letters, 55:657–660, 1985.

[7] N. Ganguly, B.K. Sikdar, A. Deutsch, G. Canright,
and P.P. Chaudhuri. A survey on cellular automata.
Technical Report 30, Centre for High Performance
Computing, Dresden University of Technology, 2003.
www.cs.unibo.it/bison/publications/CAsurvey.pdf.

[8] Whitfield Diffie and Martin E. Hellman. New direc-
tions in cryptography. IEEE Transactions on Infor-
mation Theory, IT-22(6):644–654, 1976.

[9] M. Blum and S. Micali. How to generate cryptograph-
ically strong sequences of pseudo-random bits. SIAM
J. Comput., 13:850–864, 1984. Preliminary version in
Proc. 23rd FOCS, 1982.

[10] A. C. Yao. Theory and application of trapdoor func-
tions. In Proc. 23rd FOCS, pages 80–91, 1982.

[11] G. Y. Vichniac, P. Tamayo, and H. Hartman. An-
nealed and quenched inhomogeneous cellular au-
tomata (INCA). Journal of Statistical Physics, 45:
875–883, December 1986. doi: 10.1007/BF01020578.

[12] M. Sipper. Non-uniform cellular automata: Evolu-
tion in rule space and formation of complex struc-
tures. In R. A. Brooks P. Maes, editor, Artificial Life
IV, pages 394–399. The MIT Press, 1994.

[13] Shang-Hua Teng. Functional inversion and communi-
cation complexity. J. Cryptology, 7(3):153–170, 1994.

[14] R. J. Lipton and R. E. Tarjan. Applications of a
planar separator theorem. SIAM J. Comput., 9(3):
615–627, 1980, August.

[15] Baker. Approximation algorithms for NP-complete
problems on planar graphs. JACM: Journal of the
ACM, 41, 1994.

[16] Stephen A. Cook. The complexity of theorem-
proving procedures. In STOC ’71: Proceedings
of the third annual ACM symposium on Theory of
computing, pages 151–158, New York, NY, USA,
1971. ACM Press. doi: http://doi.acm.org/10.1145/
800157.805047.

[17] Stephen Wolfram. Random sequence generation by
cellular automata. Adv. Appl. Math., 7(2):123–169,
1986.

[18] P. Guan. Cellular automaton public-key cryptosys-
tems. Complex Systems, 1, 1987.

[19] Toshiki Habutsu, Yoshifumi Nishio, Iwao Sasase, and
Shinsaku Mori. A secret key cryptosystem by iterat-
ing a chaotic map. In Proceedings of Eurocrypt ’91,
number 127–140, 1991.

[20] W. Meier and O. Staffelbach. Analysis of pseudo ran-
dom sequences generated by cellular automata. Pro-
ceedings of Eurocrypt ’91, pages 186–199, 1991.

17

B. APPLEBAUM, Y. ISHAI AND E. KUSHILEVITZ

[21] Howard Gutowitz. Cryptography with dynamical
systems. In N. Boccara, E. Goles, S. Martinez, and
P. Picco, editors, Cellular Automata and Cooperative
Phenomena, pages 237–274. Kluwer Academic Pub-
lishers, 1993.

[22] S. Nandi, B. K. Kar, and P. Pal Chaudhuri. Theory
and applications of cellular automata in cryptogra-
phy. IEEE Trans. Comput., 43(12):1346–1357, 1994.

[23] R. J. McEliece. A public-key cryptosystem based on
algebraic coding theory. Technical Report DSN PR
42-44, Jet Prop. Lab., 1978.

[24] S. Goldwasser and S. Micali. Probabilistic encryp-
tion. JCSS, 28(2):270–299, 1984. Preliminary version
in Proc. STOC, 1982.

[25] R. Tao and S. Chen. Two varieties of finite automata
public key cryptosystem and digital signature. J. of
Computer Science and Technology, 1(1):9–18, 1986.

[26] J. Kari. Cryptosystems based on reversible cellular
automata. preprint, April 1992.

[27] Feng Bao and Yoshihide Igarashi. A randomized al-
gorithm to finite automata public key cryptosystem.
In ISAAC ’94: Proceedings of the 5th International
Symposium on Algorithms and Computation, pages
678–686, London, UK, 1994. Springer-Verlag. ISBN
3-540-58325-4.

[28] Benny Applebaum, Yuval Ishai, and Eyal Kushile-
vitz. On pseudorandom generators with linear stretch
in NC0. Computional Complexity, 17(1):38–69, 2008.
ISSN 1016-3328. doi: http://dx.doi.org/10.1007/
s00037-007-0237-6. Preliminary version in Proc. 10th
Random, 2006.

[29] Nathan Linial, Yishay Mansour, and Noam Nisan.
Constant depth circuits, Fourier transform, and
learnability. J. ACM, 40(3):607–620, 1993. ISSN
0004-5411. doi: http://doi.acm.org/10.1145/174130.
174138. Preliminary version in Proc. 30th FOCS,
1989.

[30] Benny Applebaum, Yuval Ishai, and Eyal Kushile-
vitz. Cryptography in NC0. SIAM J. Comput., 36
(4):845–888, 2006. doi: 10.1137/S0097539705446950.
URL http://link.aip.org/link/?SMJ/36/845/1. Pre-
liminary version in Proc. 45th FOCS, 2004.

[31] Benny Applebaum, Yuval Ishai, and Eyal Kushile-
vitz. Cryptography with constant input locality.
Journal of Cryptology, 22(4):429–469, 2009. Prelimi-
nary version in CRYPTO ’07.

[32] T. F. Leighton. Complexity Issues in VLSI. MIT
Press, 1983.

[33] Bernard Chazelle and Louis Monier. A model of com-
putation for VLSI with related complexity results. J.
ACM, 32(3):573–588, 1985.

[34] Gianfranco Bilardi and Franco P. Preparata. Hori-
zons of parallel computation. Journal of Parallel and
Distributed Computing, 27:172–182, 1995.

[35] Oded Goldreich. Candidate one-way functions based
on expander graphs. Electronic Colloquium on Com-
putational Complexity (ECCC), 7(090), 2000. URL
citeseer.nj.nec.com/382413.html.

[36] Elchanan Mossel, Amir Shpilka, and Luca Trevisan.
On ε-biased generators in NC0. In Proc. 44th FOCS,
pages 136–145, 2003.

[37] Yuval Ishai and Eyal Kushilevitz. Randomizing poly-
nomials: A new representation with applications to
round-efficient secure computation. In Proc. 41st
FOCS, pages 294–304, 2000. URL citeseer.nj.nec.
com/ishai00randomizing.html.

[38] David A. Mix Barrington, Neil Immerman, and
Howard Straubing. On uniformity within ncź. JCSS,
41(3):274–306, 1990.

[39] Heribert Vollmer. Introduction to Circuit Complex-
ity: A Uniform Approach. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 1999. ISBN 3540643109.

[40] Leonid A. Levin. Universal sequential search prob-
lems. PINFTRANS: Problems of Information Trans-
mission (translated from Problemy Peredachi Infor-
matsii (Russian)), 9, 1973.

[41] Benny Applebaum, Yuval Ishai, and Eyal Kushile-
vitz. Computationally private randomizing polyno-
mials and their applications. Computional Com-
plexity, 15(2):115–162, 2006. ISSN 1016-3328. doi:
http://dx.doi.org/10.1007/s00037-006-0211-8. Pre-
liminary version in Proc. 20th CCC, 2005.

[42] R.R. Varshamov. Estimate of the number of signals
in error correcting codes. Doklady Akademii Nauk
SSSR, 117:739–741, 1957.

[43] Madhu Sudan. Algorithmic introduction
to coding theory - lecture notes, 2002.
http://theory.csail.mit.edu/∼madhu/FT01/.

[44] Avrim Blum, Merrick Furst, Michael Kearns, and
Richard J. Lipton. Cryptographic primitives based
on hard learning problems. In Advances in Cryptol-
ogy: Proc. of CRYPTO ’93, volume 773 of LNCS,
pages 278–291, 1994. URL citeseer.nj.nec.com/
blum94cryptographic.html.

[45] Michael J. Kearns. Efficient noise-tolerant learning
from statistical queries. J. of the ACM, 45(6):983–
1006, 1998.

[46] Nicholas J. Hopper and Manuel Blum. Secure human
identification protocols. In Advances in Cryptology:
Proc. of ASIACRYPT ’01, volume 2248 of LNCS,
pages 52–66, 2001.

[47] Avrim Blum, Adam Kalai, and Hal Wasserman.
Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM, 50(4):
506–519, 2003. Preliminary version in Proc. 32nd
STOC, 2000.

[48] Vadim Lyubashevsky. The parity problem in the
presence of noise, decoding random linear codes, and
the subset sum problem. In Proc. 9th Random, 2005.

[49] A. Juels and S. Weis. Authenticating pervasive de-
vices with human protocols. In Advances in Cryptol-
ogy: Proc. of CRYPTO ’05, volume 3621 of LNCS,
pages 293–308, 2005.

[50] Vitaly Feldman, Parikshit Gopalan, Subhash Khot,
and Ashok Kumar Ponnuswami. New results for
learning noisy parities and halfspaces. In Proc. 47th

18

CRYPTOGRAPHY BY CELLULAR AUTOMATA OR HOW FAST CAN COMPLEXITY EMERGE IN NATURE?

FOCS, pages 563–574, 2006.
[51] Elwyn R. Berlekamp, Robert J. McEliece, and

Henk C. van Tilborg. On the inherent intractabil-
ity of certain coding problems. IEEE Transactions
on Information Theory, 24(3):384–386, 1978.

[52] Oded Goldreich, Hugo Krawczyk, and Michael Luby.
On the existence of pseudorandom generators. SIAM
J. Comput., 22(6):1163–1175, 1993. ISSN 0097-5397.
Preliminary version in Proc. 29th FOCS, 1988.

[53] Michael Kearns, Yishay Mansour, Dana Ron, Ronitt
Rubinfeld, Robert E. Schapire, and Linda Sellie. On
the learnability of discrete distributions. In Proc. 26th
STOC, pages 273–282, 1994.

[54] Oded Goldreich. Foundations of Cryptography: Ba-
sic Tools. Cambridge University Press, 2001. ISBN
0521791723.

[55] J. Katz and J.-S. Shin. Parallel and concurrent se-
curity of the hb and hb+ protocols. In Advances in
Cryptology: Proc. of Eurocrypt 06’, volume 4004 of
LNCS, pages 73–87, 2006.

[56] Russell Impagliazzo, Leonid A. Levin, and Michael
Luby. Pseudorandom generation from one-way func-
tions. In Proc. 21st STOC, pages 12–24, 1989.

[57] Henri Gilbert, Matthew J. B. Robshaw, and Yannick
Seurin. How to encrypt with the LPN problem. In
ICALP (2), pages 679–690, 2008.

[58] Daniel J. Bernstein, Tanja Lange, and Christiane Pe-
ters. Attacking and defending the mceliece cryptosys-
tem. Cryptology ePrint Archive, Report 2008/318,
2008. http://eprint.iacr.org/.

[59] Heeralal Janwa and Oscar Moreno. Mceliece public
key cryptosystems using algebraic-geometric codes.
Des. Codes Cryptography, 8(3):293–307, 1996.

[60] Benny Applebaum. Fast cryptographic primitives
based on the hardness of decoding random linear
code. Technical Report 845, Princeton Univer-
sity, 2008. http://www.cs.princeton.edu/research/
techreps/TR-845-08.

[61] Oded Goldreich. Foundations of Cryptography: Ba-
sic Applications. Cambridge University Press, 2004.
ISBN 0521791723.

[62] O. Goldreich and L. Levin. A hard-core predicate
for all one-way functions. In Proc. 21st STOC, pages
25–32, 1989.

19

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

