Innovations in Computer Science 2010

A New Approach to Strongly Polynomial Linear Programming

Mihély Barasz!

Abstract:

Santosh Vempala®
1Google, Zurich
2School of Computer Science, Georgia Tech, Atlanta
klao@cs.elte.hu vempala@gatech.edu

We present an affine-invariant approach for solving linear programs. Unlike previous approaches,

the potential strong polynomiality of the new approach does not require that graphs of polytopes have polyno-
mial diameter (the Hirsch conjecture or weaker versions). We prove that two natural realizations of the approach
work efficiently for deformed products [1], a class of polytopes that generalizes all known difficult examples for
variants of the simplex method, e.g., the Klee-Minty [11] and Goldfarb-Sit [8] cubes.

Keywords: Linear Programming, Affine-invariant Algorithms, Strongly Polynomial, Deformed Products

1 Introduction

Strongly polynomial linear programming has been
a holy grail for the theory of algorithms for several
decades. Notable milestones include strongly poly-
nomial algorithms for maximum weight matchings in
general graphs [4], linear programming in fixed dimen-
sion [14], and minimum cost flow [16] and its exten-
sion to combinatorial linear programs. In addition
to these breakthroughs, for several other problems
and even special cases of these problems, there has
been a drive to find combinatorial algorithms that
reveal more structure and are possibly faster than
their generic counterparts. Strong polynomiality is
today both mathematically and algorithmically a cen-
tral concept in complexity theory.

Linear programming is perhaps the most general
setting that holds open the possibility of a strongly
polynomial algorithm. Can we solve a standard in-
stance,

max
s.t.

cC-T

Ax <b

where ¢ € R", A € R™*" and b € R™ using at
most f(m,n) arithmetic operations with f being a
bounded-degree polynomial with no dependence on
the description of A,b,c? Two reasons why this pos-
sibility appears so tantalizing are that (a) if the pro-
gram is feasible and bounded, there is a basic solution,
i.e., it can be expressed succinctly as the solution to
n of the inequalities as equalities, and (b) the com-
plexity of the original LP algorithm, Simplex, and its
many variants can be bounded as such a function;
however, for all known deterministic variants (pivot
rules), there are examples demonstrating that f has
to be exponential in m or n.

42

All variants of the Simplex method maintain a basic
feasible solution (n inequalities that define a vertex of
the polyhedron Az < b) and use a pivot rule to it-
eratively modify the current basic solution. There is
an extensive body of work constructing difficult in-
stances for pivot rules. These instances show that
even though many pivot rules are guaranteed not to
cycle, they end up exploring an exponential number of
possibilities. On the other hand, the simplest random-
ized pivot rule — of all pivots (swapping one inequal-
ity from the current basis for another not in it) that
improve the objective value, choose one at random
— has been widely studies but not yet successfully
analyzed. A lower bound of Q(n?) is known [3, 6].

The major conceptual hurdle in proving a strongly
polynomial bound for any variant of simplex (ran-
domized or deterministic) is that this would imply
a polynomial bound on the diameter of any polytope
graph, the graph induced by the vertices and edges of
the polytope, sometimes called its skeleton. A long-
standing open problem in combinatorics is the Hirsch
conjecture: the diameter of any polytope graph for a
polytope with m facets in R™ is at most m — n. The
best known upper bound is superpolynomial [5]. The
current best upper bounds on variants of the simplex
method are subexponential, roughly n - 20(vd) given
by [10] and Matousek et al [12].

Is the possibility of strongly polynomial linear pro-
gramming inextricably intertwined with resolving the
Hirsch conjecture (or a polynomial version)? A very
interesting lower bound [13] might suggest this: an
abstract cube is the polytope graph of a cube with its
edges oriented according to some simple rules, in par-
ticular that there is unique sink. Simplex naturally
applies to optimization over abstract cubes. It has
been shown, via specific orientations, that the ran-

A NEW APPROACH TO STRONGLY POLYNOMIAL LINEAR PROGRAMMING

dom edge pivot rule above and several other powerful
extensions are doomed to be exponential for abstract
cubes.

What hope remains? The difficult orientations of
abstract cubes are not geometrically realizable by ex-
plicit objective functions. In other words, objective
functions map to only a subset of all possible orienta-
tions of edges of the polytope graph. Thus, it seems
necessary to utilize the geometry of linear programs in
any efficient algorithm. Indeed, all the known polyno-
mial algorithms heavily use the geometry. A common
high-level ingredient is some scaling of space (affine
transformation) for efficiency. However, finding this
transformation and making progress towards an opti-
mal solution both depend on the description lengths
of the polytope; although polynomial in the input,
the number of arithmetic operations depends on the
number of bits used to define the input instance.

The main contribution of this paper is an affine-
invariant approach and affine-invariant geometric al-
gorithm for solving linear programs. The algorithm is
iterative and maintains a set of n inequalities, modi-
fying this set in each iteration. However, unlike Sim-
plex, it does not restrict itself to vertices and edges of
the polytope; it typically follows rays in its facets or
its interior, thus taking advantage of many geometric
shortcuts. Moreover, unlike known geometric algo-
rithms, it is affine-invariant and thus its complexity
does not depend on the bit sizes of the input. Before
we describe the algorithm precisely, we state what we
prove about it so far.

We are able to analyze the algorithm for any poly-
tope in the class of deformed products as defined by
Amenta and Ziegler [1]. This class includes all known
difficult examples for variants of the simplex algo-
rithm, e.g., the Klee-Minty cubes for Dantzig’s largest
coefficient rule [11], Jeroslow’s construction [9] for the
greatest increase rule, the Goldfarb-Sit cubes [8] for
the steepest increase rule, Avis-Chvatal’s cubes [2] for
Bland’s rule and the construction by Murty [15] and
Goldfarb [7] for the shadow vertex pivot rule. Our
main theorem shows that our new algorithm takes
O(n?) iterations on any polytope in a class general-
izing all these difficult examples (each iteration takes
O(mn) arithmetic operations). We return to a dis-
cussion of the significance of this result and its impli-
cations in the concluding section.

2 Algorithm AFFINE

We propose the following algorithm for optimizing
a linear objective over a simple polyhedron given by a
system of linear inequalities. The algorithm maintains
a set of n linear inequalities, whose normals are rows

43

of the input constraint matrix A, but the right hand
sides are not constrained to the input RHS vector b.
Starting at a vertex, the algorithm computes the set
of improving rays at the vertex, and a line given by a
nonnegative combination of them. It moves along this
line till it hits a facet. It then repeats the same step
within the facet, to reach a lower-dimensional face
and ultimately another vertex. Since it always moves
along a combination of improving rays, the new vertex
reached has objective value higher than the original
vertex. This whole process is repeated till we reach a
vertex with no improving rays.

In the above description, the part that is not clear
is how to compute improving rays when we are at
some point on a facet. To do this in an effective and
affine-invariant manner, in each step, the algorithm
updates the set of inequalities so that, when taken as
equalities, their solution is the current point. We give
more intuition following a precise description.

M. BARASZ AND S. VEMPALA

Algorithm: AFFINE
INPUT: Polyhedron P given by linear inequalities {a; -« < b; : j = 1...m},
objective vector ¢ and a vertex z.
OUTPUT: A vertex maximizing the objective value, or “unbounded” if the LP is
unbounded.
e While the current vertex z is not optimal, repeat:
1. (Initialize)

(a) Let H be the set of indices of active inequalities at z.

(b) (Compute edges) For every t € H compute a vector vy : ap - vy = 0
for h € H\t and a; - v < 0.

(c) Let T={teH:c-v,>0}and S=H\T.

2. (Iteration) While T is nonempty, repeat:

(a) (Compute improving rays) For every ¢ € T compute a vector vy # 0 :
ap vy = 0 for h € H\ {t}, ¢c-v; > 0 and the length of v; is the largest
value for which z + v; remains feasible.

(b) (Pick direction) Invoke a subroutine which computes a nonnegative
combination v of {v; : t € T'}.

(¢) (Move) Let A be maximal for which z + Av € P, if there is no such
maximum, return “unbounded”. Move the current point: z := z 4 Av.

(d) (Update inequalities) Let s be the index of an inequality which
becomes active. Let ¢ € T be any index such that {ap, : h €
{s}USUT\{t}} is linearly independent. Set

S:=8U{s}, T:=T\{t}and H:=SUT.

e Return the current vertex.

For the subroutine in step (2b) we propose the following two possibilities:

Subroutine CENTROID
1. Let Ay = max{\: z+ \vr € P}t € 1.
2. Return v =),/ Aoy

Subroutine RANDOM
1. Let Ay = max{\: z+ \v € P}t € 1.
2. Chose {us:t €I} st. > usr =1, >0:t €I uniformly at random.
3. Return v =), o/ ps Aoy

44

A NEW APPROACH TO STRONGLY POLYNOMIAL LINEAR PROGRAMMING

Lemma 1. Both proposed variants of Algorithm
AFFINE are affine-invariant.

We note that the inner loop which takes the al-
gorithm from one vertex to another takes at most n
iterations, since in each iteration, the cardinality of
the set T is reduced by 1.

The main idea of the algorithm is to take geomet-
ric shortcuts through the interior of the polytope and
not be restricted to its edges. At first sight, our algo-
rithm might appear to be a modest generalization of
the random edge pivot rule for Simplex — at a vertex
of the feasible polyhedron, instead of picking an im-
proving edge at random, we go along the average or a
random combination of all the improving edges. This
could indeed be the case at the first iteration starting
at vertex, but then onwards our algorithm is typically
not at a vertex; it moves from a point on a facet to an-
other along a chord of the polyhedron. It does so by
maintaining a set of hyperplanes whose intersection
defines the current point. When the next direction is
chosen (in an affine-invariant manner), it moves the
point along with all the associated hyperplanes to the
other endpoint of the chord, then replaces one of the
hyperplanes with the facet just hit, so that the new
set of hyperplanes defines the new point reached. This
process is repeated.

It is natural to consider the following variant: after
moving along a chord (random or centroid) from a
vertex, we then jump to any vertex of objective value
at least as high and repeat this process. What is the
complexity of this (simpler) variant? If the algorithm
could go to any improving vertex after following a
chord, then for both the random rule and the cen-
troid rule, we can construct instances where the total
number of iterations is exponential. Thus, it is impor-
tant to move from the endpoint of a chord to the next
vertex (or next point reached) in a more systematic
(in particular, affine-invariant) manner.

3 Preliminaries

We observe that the maximum number of iterations
of the algorithm is at most n times the number of
distinct vertices visited and the overall complexity is
a fixed polynomial (time to compute improving rays)
times the number of iterations. In our analysis, we
will focus on bounding the number of vertices visited.

The following measures of complexity will be used
to analyze the algorithm. Given a polytope P, an
objective direction ¢, and a starting vertex z, let
f(P,c,z) is the (expected) maximum number of ver-
tices visited by Algorithm AFFINE applied to P,c, z;
let f(P,c¢) = sup, f(P,c,z) and f(P) = sup, f(P,c).

45

We also define h(P, c) is the maximum length of a di-
rected path in the graph whose vertices and edges are
vertices and edges of P with edges oriented in the di-
rection of higher objective value; h(P) = sup, h(P, ¢).

Let P be a k-dimensional polytope defined by the
following inequalities:

P={zcR": Az <a}

Let V and W be [-dimensional combinatorially
equivalent polytopes with corresponding facets par-
allel (normally equivalent). Let them be defined as
follows:

V ={zxcR': Bz <b}
W={zxecR:Bx <V}

We assume that every inequality in the above defi-
nitions is essential.

Let ¢ be a k-dimensional linear functional, such
that o(P) C [0,1].

The deformed product [1],

Q=P x, (V,IW),
is defined as follows:

{xERkH:EyEP,’UGV»WGW
stz = (y,p(y)v+ (1 - p(y)w)}

When V = W, we get the usual direct product,
@ = P x V. The Klee-Minty cube is obtained recur-
sively, with P being a K-M cube in R"~! and V,W
are line segments (of different lengths. In Jeroslow’s
construction for the greatest increase rule, V, W are
polygons in R2. All known bad examples for simplex
pivot rules are recursively defined deformed products
with dim V' < 2.

The next lemma collects useful properties of de-
formed products and is from [1].

Lemma 2. Deformed products have the following
properties.
1. Q is combinatorially equivalent to P x V.
2. Let q be a vertex of Q, where ¢ = (y, p(y)v+ (1—
o(y))w) withy € P andv eV, we W. Theny,
v and w are uniquely determined and are vertices
of the corresponding polytopes. Moreover v and
w are corresponding vertices of V., W.
We wuse the following notation for this decompo-
sition: wp(q) =y, mv(q) = v, mw(q) = w.
3. Let
A 0 a
~(r5) (i)

M. BARASZ AND S. VEMPALA

where F = diag(b — V). Then
Q={zeR":Cz<c}

Every inequality in this formulation is essential.
We refer to the facets defined by the rows of A as
P-facets, and the rest as (V,W)-facets.

4 Analysis
4.1 Deformed Products

The main theorem of this section is the following.

Theorem 1. Let P,V,W, ¢ be as in the definition of
the deformed product. Let Q := P x, (V,W). Then

FQ) <h(V) + f(P).

The next corollary shows that Algorithm AFFINE
is efficient on all known bad examples for simplex
pivot rules.

Corollary 1. Let Q be a recursively defined deformed
product polytope, where at every step of the recursion,
dim(V) < 2. Then

f(Q) < dim(Q) + #{facets of Q}.

To prove the theorem, we need the following defi-
nitions.

Definition 1. For a polyhedron @, a defining hyper-
plane s any hyperplane whose normal vector is the
same as the mormal vector of one of the inequalities

defining Q.

Definition 2. Let Q = P x, (V,IW), n = dimQ.
We call an intersection of n — 1 defining hyperplanes
a P-ray if there are at most dim P — 1 hyperplanes
corresponding to inequalities of P among them. Oth-
erwise we call a it (V,W)-ray. That is, there are at
most dim V' — 1 hyperplanes corresponding to (V, W)
inequalities defining the intersection.

Lemma 3. The first dim P coordinates of a (V,W)-

ray are 0.

Proof. Let =z (rp(z), o(mp(z))myv(z) + (1 —
o(mp(z))mw (z)) be a point on a (V,W) ray. Then
y = wp(x) satisfies dim P linearly independent in-
equalities as equalities from the set Ay < a defining
P. Thus y is uniquely defined for all points x along the
ray, and the difference between two points (a vector
along the ray) is zero along the first dim P coordi-
nates.

46

Lemma 4. Let © and y be two consecutive vertices
visited by the algorithm applied to Q == P 1, (V,W).
Then my () < wy (y) in the partial order induced on
the vertices of V' by cy, unless my (x) is already max-
imal in the partial order.

Proof. The partial order is the same on V and W and
all their “copies” in the deformed product. We can
write the objective vector ¢ = (cp, cy,) and assume
that cy,w is not entirely zero. >From a vertex z, the
algorithm only chooses a nonnegative combination of
improving rays to move. If these rays do not include
any (V,W)-ray, then my(z) is already maximal. If
some (V, W) rays are included, then with probability
1, their coefficient is positive and so the next point
reached will have higher objective value overall and
higher value w.r.t. to cy,w as well. Since the algo-
rithm only uses improving directions, the next vertex
reached will be higher in the partial order.

Proof. (of Theorem 1.) By Lemma 4, the number of
vertices of @ visited before my (2) is maximal wrt. cy
in V, is at most h(V). After reaching a vertex z, for
which 7y (2) is maximal, by Lemma 3 the V, W-rays
are never improving. So, the algorithm proceeds as if
in P, and finishes in at most f(P) additional visits to
vertices.

4.2 Direct Products

To analyze a direct product of two arbitrary simple
polytopes, we define an extended complexity measure.

For the purpose of analysis, consider the following
version of the algorithm.

Algorithm: PROJECTED

AFFINE

After step (2b) insert the follow-
ing steps arbitrary many times.
i. Chose an arbitrary A st. z+ Av €
P. Move the current point there.
ii. Recompute A\;s with the subrou-
tine and let v = >, Arvy.

In words, as the algorithm moves along a chosen
line, it can stop at any point and recompute a new
line to move along using the same subroutine. It can
do this arbitrarily many times.

Let g(P,c,z) be the (expected) maximum num-
ber of vertices visited by Algorithm PROJECTED
AFFINE on input polytope P with objective vector
c and starting point z. Thus, the inserted steps can
affect which vertices are visited but are not counted
separately in the complexity of the algorithm.

A NEW APPROACH TO STRONGLY POLYNOMIAL LINEAR PROGRAMMING

Theorem 2. Let P and Q be two polyhedra in RI™ P
and RY™ @ respectively with zp € P, zg € Q, vertices
in P,Q respectively and cp € RI™P cqQ € Rdim@
vectors in the corresponding spaces. Let z = (zp, ZQ)
and ¢ = (cp,cq). Then,

f(PxQ,cz) g(P x Q,c,z)

<
< g(Pycp,zp) + 9(Q, cq, 2q)-

Proof. Any vertex = of P x) can be written as
x = (zp,zg) where xp, x¢g are vertices of P and @ re-
spectively. Let x and y be two consecutive vertices vis-
ited by Algorithm AFFINE . Let n = dim P + dim Q.
When the algorithm moves from x along a line, it hits
a facet which is either a P-facet (corresponding to
an inequality defining P) or a Q-facet. Let the point
reached be 2! and the facet hit be a P-facet. Then
a! = (xp,xp). If the algorithm were applied directly
on P from zp, then we would reach the same (distri-
bution for) z}. The centroid subroutine would gen-
erate the same subcombination of rays, and the ran-
dom subroutine would have the same distribution on
lines generated. The same is true for @), except that
the step is not completed, i.e., the algorithm stops in
Q@ before reaching a facet. Taking the next step in
P x @ from 2! can be viewed as attempting a step
of Algorithm AFFINE in P from x} and Algorithm
PROJECTED AFFINE in @ from xb Within n iter-
ations we reach a vertex y = (yp,yg) of P x Q. Thus,
in the steps from x to y, we also move from a vertex
to a vertex in both P and @, however, for one step in
P x @, we are guaranteed to take a "complete" step in
only one of P, Q. In the other one, we perform one of
the "inserted" steps. Therefore we can view the algo-
rithm in P X @ as running Algorithm PROJECTED
AFFINE in both P and @, coordinated in a specific
way. The complexity bound follows.

We believe that the analysis of deformed products
in Theorem 1 can be improved using Algorithm PRO-
JECTED AFFINE as done in this section.

4.3 Perturbed Products

Here we argue that the analysis of the previous sec-
tion is not delicately aligned with the structure of
products and deformed products. We do this by show-
ing that we can perturb the facets defining a prod-
uct polytope, and for small enough perturbations, the
edges of the polytope can change their orientations
with respect to the objective function, but our analy-
sis still holds.

For simplicity consider a direct product polytope
Q = P x V. We know that every vertex g of () can be
written as ¢ = (p,v) where p and v are vertices of P

47

and V respectively. Now suppose the facets of P and
V' by small but arbitrary perturbations of each coef-
ficient of each facet normal. Further assume that the
perturbation is at most € in magnitude and e is small
enough that in the perturbed polytope Q’, each ver-
tex ¢’ is the solution of exactly dim P facets that are
perturbations of facets of P and dim V facets that are
perturbations of facets of V. Then many edges can
change their orientation with respect to the objec-
tive function. However, our analysis using Algorithm
PROJECTED AFFINE is still valid and we still get
a bound of ¢(Q) < g(P)+ g(V). Essentially the same
reasoning also applies to deformed products.

5 Discussion

We have presented a new approach to solving linear
programs and two algorithmic realizations of it. The
highlights of the method are (a) it takes geometric
shortcuts through the input polyhedron and (b) it is
affine-invariant. As a result, its complexity is not re-
lated to the Hirsch conjecture and is not dependent on
the bit sizes of the input. As an illustration, suppose
the input is a rotated cube stretched along one of its
axes. Then the complexity of known polynomial-time
algorithms for linear programming would depend on
the stretch factor, i.e., the number of bits of the long
axis. To analyze our algorithm, we first note that we
can equivalently analyze it on any affine transforma-
tion of the input, in particular the one that brings it
back to a cube and thus it is independent of bit sizes.

In this paper, we have focussed our analysis on bad
instances for the simplex method. These instances
have been constructed over decades and show that
known deterministic pivoting rules for the simplex
method are exponential. Fortunately, none of these
instances poses a problem for our new algorithm. It
would be very interesting to extend the analysis to
combinatorial cubes, i.e., polytopes whose face struc-
ture is identical to that of the cube.

One can construct classes of polytopes which have
the property that the centroid rule (or random rule)
makes significant progress towards the optimum in
each step even though the lengths of edges are small,
e.g., triangulations of the sphere where the edges are
all roughly the same length. One direction of future
research to make this more precise and more general
would be investigate the behavior of our algorithm on
random polytopes. For example, what is the complex-
ity of Algorithm AFFINE on polytopes of the form
Az < 1 where the rows of A are random unit vectors
(and so the polytope contains the unit ball).

We conclude the paper with a loose, heuristic argu-
ment for analyzing the algorithm in the general case.

M. BARASZ AND S. VEMPALA

Assume the input is a polytope P and we are at a ver-
tex v. Using the affine-invariance of the algorithm,
we can assume for the sake of analysis that the set
P,=Pn{z:c -z > c-v} is in isotropic position,
i.e., its covariance matrix is the identity and it is cen-
tered at the origin. Then the set P, contains a unit
ball and it appears plausible that a random combi-
nation of the rays of v generates a chord through v
that is likely to intersect this ball. If it does, then
moving along the chord, we make significant progress
towards the optimum, roughly reducing the distance
to optimal by a (1 — 1/n) factor. This would yield
a polynomial bound, which again by affine-invariance
should give a strongly polynomial bound.

Acknowledgments

We thank Luis Rademacher for many helpful dis-
cussions on this topic. The first author was supported
in part by the Algorithms and Randomness Center
(ARC) at Georgia Tech and the second author ac-
knowledges NSF Award CCF-0721503.

References

[1] N. Amenta and G. M. Ziegler. Deformed products
and maximal shadows of polytopes. Advances in Dis-
crete and Computational Geometry, Contemporary
Mathematics, 223:57-90, 1999.

D. Avis and V. Chvatal. Notes on bland’s pivoting
rule. Polyhedral Combinatorics. Math. Programming
Study, 8:24-34, 1978.

J. Balogh and R. Pemantle. The klee-minty random
edge chain moves with linear speed. Random Struct.
Algorithms, 30(4):464-483, 2007.

J. Edmonds. Paths, trees, and flowers.
Journal on Mathematics, 17:449-467, 1965.
D. K. G. Kalai. A quasi-polynomial bound for the
diameter of graphs of polyhedra. Bull. Amer. Math.
Soc., pages 315-316, 1992.

B. Gértner, M. Henk, and G. M. Ziegler. Randomized
simplex algorithms on Klee-Minty cubes. Combina-
torica, 18(3):349-372, 1998 (preliminary version at
FOCS'94).

D. Goldfarb. Worst case complexity of the shadow
vertex simplex algorithm. Tech Rep. Columbia Univ.,
1983.

D. Goldfarb and W. T. Sit. Worst case behaviour of
the steepest edge simplex method. Disc. Appl. Math,
1:277-285, 1979.

R. G. Jeroslow. The simplex algorithm with the
pivot rule of maximizing improvement criterion. Disc.
Math., 4:367-377, 1973.

G. Kalai. A subexponential randomized simplex algo-
rithm (extended abstract). In STOC, pages 475-482,
1992.

Canadian

48

[11] V. Klee and G. J. Minty. How good is the simplez al-
gorithm?, page 159U175. Academic Press, New York,
1972.

J. Matousek, M. Sharir, and E. Welzl. A subexpo-
nential bound for linear programming. Algorithmica,
16(4/5):498-516, 1996.

J. Matousek and T. Szabé. Random edge can be
exponential on abstract cubes. In FOCS, pages 92—
100, 2004.

N. Megiddo. Linear programming in linear time when
the dimension is fixed. J. ACM, 31(1):114-127, 1984.
K. G. Murty. Computational complexity of paramet-
ric linear programming. Math. Programming, 19:213—
219, 1980.

E. Tardos. A strongly polynomial algorithm to
solve combinatorial linear programs. Oper. Res.,
34(2):250-256, 1986.

[12]

[13]

[14]

[15]

[16]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

