
Innovations in Computer Science 2010

Pan-Private Streaming Algorithms
Cynthia Dwork1 Moni Naor2,∗ Toniann Pitassi3,† Guy N.Rothblum4,‡ Sergey Yekhanin1

1Microsoft Research, Silicon Valley Campus
2Department of Computer Science and Applied Math, Weizmann Institute of Science

3Department of Computer Science, University of Toronto
4Department of Computer Science, Princeton University

dwork@microsoft.com moni.naor@weizmann.ac.il toni@cs.toronto.edu rothblum@mit.edu
yekhanin@microsoft.com

Abstract: Collectors of confidential data, such as governmental agencies, hospitals, or search engine providers,
can be pressured to permit data to be used for purposes other than that for which they were collected. To
support the data curators, we initiate a study of pan-private algorithms; roughly speaking, these algorithms
retain their privacy properties even if their internal state becomes visible to an adversary. Our principal focus
is on streaming algorithms, where each datum may be discarded immediately after processing.
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1 Introduction
Data collected by a curator for a given purpose are

frequently subject to “mission creep” and legal com-
pulsion, such as a subpoena. For example, in the con-
text of professional baseball, urine samples, originally
collected for one purpose – a statistical study of drug
use in Major League baseball – were later used for a
different purpose: criminal investigation of the Bay
Area Laboratory Co-Operative, eventually resulting
in a privacy breach for 104 players who tested pos-
itive. The point here is not to support drug use in
professional sports. Rather, that statistical studies
are frequently conducted for anticipated societal gain;
our goal is to facilitate these studies by designing tech-
nology that encourages participation.

Any data curator – a library, a clinic, the US Cen-
sus Bureau, a social networking site, or a search en-
gine provider – can be pressured to permit data to
be used for purposes other than that for which they
are collected. When, as in the study of drug use in
professional baseball, the purpose of the collection is
for statistical data analysis, there may be no need
to store the data once the analysis is complete. More
generally, if the analysis is ongoing, as in the monitor-
ing of a sensor network, obsolete status information
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may reasonably be discarded as new information is
gathered. This suggests an investigation of privacy-
preserving streaming algorithms with small state –
much too small to store the data – and indeed the re-
sults reported here do focus on the streaming model.
However, nothing in the definition of a streaming algo-
rithm, even one with relatively small state, precludes
storing data pertaining to certain individuals of inter-
est. Popular techniques from the streaming literature,
such as Count-Min Sketch and subsampling, do pre-
cisely this. As we argue below, this is not satisfactory
from a privacy point of view. A subpoena or other
intrusion into the local state will breach the privacy
of the sampled individuals.

We therefore initiate a study of pan-private al-
gorithms; roughly speaking, these algorithms retain
their privacy properties even if their internal state
becomes visible to an adversary. We stress that, just
as a streaming algorithm may fail to be pan-private,
a batch algorithm may be pan-private, yielding pro-
tection against, say, an intruder that cannot access
the data, perhaps because they are stored on a dif-
ferent server. Nonetheless, we focus here on pan-
private streaming algorithms, so that the data can
be discarded. Our notion of privacy is differential pri-
vacy [7, 8]. It may seem that without some kind of
“secret state” it will be impossible to achieve accurate
yet private calculations. We show this is not the case:
there is quite a rich set of functions that can be com-
puted by means of pan-private streaming algorithms.

Results. Our contributions are definitional and al-
gorithmic, as well as in showing impossibility results.
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We introduce two new notions: pan privacy and user-
level privacy. We differentiate between privacy at the
user level of granularity (pure differential privacy) and
at the level of granularity of individual events (much
weaker). We also consider a very strong versin of pan-
privacy, in which the algorithm is immune to continual
intrusion on the internal state.

We provide pan-private streaming algorithms for
several counting tasks: estimating the number of dis-
tinct elements in a stream, estimating cropped means,
estimating the number of heavy hitters, and estimat-
ing frequency counts (“How many items appear in the
stream exactly k times?”). As already noted, sam-
pling items from the input stream, a common tech-
nique in streaming algorithms, is problematic for pan-
privacy. For example, although the probability of
selecting a specific individual may be small, once a
record belonging to this individual has been stored, it
is implausible to deny that the individual’s data ap-
pear in the data stream. To appreciate the strength
of the guarantee that we provide (“user level pri-
vacy”), consider, for example, analyzing click stream
and query log data. The data in this source are gen-
erated by individuals, and we wish to assure their pri-
vacy. For this we require that any two streams, one
with and the other without all information of a partic-
ular individual, will produce very similar distributions
on states and outputs, even though the data of an in-
dividual are interleaved arbitrarily with other data in
the stream. (This interleaving complicates both pri-
vacy and accuracy.) The pan private algorithms are
all single pass and space efficient and the output is ε-
differentially-private at the user level. Our algorithms
address the following problems:
• Estimating the fraction of elements in X that

appear at least once in the data stream. The
algorithm requires space poly(1/ε, 1/α, log(1/β))
and guarantees ε-differential pan-privacy; with
probability 1 − β it provides accuracy α.1 This
is done by an adaptation of the randomized re-
sponse technique for this environment.
• Approximating for any t the fraction of elements

in X that appear exactly t times in the data
stream (the t-incidence items). This is done by
a development of a hashing tool relevant for this
problem, which is a t-modular incidence count.
• Estimating what we call the t-cropped mean:

roughly, the average, over all users, of the mini-
mum of t and the number of times the user ap-
pears in the data stream. This is done using a

1Though our main theorem statements are for additive accu-
racy, all results can be modified to give multiplicative accuracy.
See the discussion towards the end of Section 3 for details.

randomized initial shift, together with the idea
of randomized response. Combining these ideas,
each item appearing less than t times contributes
in expectation its number of appearances to the
cropped mean, and each item appearing more
than t time contributes t (in expectation).
• Estimating the fraction of k-heavy hitters (el-

ements of X that appear at least k times in
the data stream). This is our technically most
challenging result; it makes extensive use of the
cropped mean algorithm. The notion of utility
achieved is slightly relaxed: the answers are ap-
proximately accurate for a stream S′ that is close
to the input stream S: the numbers of appear-
ances of every item in S and S′ differ by at most
a small multiplicative factor.

We give several impossibility results. We provide a
strong impossibility result for finite state pan-private
streaming algorithms against even two unannounced
intrusions for the density estimation problem (our
algorithms all require only finite space). We also
show that, for the same problem, no pan-private algo-
rithm (even non finite space) that guarantees privacy
against continual intrusions can provide ε-differential
pan-privacy with sublinear error. Finally, we place
pan-private streaming algorithms in context, separat-
ing them from randomized response [20] and private
sketching [17]. That is, we show problem for which
there exists an algorithm immune to continual intru-
sions in our streaming model, but no such algorithm
exists in the sketching model (where the influence of
each input is completely independent of the state).

1.1 Related Work
There is a vast literature on (non-private) stream-

ing algorithms, and summarizing it is beyond the
scope of this extended abstract. See, for example, [5]
and the references contained therein, the recent course
notes [18] and work on streaming algorithms in the
machine learning literature, e.g. [3]. The fraction of
the universe X of items that appears at least once in
the data stream is analogous to the number of distinct
items in the stream, which is a well studied measure
issue in streaming. Datar and Muthukrishnan [6] mo-
tivate and study the problem of approximating the
number of α-rare elements – i.e., elements appearing
exactly α times – in the so-called “windowed” stream-
ing model. (We call this “incidence” to be clear that
we mean an exact number of times and not a lower
or upper bound.) Our cropped mean quantity was
previously studied (without a name) by Indyk [13],
who used it in constructing streaming algorithms for
facility location problems.
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There is also a vast literature on private data anal-
ysis, both in statistics and in computer science. The
notion of differential privacy is due to Dwork, Mc-
Sherry, Nissim, and Smith [7, 8]. Most of the work
on private data analysis assumes a trusted curator.
The problem of finding privacy-protective methods
in order to encourage survey respondents to respond
to sensitive questions (involving, say, sexuality or
criminal behavior) – essentially, private data analy-
sis with an untrusted curator – was first studied by
Warner [20]; modern incarnations include random-
izing market baskets [9] and private sketches [17]2.
With certain technical changes (involving the use
of ε-biased hash functions instead of the pseudo-
randomness used in the original work), the sketch-
ing techniques can be used to give a weak form of
pan-private algorithms for estimating the number of
times an item appears in a stream. This can also be
achieved using Count-Min Sketch [5].

There is some work related to privacy regarding
problems typically studied in the streaming literature.
In this work the scenario is that the data are split
between two centers who do not wish to reveal the
value of their inputs beyond what is necessary (“two-
party secure computation”) [14, 15].

Several of the classical streaming problems related
to counting have natural differentially private (but
not pan-private) implementations, obtained by simply
adding appropriately generated noise. Recent work
of Feldman, Fiat, Kaplan, and Nissim addresses cre-
ation of differentially private coresets [10]. As noted
in [10], coreset constructions frequently imply stream-
ing algorithms, and indeed this fact, combined with
results of Feldman et al., can yield differentially pri-
vate streaming algorithms; these algorithms are not
pan-private.

A concern reminiscent of pan privacy was explored
in the area of data structures under the name of
history-independence [16, 19]. The goal there was to
design data structures for which the internal repre-
sentation of the data structure does not reveal more
than what the standard interface reveals.

2 Definitions
We assume a data stream of unbounded length com-

posed of elements in a universe X . It may be helpful
to keep in mind, as motivation, data analysis on a
query stream, in which each item is a query accom-
panied by the IP address of the issuer. For now, we

2This is a different use of the word “sketch” than is in the
streaming literature; here it refers to a randomly chosen object
that, when concatenated with an individual’s data, hashes to a
desired value.

ignore the query text itself; the universe X is the uni-
verse of potential IP addresses. Thus, intuitively, pri-
vacy protects the presence or absence of an IP address
in the stream, independent of the number of times it
arises, should it actually be present at all.

Recall that we are interested in Differential Privacy.
In the “batch processing world" this meant:

Definition 2.1. [8] A randomized function K gives
ε-differential privacy if for all adjacent (differing in
at most one row) data sets D and D′, and all S ⊆
Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S] (1)

where the probability space in each case is over the
coin flips of K.

We need to update the definition for our purposes,
given that we work with data streams, in particular
with click streams where the information regarding a
user is spread all over the stream.
X-Adjacent Data Streams and Differential Pri-
vacy. An important point we make regarding the
privacy requirements is related to the notion of adja-
cency, i.e. what does it mean for D and D′ in Defini-
tion 2.1 to be adjacent when they are data streams.
We distinguish between “event-level" and “user-level"
privacy of data streams. In the above example of a
click stream, event level means that given the out-
put of the function it is hard to determine whether a
particular query from a given IP occurred. User level
provides a much stronger guarantee to users: it is hard
to determine whether a given user’s (IP address) was
ever included in the stream at all. We formalize this
notion below. The algorithms we propose all offer
user-level privacy.

Definition 2.2. Data streams (or stream prefixes) S
and S′ are X-adjacent if they differ only in the pres-
ence or absence of any number of occurrences of a
single element x ∈ X . In other words, if all occur-
rences of x are deleted from both streams, then the
results should be identical.

Outputs. An algorithm runs until it receives a spe-
cial signal, at which point it produces outputs. Thus,
the algorithm does not know the length of the stream
in advance. The algorithm may optionally continue
to run and produce additional outputs later, again in
response to a special signal.
What Can be Observed by the Adversary, and
What Cannot. An algorithm moves through a se-
quence of internal states and produces a (possibly
unbounded) sequence of outputs. We assume that
the adversary can only observe internal states and
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outputs; the adversary cannot see the data in the
stream (although it may have auxiliary knowledge
about some of these data). We can model this through
the assumption that in a single atomic step the algo-
rithm can read a datum, compute, and change the
internal state. Some sort of granularity assumption
is essential, since otherwise the adversary could learn
the raw data and privacy is impossible.
Adversary Capabilities. Our algorithms should
maintain their accuracy and privacy guarantees in the
worst case, provided (as usual, in the streaming lit-
erature) that these worst-case inputs are chosen non-
adaptively, independent of the observed internal states
and outputs. In fact, privacy holds unconditionally,
even against an adaptive adversary who chooses the
stream as a function of the observed internal states
and outputs3. The adversary may have arbitrary aux-
iliary knowledge obtained from other sources (this
captured by the notion of differentially privacy and
the fact that we consider X-adjacency). It can also
have arbitrary computational power.

We now define the basic requirement of pan privacy,
which is essentially immunity to a single intrusion.
As explained, the extension to multiple intrusions is
straightforward.

Definition 2.3. Pan-Privacy (against a single
intrusion).

Let Alg be an algorithm. Let I denote the set of
internal states of the algorithm, and σ the set of pos-
sible output sequences (the output could be empty,
for instance if it is at the start of the sequence). We
think of algorithm Alg as a pair of probabilistic map-
pings: State maps data stream prefixes to a state
(the one that the algorithm is in immediately after
processing the prefix), and Out maps prefixes to an
output sequence (the one produced while processing
the prefix). Then algorithm Alg is pan-private if for
all sets I′ ⊆ I and σ′, σ′′ ⊆ σ, and for all pairs of X-
adjacent data stream prefixes S and S the following
holds. Let x ∈ X be the unique single symbol such
that S and S′ differ on the number and or placement
of instances of x. For any U and U ′ also differing only
on instances of x, such that S = UV (that is, S is the
concatenation of U and V ), and S′ = U ′V ′,

Pr[(State(U),Out(U),Out(S)) ∈ (I′, σ′, σ′′)] ≤
eε Pr[(State(U ′),Out(U ′),Out(S′) ∈ (I′, σ′, σ′′)]

where the probability spaces are over the coin flips of
the algorithm Alg.

3Unsurprisingly, many of our algorithms can be modified
to simultaneously retain privacy and accuracy even against an
adaptive adversary, but the space requirements may be exces-
sive.

The definition requires that the joint distribution
on internal states and outputs be essentially the same
after processing adjacent prefixes, but it is stronger.
For example, the definition captures the case that in-
trusions happen immediately following adjacent pre-
fixes and, possibly some time later, additional output
is produced. To extend this to multiple intrusions,
one considers adjacent streams S = U1 . . . UdV and
S′ = U ′1 . . . U ′dV ′, where for 1 ≤ i ≤ d it holds that
U1 . . . Ui and U ′1 . . . U ′i are adjacent, differing only in
the symbol on which S and S′ differ.

The case of even only two un-announced intrusions,
and even more so the case of continual intrusions, are
both hard to deal with. Negative results to this effect
appear in Section 6.

Remark 2.1. Several remarks are in order.
(1) If we assume the existence of a very small

amount of secret storage (not visible to the adver-
sary), then many problems for which we have been
unable to obtain pan-private solutions have (non-pan)
private streaming solutions. However, we don’t see
the amount of secret storage to be so important as
its existence, since secret storage is vulnerable to the
social pressures against which we seek to protect the
curator.

(2) If this issue could be addressed, then it should be
possible to design a rich class of algorithms based on
homomorphic encryption schemes, where the decryp-
tion key is kept in the secret storage. Pan-privacy
would then hold against computationally bounded ad-
versaries.

(3) If the adversary is computationally bounded, the
algorithms’ processing stages can be made determin-
istic. To do this, we generate the needed random-
ness using a forward-secure pseudo-random number
generator [1]. This ensures that even when an in-
trusion occurs, the randomness used in the past still
looks random to the intruder. Provided the intrusion
is announced, the randomness can be refreshed and
pan-privacy continues to hold. Many classical pseudo-
random generators have this property, e.g. [2, 21].

3 Density Estimations and Cropped
Means

The density of the input stream is the fraction of
items in X that appear at least once in the stream.
In this section we describe pan-private streaming algo-
rithms for estimating the density of the input stream
and a newly defined generalization, which we call the
t-cropped mean. This is the mean, over all items in
the universe X , of (for each item) the minimum be-
tween that item’s incidence count in the stream (the
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number of times it appears) and the value t.
We first concentrate on additive errors, and then de-

scribe briefly how to modify the algorithm(s) to obtain
multiplicative error.

We begin with the density estimation algorithm.
Both algorithms use a technique based on randomized
response. The difficulty is that we aim for user level
privacy. For accuracy, the algorithm has to maintain
information regarding previous appearances of items,
so as to interpret new appearances correctly. But for
user-level privacy, this should be done without the in-
ternal state leaking significant information about the
appearance or non-appearance of individual items.

First, in order to keep the state small, we sample
a random a set M ⊆ X of m items, where m is large
enough so that, with high probability, the density of
M ’s items in the input stream approximates the den-
sity of X ’s items.

The algorithms maintains a table, with one entry
per item in M . For items in M that have not yet
appeared, their entry will be drawn from a distribu-
tion D0 (over {0, 1}). For items that have appeared at
least once, their entry will be drawn from D1 no mat-
ter how many times they have appeared. These two
distributions should be “close enough” to guarantee
pan-privacy for individual users, but “far enough” to
allow collection of aggregate statistics about the frac-
tion of users that appear at least once. Specifically,
the distribution D0(ε) will give the outputs ’0’ and
’1’ both with probability 1/2. The distribution D1(ε)
will give ’1’ with probability 1/2 + ε/4 and ’0’ with
probability 1/2− ε/4.

The key observation that allows user-level pan-
privacy is that if we re-draw an item’s entry from
D1 whenever that item appears in the data stream,
the distribution of that item’s entry is unaffected by
its number of appearances (beyond the first). This
means that the entry does not yield any information
about the item’s number of appearances (beyond the
first). The algorithm appears in Figure 1.

Claim 3.1. For ε ≤ 1/2, the distributions D0 and
D1 are “ε-differentially private”. For both values b ∈
{0, 1}, it holds that: e−ε ≤ PrD1 [b]/PrD0 [b] ≤ eε.
Proof of Claim 3.1. The ratio between the probabili-
ties of 1 by D1 and D0 is 1 + ε/2 ≤ eε. The ratio be-
tween the probabilities of 0 by D1 and D0 is 1−ε/2 ≥
e−ε (this inequality holds for 0 ≤ ε ≤ 1/2).

Theorem 3.2. Assume ε ≤ 1/2. The density estima-
tor of Figure 1 guarantees 2ε differential pan-privacy.
For a fixed input, with probability 1 − β over the es-
timator’s coins, the output is α-close to the fraction

of items in X that appear in the input stream. The
space used is poly(1/ε, 1/α, log(1/β)).

Proof of Theorem 3.2. We argue utility and privacy
separately.
Privacy. For items not inM no information is stored
by the algorithm, so privacy is perfect. For an item
in the set M , if the item never appears in the input
stream then its entry is drawn from D0. If the item
appears once or more in the input stream, then its
entry is drawn from D1 (multiple appearances only
result in multiple samples being taken, but the item’s
entry in the table remains a sample from D1). Thus
when an intrusion occurs, by Claim 3.1, the users in
M are guaranteed ε-differential privacy against the
intrusion.

Later, when the algorithm generates its output, the
sensitivity of this output to the presence or absence of
any one user is at most 1/m (or 0 if the user is not in
M). By adding noise sampled from Lap(1/(ε · m))
we guarantee that users are guaranteed 2ε privacy
against the combined information an adversary can
gain from its intrusion and viewing the algorithm’s
output. We note that we will use the same idea to
ensure only an ε added privacy loss from the output
throughout this work (we will not repeat the analysis
for every algorithm).

Utility. First, we claim that the fraction of items in
M that appear at least once is, with probability at
least 1 − β/2, an α/2 approximation to the fraction
of items in X that appear at least once in the input
stream. This follows by a Chernoff bound, because
M is a set of m ≥ poly(1/α, log(1/β)) items chosen
uniformly and at random from the set X .

We now complete the proof by showing that, with
probability at least 1 − β/2, the algorithm’s output
is a α/2-approximation to the fraction of items in M
that appear at least once. Let f be the true fraction
of items inM that appear at least once. The expected
fraction of 1-entries in the table (over the randomness
of drawing from D0 and D1) is then:

E[θ] = f · (1/2 + ε/4) + (1 − f) · 1/2 = 1/2 + f · ε/4
We can separate this fraction into the contribution
of 1’s from items that appeared at least once (sam-
ples from D1) and those that did not (samples from
D0). Taking a Chernoff bound we get that, since
m = poly(1/ε, 1/α, log(1/β)), with probability 1−β/2
the observed fraction of 1’s θ satisfies:

|θ − E[θ]| ≤ α · ε/8
Now the algorithm outputs f ′ = 4(θ − 1/2)/ε +
Lap(1/(ε · m)). We conclude that with probability
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Density Estimator (ε, α, β)

Init. Sample at random a set M of m = poly(1/ε, 1/α, log(1/β)) elements (representatives) in X. Create
a table of size m with a single one-bit entry for each item inM . For every entry x ∈M , generate a random
initial value bx ∼ D0(ε).

Processing. When a value x ∈ M appears in the data stream, update x’s entry in the table by drawing
it from D1: bx ∼ D1(ε).

Output. Compute θ, the fraction of entries in the table with value 1. Output the density value f ′ =
4(θ − 1/2)/ε + Lap(1/(ε ·m)).

Figure 1: Density Estimator

1− β:
|f − f ′| ≤ α

Obtaining a multiplicative error. If the fraction
of elements of X that appear in the stream is very
small, an additive accuracy guarantee might not pro-
vide a very meaningful result. Instead, in such cases
it is better to give a multiplicative guarantee. This
can be achieved using the pan-private additive den-
sity estimator of Figure 1 as a “black-box”. The idea
is to hash the universe X into � = log |X | smaller sets
X0, X1, . . . , X� = X , where set Xi is of size 2i. The
density estimation algorithm is run independently for
all � choices of m, using noise Lap(�/ε ·m) in the Out-
put step. Finally, the “right” output, among these �
outputs, is selected, as described below.

Hashing is done using 4-wise independent hash
functions (thus ensuring small space complexity). The
density estimator can then be used to obtain an addi-
tively accurate estimation γ′k on the density γk of the
hash values of input stream items in all of the hash
sets. The density of the input stream in a set Xi can
give a good idea of the ratio between the number of
distinct items in the input stream and |Xi|. The only
problem is that there may be hash collisions that lead
to under-counting, and the number of collisions grows
as the set size shrinks.

We thus want to use the density of the “right” Xk,
one that is neither too large (leading to the additive
error being very large in multiplicative terms) nor too
small (leading to many collisions and under-counting).
We know that for 4-wise independent hash functions,
if the density of the output in Xk is γk, then with
high probability the number of collisions was at most
γ2
k · |Xk| (using Chebyshev’s inequality). If we use

the first hash function for which γk ≈ α then we get
that the number of collisions is w.h.p. bounded by
α2 · |Xk|. On the other hand, we know that the num-
ber of distinct elements in the input is at least about

α · |Xk|. If we obtain an α2-additive approximation to
the density of the input’s hash in Xk we can multiply
it by |Xk| and we actually have an O((α2) · |Xk|)-
additively accurate approximation on the number of
distinct items in the input, which is also an O(α)-
multiplicative accurate estimation on the number of
distinct elements (since the number of distinct ele-
ments was at least α · |Xk|). This is all w.h.p. over
the choice of hash functions (using Chebyshev’s in-
equality), and we can amplify the success probability
by choosing several collections of hash functions inde-
pendently at random and using the median answer, or
by choosing hash families with greater independence.
(Note that the algorithm implicitly assumes that the
number of items in the output universe Xk is at least
m ≥ poly(1/ε) so that we can recover good statistics
from the randomized responses.)

We note that this and similar techniques can be
used to obtain multiplicative approximations (rather
than additive ones) for the other algorithms in this
paper. We henceforth confine our attention to addi-
tive approximations.

Handling Multiple Announced Intrusions. It
is possible to handle multiple announced intrusions
by re-randomizing the randomized-response bits after
each intrusion. For example, after the first announced
intrusions, for every x ∈ M in the table, we re-draw
the bit bx according to its current value: if previously
it was 1, we re-draw from D1, and if it was 0 we re-
draw from D0. Thus entries for items that appeared
in the input stream are now distributed according to
D′1, which is 1 w.p. (1/2 + ε/8 + ε2/16) and 0 w.p.
(1/2 − ε/8 − ε2/16). Entries for items that did not
appear in the stream are distributed according to D′0,
which is 1 w.p. (1/2+ε/8) and 0 w.p. (1/2−ε/8). We
now change the randomized response distributions to
be D′1 (for items that appear) and D′0 (for items that
don’t appear). Note that the algorithm keeps track
of how many intrusions happened (there is no need to
protect the intruder’s privacy).
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Pan-privacy is as before (the new distributions are
even “more private” than the old ones to an attacker
that did not see the intrusion). Accuracy, however,
does not behave as well: the difference between the
probability of 1 in D′1 and D′0 shrinks by an O(ε)
factor each time we recover from an intrusion. This
means that accuracy degrades very quickly, or (if we
want to guarantee accuracy always) that the storage
is exponential in the number of intrusions we want to
handle.

Similar ideas can be used to handle multiple an-
nounced intrusions for other algorithms in this work,
with similar degradation in accuracy. We will not re-
visit this point.

3.1 Estimating the Cropped Mean
For x ∈ X , let nx denote the number of appearances

of x in the input stream. Then the t-cropped mean,
for t ≥ 2, is the quantity:

E ↓t= 1/|X | ·
∑

x∈X
min(nx, t).

This quantity is interesting in its own right, as a mea-
sure of the activity level in the input stream. For
example, it can be used to estimate the number of
items in the input stream while mitigating the effect
of outliers who arrive a large number of times. More-
over, we will use our cropped mean algorithm as a
central building block block in estimating the frac-
tion of k-heavy hitters (items that appear k times or
more).

Our algorithm for cropped mean is a generalization
of the density estimation algorithm above. There we
maintained a bit (’0’ or ’1’) for every item in a ran-
domly chosen subset M . The bits of items that ap-
peared one or more times all had the same probability
of being ’1’ (regardless of the number of appearances),
and this probability was greater than the probability
of being ’1’ for items that never appeared. When es-
timating the cropped mean we will again choose a
random subset of items from X and maintain a bit
for each item. The probability of this bit being ’1’
will grow linearly with the number of times an item
appears, up to t appearances. The bits of items that
appear t or more times will all have the same probabil-
ity of being ’1’. Specifically, if an item appears i times,
its bit will be ’1’ with probability 1/2+ε ·min(i, t)/4t,
maintaining ε-differential privacy. The fraction of 1’s
in the resulting table will be used to estimate the t-
cropped mean. To implement this table we maintain
a counter for each x ∈ M . The counter for an item
x will hold (integer) values between 0 and t− 1. The
algorithm initializes the counter to a random value in

this range, and whenever item x arrives, the counter is
increased by 1, modulo t. When the counter increases
to the value 0, we sample the bit bx according to D1:
bx ∼ D1. Note that the modular counter here is (per-
fectly) private, and the bit bx is ε-differentially private
(by Claim 3.1). The algorithm appears in Figure 2.

Theorem 3.3. Assume ε ≤ 1/2. The t-cropped
mean estimator of Figure 2 guarantees 2ε differen-
tial pan-privacy. For a fixed input, with probabil-
ity 1 − β over the estimator’s coins, the output is
(α · t)-close to the t-cropped mean. The space used
is poly(log t, 1/ε, 1/α, log(1/β)).

Proof of Theorem 3.3. The proof of pan-privacy is as
in Theorem 1. Note that the (mod t) counters are
perfectly private and contain no information about
the actual number of appearances made by their
items.

We proceed with a proof of utility. First, the t-
cropped mean of the items in M is, with probability
1− β/2, at least (α/2 · t)-close to the t-cropped mean
of all the items in X (by a standard Chernoff bound,
since m ≥ poly(1/α, log(1β))).

To complete the proof, we need to show that the
output f ′ is, with probability 1−β/2, at least (α/2·t)-
close to the t-cropped mean of the items in M :

1/m ·
∑

x∈M
min(nx, t)

For each x ∈ M , which appears nx times, the prob-
ability that bx is equal to 1 (over the initialization
of the modular counter and the sampling from D0 or
D1) is exactly 1/2+ε ·min(nx, t)/4t. Thus, using f to
denote the true t-cropped mean of items in M , then
the expected fraction θ of 1’s in the output table is

E[θ] = 1/2 + ε · f/4t

This is a sum of {0, 1}-random variables, whose ex-
pected mean sum is E[θ]. Taking θ′ to be the actual
fraction of 1’s on the table, by a Chernoff bound, since
m ≥ poly(1/ε, 1/α, log(1/β)), we get that with prob-
ability at least 1− β/2:

|θ′ − E[θ]| ≤ ε · α/8

The algorithm outputs f ′ = 4t(θ′−1/2)/ε+Lap(t/(ε ·
m)), and by the above inequality we get that, with all
but at most β probability:

|f − f ′| ≤ t · α
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t-Cropped Mean Estimator (t, ε, α, β)

Init. Sample at random a set M of m = poly(1/ε, 1/α, log(1/β)) elements in X. Create a table of size m
with a one-bit entry bx ∈ {0, 1} and a modular counter cx ∈ {0, 1, . . . , t − 1}, for all x ∈ M . In addition,
for all x ∈M , generate random initial values bx ∈R D0(ε) and cx ∈R {0, 1, . . . , t− 1}.
Processing. When a value x ∈ M appears in the data stream, increase the counter cx: cx ← cx + 1
(mod t). If the new counter value is 0, then refresh bx by drawing it from D1: bx ∼ D1(ε).

Output. Compute θ, the fraction of entries in the table with value 1. Output the t-cropped mean
estimation value f ′ = 4t · (θ − 1/2)/ε + Lap(t/(ε ·m)).

Figure 2: t-Cropped Mean Estimator

4 Estimating the Fraction of k-Heavy
Hitters

In this section we present a pan-private algorithm
for estimating the fraction of “k-heavy hitters”, the
fraction (in X) of items that appear k or more times.
Note that, unlike the non-private case, we do not try
to find which items are the heavy hitters, which will
be violation of the privacy requirements. Instead, in a
pan-private fashion, we estimate the just the fraction
of items that are heavy hitters.

We assume that the number of appearances of each
item in the data stream is bounded by a (large) con-
stant N . Our complexity will be polylogarithmic in
N . Furthermore, as we now explain, in this result
we achieve a relaxed notion of utility: the algorithm
guarantees that its output is accurate for an input
stream S′ that is close to the given (original) input
stream S [4]. Let nx be the number of appearances of
item x in the original input stream S, x ∈ X . We say
that streams S and S′ are (1+ρ)-close if, for accuracy
parameter ρ ∈ (0, 1], and ∀x ∈ X ,

1
1 + ρ

· nx ≤ n′x ≤ (1 + ρ) · nx

The algorithm makes extensive use of the t-cropped
mean estimator. The algorithm description and
analysis will be for general α-accuracy with (1 +
ρ)-closeness, but in the intuitive exposition α is
a constant and we only aim for 2-closeness. We
start by estimating the t cropped mean for t =
1, 2, 4, 8, . . . , N/2, N (assume here N is a power of
2). Let E ↓t denote the t-cropped mean of the in-
put stream. Examine the quantity:

E ↓N −E ↓N/2= 1/|X| ·
∑

x∈X:nx≥N/2

(min(nx, N)−N/2)

This quantity gives us some idea about the total num-
ber of appearances of items that appear more than
N/2 times. Unfortunately, it does not give us an
idea of the number of distinct items that appear more

than N/2 times. For example, if the difference is, say,
z/|X |, it could be because z items appeared N/2 + 1
times, or it could be because many fewer items, even
2z/N , appearedN times each. To overcome this prob-
lem we turn to the relaxed notion of utility, and only
require the answer to be approximately accurate for
a “close” input stream.

Accuracy for a Close Stream. Observe that if,
for every item x, its number of appearances was
uniformly and randomly distributed in the range
[2�lognx�, 2�lognx�+1], then the problem we described
above becomes much less severe. In particular, once
we estimate E ↓N −E ↓N/2 we now know that the ex-
pected contribution to this quantity of each item that
appeared between N/2 and N times is 3N/4. If there
are enough items in this interval then (E ↓N −E ↓N/2
)/(3N/4) is a good approximation to the fraction of
items in X that appeared between N/2 and N times.

One problem is that the number of appearances of
input items is not uniformly or randomly distributed
within their respective intervals. The solution is for
the streaming algorithm itself to “randomize” the
number of times items appear. This is done by choos-
ing a constant rx ∈R [1, 2] (discretized to precision
α/N). For each item in the table maintained by the
t-cropped mean algorithm, we count each appearance
of the item as rx appearances (this requires modi-
fying the t-cropped mean algorithm to handle real
numbers of appearances, and not only integer num-
bers). The randomization has the effect of taking each
item’s number of appearances nx and randomizing it
over the interval [nx, 2nx] (discretized up to precision
α/N). While the effect is not identical to randomizing
nx within its interval [2�lognx�, 2�lognx�+1], the anal-
ysis in the proof of Theorem 4.1 shows that it does
provide a similarly flavored guarantee that the “con-
tributions” of items to the cropped means are well
distributed and obey strong tail inequalities. For ac-
curacy, note that we have only changed the number
of times an item appears by a multiplicative factor of

73



C. DWORK, M. NAOR, T. PITASSI, G. N. ROTHBLUM AND S. YEKHANIN

2, and so the answer we obtain is indeed accurate for
a “2-close” stream.

Controlling the Error. Once we have the fraction
of items in the “highest” interval (appearing between
N/2 and N times), we want to approximate the frac-
tion that arrived between N/2 and N/4 times, be-
tween N/4 and N/8 etc. This is not immediate,
because errors might accumulate exponentially fast
while computing the approximations for smaller and
smaller intervals. We take ti = 2i and let the i-th
interval be Ii = [ti, ti+1). To estimate the fraction
of items appearing in Ii, we again use the cropped
mean estimator, together with the previously com-
puted fractions of items appearing in higher intervals.
Assume throughout the following informal discussion
that each item’s number of appearances is randomized
within its interval.

Examine the “i-th cropped sum” E ↓ti+1 −E ↓ti .
The expected contribution to the i-th cropped sum of
each item in interval Ii is (ti+1 − ti)/2. There are,
however, also contributions from items in higher in-
tervals: each such item contributes exactly (ti+1− ti)
to the i-th cropped sum. To estimate the fraction of
items in the i-th interval, we need an estimate z for
this contribution of “higher” items. We can then take

[
E ↓ti+1 −E ↓ti −z]/(2/(ti+1 − ti))

as an estimate for the fraction of items in the i-th
interval. The problem here is that an error of say
ξ · (ti+1 − ti) in the estimate z, leads to an error of
2ξ in the estimate of the fraction of items in interval
Ii (and this is the type of error we would get from a
straightforward use of the fraction of items in higher
intervals). Left unchecked, the error might grow expo-
nentially quickly as the algorithm’s computation pro-
ceeds to lower intervals.

To keep this error under control, we extract an es-
timate for the “contribution” of items above the i-
th interval to the i-th cropped sum (the quantity z
above) in a more careful manner. We use v′i+1 to de-
note the (previously computed) estimate for the frac-
tion of items in interval Ii+1. Let ξi+1 be the (frac-
tional and signed) error of v′i+1. To estimate z, we
estimate separately the contribution of items in inter-
val i+ 1 and the contribution of items above interval
i + 1. Both of these quantities are computed using
v′i+1 (and cropped mean estimations, which have fixed
error which does not grow as we move to lower inter-
vals). For the first quantity, the error in computing it
is proportional to ξi+1. For the second quantity, the
error is proportional to −ξi+1/2. This means that
the two errors cancel out, and the error in estimat-

ing z is proportional only to ξi+1/2, which avoids the
exponential growth in the error.

More specifically, examine the (i + 1)-th cropped
sum E ↓ti+2 −E ↓ti+1 . The contribution of the items
above interval i + 1 to the (i + 1)-th cropped sum is
exactly twice as large as their contribution to the i-
th cropped sum. The contribution to the (i + 1)-th
cropped sum of items in interval Ii+1 is (w.h.p) about
v′i+1 · ((ti+2 − ti+1)/2). We can thus compute the
(i+ 1)-th cropped sum (using the cropped mean esti-
mator, with fixed error), subtract the expected contri-
bution of items in interval i+1, and divide by 2. This
gives an estimate for the contribution of items above
interval Ii+1 to the i-th cropped sum. If we have error
ξi+1 in our estimate v′i+1 to the fraction of items in
Ii+1, this translates to an error of −ξi+1/2 · (ti+1− ti)
in the estimate of the contribution of items above in-
terval i + 1 to the i-th cropped mean (ignoring the
error from the cropped mean estimations, which is
fixed and never grows). Finally, to compute our ap-
proximation z, we also need the contribution of items
in Ii+1 to the i-th cropped sum. This we estimate
simply as v′i+1 · (ti+1 − ti). An error of ξi+1 in the es-
timate v′i+1, translates to an error of ξi+1 ·(ti+1−ti) in
the estimate of contribution of items in interval Ii+1
to the i-th cropped sum. Notice now that the two
errors have reversed signs, and so the combined error
is smaller. We get that the error in the estimate of
the contribution of items above interval Ii to the i-th
cropped sum behaves like (ξi+1/2) · (ti+1 − ti). This
means that when we estimate the fraction of items
in interval Ii by subtracting this contribution and di-
viding by (ti+1− ti)/2, the error incurred behaves like
ξi+1, and the exponential growth in the error has been
avoided.

Summary. In the end we get good approxima-
tions to the fraction of t-heavy hitters for t =
1, 2, 4, 8, . . . , N/2. We can take the closest power of 2
to k, say 2w (assume w.l.o.g. that 2w < k), and use
the fraction of 2w-heavy hitters to approximate the
fraction of k-heavy hitters: this will be an accurate
answer for the “close” stream S′ where every item
that appeared between 2w and k times in S appears
k times in S′. The full algorithm is in Figure 3.

Theorem 4.1. Assume ε ≤ 1/2. When run with
parameters k,N, ε, α, β, ρ, the k-heavy hitters esti-
mator of Figure 3 guarantees (ε · (1 + (log(N)/ρ)))-
differential pan-privacy. For a fixed input, with prob-
ability 1 − β over the estimator’s coins, the output
is poly(1/ρ, 1/α)-accurate for a (1 + ρ)-close stream.
The space used is poly(logN, 1/ε, 1/α, log(1/β), 1/ρ).

The proof is omitted from this extended abstract.

74



PAN-PRIVATE STREAMING ALGORITHMS

k-Heavy Hitters Estimator (k,N, ε, α, β, ρ)

Init.
1. Sample a random set M of m = poly(logN, 1/ε, 1/α, log(1/β), ρ) elements (representatives) in X.
2. Assume w.l.o.g. that N is an integer power of (1 + ρ). Let � = O(log1+ρ(N)), and let: t0 = 1, t1 =

(1 + ρ), t2 = (1 + ρ)2, t3 = (1 + ρ)3, . . . , t�−1 = N/(1 + ρ), t� = N . Define t�+1 to be equal to t�:
t�+1 = t� = N .
Take Ii, the i-th interval, to be Ii = (ti, ti+1].

3. For each ti, create a table of size m for estimating the ti-cropped mean with real multiplicities of
appearances up to precision α/N . Initialize these tables as done for the t-cropped-mean algorithm.

4. For each x ∈M , choose rx ∈R {1, 1 + α/N, 1 + 2α/N, 1 + 3α/N, . . . , 1 + ρ}.
Processing. Each time a value x ∈ M appears in the data stream, update all of the cropped mean
counters as if x appeared rx times in the input stream.

Output.
1. Compute for each i ∈ [�] the (approximate) ti-cropped mean e′i.
2. Set v� ← 0.
3. For i← �− 1, �− 2, . . . , 1, 0, estimate the fraction v′i of items in interval Ii:

(a) Estimate the contribution, beyond ti, of the ti-heavy-hitters to the ti+1-cropped mean:

e′≥i ← e′i+1 − e′i
(b) Estimate the contribution, beyond ti+1, of the ti+2-heavy-hitters to the ti+2-cropped mean:

ui = (e′i+2 − e′i+1)− v′i+1 · ti+2 − ti+1

2

(c) Estimate the contribution, beyond ti, of the ti+1-heavy-hitters to the ti+1-cropped mean:

e′>i ← v′i+1 · (ti+1 − ti) + ( ti+1 − ti
ti+2 − ti+1

) · ui

(d) Estimate the contribution, beyond ti, of the items in interval Ii to the ti+1-cropped mean:

e′=i ← e′≥i − e′>i
(e) Compute the result as the approximate fraction of items in interval Ii:

v′i ← e′=i
1/2 · (ti+1 − ti)

4. Take i = �log1+ρ(k)�, output v′i + Lap(1/(m · ε)) as the estimate of the fraction of k-heavy-hitters.

Figure 3: k-Heavy Hitters Estimator (k,N, ε, α, β, ρ)
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5 Incidence Counting
In this section we obtain an algorithm for estimat-

ing the fraction (in X) of t-incidence items, the items
that appear exactly t times in the input stream. Here
we assume a global upper bound N on the number
of times any item can appear in the input stream.
Thus the set of possible incidence counts is assumed
to be {0, 1, . . . , N}. Our complexity will be poly-
logarithmic in N .

The idea is to hash the possible incidence counts
using a hash function h drawn from a family H . Intu-
itively, this “shrinks” the problem, as the set of possi-
ble hash values is much smaller than the set of possible
incidents counts. For each possible hash value v, we
then keep track (in a pan-private way) of the fraction
of items whose incidence count hashes to v. Now, to
(over-)estimate the fraction of items that appeared t
times, we can simply use the fraction of items whose
incidence count hashes to h(t). The hope is that if H
is a hash family with low collision probability, then
with high probability this is not too high an over-
estimate. To avoid an “unlucky” choice of hash func-
tion, we can amplify the above idea by choosing inde-
pendently and at random several functions h1, . . . , h�,
and keeping track of the frequencies of each hash value
under each of the hash functions. The final output is
the minimum, over i ∈ {1, . . . , �}, of the number of
items whose frequency hashes, via hi, to hi(t).

The idea of hashing to reduce the size of frequency
estimation problems appears in the count-min esti-
mator of [5], used to count how many appearances
a certain element has. The challenge in our setting,
however, is keeping track of the frequencies of hashes
of items’ numbers of appearances (rather than the fre-
quencies of hashes of the items themselves). More-
over, we need to do this computation in a pan-private
manner. In particular, this necessitates the use of
specific hash families, where the frequencies of hashes
of number of appearances can be computed in a pan-
private way.

The hash functions we use are modular computa-
tions of the form h(t) = t mod p, where p is a ran-
domly selected prime from the set of the smallest
(4 logN)/α primes and where α is an accuracy pa-
rameter. We will use O(log(1/β)) hash functions.
These functions have small probability of collision,
since even if p is drawn from a small set of primes,
for an item that appears nx 	= t times, the probabil-
ity that nx ≡ t (mod p) is small. To compute these
hash functions in a pan-private way we use the modu-
lar incidence counter, described in Section 5.1 below.

A full description of the algorithm appears in Fig-
ure 4.

Theorem 5.1. Assume ε ≤ 1. When run
with parameters N, ε, α, β, the t-incidence estima-
tor of Figure 4 guarantees ε-differential pan-privacy.
For any fixed input stream and any desired t,
with probability 1 − β over the algorithm’s coins,
the output is an α-approximation to the fraction
(in X) of items that occurred exactly t times in
the input stream. The amount of space used is
poly(log |N |, 1/ε, 1/α, log(1/β)).

The proof is omitted from this extended abstract.

5.1 Modular Incidence Counting
In this section we describe a private streaming algo-

rithm for computing incidence counts modulo an inte-
ger k. The setting is of an input data stream of num-
bers from some universe X . For i ∈ {0, 1, . . . , k − 1}
we compute the (approximate) fraction of numbers in
the universe X that appear i times (mod k). This
is done while guaranteeing pan-privacy. This algo-
rithm is a key component in the pan-private incidence
counter as described above.

We will again maintain, for a randomly chosen set
M ⊂ X , a counter, modulo k, of how many times
each element in M appears. In order to preserve the
statistics about the frequency of modular incidence
counts, we will initialize from a distribution, where
the probability of noise value i decreases at a slow
exponential rate as i grows from 0 to k − 1. For pan-
privacy, the probabilities of noise values 0 and k − 1
will differ by only an eε multiplicative factor.

The similarity of the probabilities of the initial
counter values guarantees user-level pan-privacy. The
concern now is for accuracy: does the fact that the
near-uniform distribution of the initial counter values
permit gathering meaningful statistics about the mod-
ular counts? To see that recovering statistical infor-
mation is possible, note that, for example, a counter
cx shows 0 mod k if any of the following holds: the
noise was initialized to 0 and the item showed up a
multiple of k times, or the noise was initialized to
1 and the item showed up a number congruent to
k − 1 mod k times, and so on. Using the known dis-
tribution on the initialization values as an approxi-
mation to the empirical distribution, we can solve a
linear program with k equations in k unknowns to
approximate the modular incidences.

Theorem 5.2. Assume ε/(k − 1) ∈ [0, 1]. The mod-
ular incidence counter of Figure 5 guarantees 2ε dif-
ferential pan-privacy (for a single intrusion). For any
fixed input stream, with probability 1− β over the al-
gorithm’s coins, for every i ∈ [k] the counter’s output
is α-close to the correct fraction of elements in X that
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t-Incidence Estimator(N, ε,α, β)

Init. Let R = {1, 2, . . . , r} be the smallest range of integers containing at least 4 logN/α distinct prime
numbers. Choose at random � = O(log(1/β)) distinct primes p0, p1, . . . p�−1 from the range R. Run the
initialization for the modular incidence counter of Figure 5 for each of these � primes. The i-th incidence
counter is initialized with parameters (pi, ε/�, α/2, β/2).

Processing. When a value x ∈ M appears in the data stream update each of the � modular incidence
counters with appearance of the new item x.

Output. For any desired t, estimate the fraction of t-incidence items as follows. For each i ∈ [�] use the
i-th modular incidence counter to estimate the fraction f ′i of items that appear t (mod pi) times. Output
the (noisy) minimum of these fractions: mini∈[l] f

′
i .

Figure 4: Estimating the Fraction of Items Appearing Exactly t Times

Mod-k Incidence Counter(k, ε, α, β)

Init. Choose at random a set M of m = poly(k, log |X|, 1/ε, 1/α, log(1/β)) elements (representatives) in
X. Create a table of size m with a single entry for each item in M . For every entry x ∈ M , generate
a random initial integer noise value in {0, 1, . . . , k − 1}, where noise value i is chosen with probability
proportional to e−ε·i/(k−1).

Processing. When a value x ∈ M appears in the data stream update x’s entry in the table: increase it
by 1 (mod k).

Output. To compute the output, for every i ∈ [k] compute the fraction si of table entries with value i. Let
�s be the vector of these fractions (summing up to 1). Let �q be the vector obtained by adding independent
noise drawn from Lap(1/(ε ·m)) to each entry of �s. Take N to be the k × k noise matrix such that

Ni,j = e
(−ε/(k−1))·(i+j (mod k))
∑k−1
j=0 e

−εj/(k−1)

Solve a linear program to obtain a k-entry frequency vector �f ′. The linear program is specified by the
equality

∑k−1
i=0
�f ′i = 1 and the inequalities:

�q − (α/2, . . . , α/2) ≤ N × �f ′ ≤ �q + (α/2, . . . , α/2)

Output the obtained �f ′ as the vector of modular fractional incidences (i.e. entry i in the vector is the
fraction of items that appeared i times (mod k)).

Figure 5: Mod-k Incidence Counter

occur i times (mod k). The amount of space used is
poly(k, log |X |, 1/ε, 1/α, log(1/β)).

The proof is omitted from this extended abstract.

6 Lower Bounds
In this section we examine what happens when the

adversary can have more than one view of the internal
state. In an unannounced intrusion the view is sur-
reptitions – the algorithm does not know it has taken
place. In an announced intrusion the algorithm learns
of the intrusion when – but not before – it takes place.
This permits the algorithm to inject fresh randomness
into the state following the intrusion, and, more gen-
erally, to modify its state with the goal of protecting

privacy against a subsequent intrusion by the same
adversary.

Recall that a density estimator is run on a sequence
of elements of X , and must produce (an approxima-
tion to) the number of distinct elements in the se-
quence. We will prove negative results for density
estimation in both these settings. The negative result
for the case of a few unannounced intrusions applies
to finite state algorithms.

6.1 Two Unannounced Intrusions
We first show that our density algorithm is max-

imally tolerant of unannounced intrusions: no pan-
private finite state algorithm can approximate density
in the presence of two unannounced intrusions. In-
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deed, such an algorithm cannot distinguish between
very long streams consisting of a single item and a
certain class of streams containing arbitrarily many
instances of every item in the universe X .

Theorem 6.1. For all ε ≥ 0, no ε-differentially pan-
private finite state algorithm for approximating the
stream density can tolerate even two unannounced in-
trusions.

Proof. We prove that for any 0 ≤ ξ ≤ 1 there exists
a fixed K = Kξ and two classes of streams, whose
definition depends on K, such that the density of the
first class is 1/|X | and the density of the second class
is 1, and such that the statistical distance between
the behavior of the algorithm on the first and second
classes is at most ξ. We will use the term mixing time
for an aperiodic Markov chain to mean the maximum,
over all possible starting states s for the chain, of
the minimum time t such that the statistical distance
between the probability distribution of the chain when
started at s and run for t steps, and the stationary
distribution of the chain, is at most ξ/4.

Assume for the sake of contradiction that an algo-
rithm exists. and let Σ denote the set of states. For
any symbol (user name) a ∈ X , let Ma denote the
state transition matrix of the algorithm on input a,
so for all i, j ∈ Σ, Maij is the probability of entering
state j from state i when the input symbol read is a.

Consider an arbitrary atomic read-and-update
event. Since the adversary can intrude immediately
before and immediately after this event, and since we
require differential privacy, if a given state transition
can occur on some symbol, it can occur on all symbols.

Formally, For every pair i, j ∈ Σ, and every pair of
symbols a, b ∈ X , we have

Maij = 0⇔M bij = 0. (2)

(We can make a stronger statement, involving ε, but
we don’t use this fact in the proof.)

The transition matrices Ma, for a ∈ X , define
Markov chains on a common state space. A group
of states of a Markov chain forms an ergodic set if it
is possible to get from each state in the ergodic set to
each other state, and once within the ergodic set, the
process does not leave it. A state is transient if it is
not a member of an ergodic set. Thus for each a, we
can partition the states of Ma into ergodic sets, and
transient states. From Equation 2 we know that, for
all a, b ∈ X , the set of ergodic sets is the same. Let
C1, C2, . . . , Cm denote these ergodic sets. Similarly,
we know that the set of transient states is the same.

For now, assume that each Cj , 1 ≤ j ≤ m, is ape-
riodic, so all the chains are aperiodic and it makes

sense to speak of their mixing times. (1) Fix an ar-
bitrary a ∈ X and run the algorithm on input aK .
Since K is at least the mixing time of Ma, and since
the transient states have no support in the station-
ary distribution, with probability at least 1− ξ/4 the
algorithm will be trapped in some Cj .

(2) For all 1 ≤ j ≤ m, once a prefix of the data
stream brings the algorithm to a state in Cj , an al-
gorithm cannot distinguish the following two types of
suffices: aK for an arbitrary a ∈ X , whereK is greater
than the mixing time of the chains, and X∗aK . In
particular, it cannot distinguish between a suffix that
has some large number n of distinct elements of X ,
followed by just a single name a ∈ X many times,
and a long string consisting of no symbol other than
a. This is because the statistical distance between
the resulting distributions on the states is at most
2ξ/4 = ξ/2.

Combining (1) and (2), it follows that the statistical
distance between the resulting distributions when we
run the algorithm on the two strings (i) aKaK and
(ii) aKXnaK is at most ξ/4 · 1 + 2ξ/4 = 3ξ/4.

We now argue that periodicity does not affect this
argument.

Fix an input symbol, say, a ∈ X and look at the
chain Ma. Consider a particular ergodic set Cj . As-
sume it has a period d. Letting P denote the tran-
sition matrix of Cj , the matrix P d is the transition
matrix of a Markov chain with d separate ergodic sets
Aaj1, . . . , A

a
jd, each of which is aperiodic. As before,

by Equation 2, for all a, b ∈ X , all 1 ≤ j ≤ m, and all
1 ≤ k ≤ d, we have Aajk = Abjk.

Now let K be the maximum, over all a ∈ X , 1 ≤
j ≤ m, 1 ≤ k ≤ d, of the mixing time of Aajk. Also,
choose K sufficiently large so that with probability at
least 1 − ξ/4, the algorithm will reach an ergodic set
when run on prefix aK , for any a ∈ Σ.

The argument now is as before. For an arbitrary
symbol a, run the algorithm on aK , after which, with
high probability, it has been driven into one of the
ergodic sets of Ma, say Cj . The algorithm cannot
distinguish between the following two suffixes: aKd
and (X∗)daKd.

We remark that the sets of executions constructed
in the proof of Theorem 6.1 do not actually suffer
from intrusions. It is merely the threat of the intru-
sions that forces the algorithm to satisfy Equation 2.
This threat is present even if the second intrusion is
announced. This is remeniscent of the proof of im-
possibility of tolerating even one uannounced process
failure in an asynchronous distributed consensus pro-
tocol [11]. It also yields the following immediate corol-
lary.
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Corollary 6.2. Theorem 6.1 holds also for the case
of a single unannounced intrusion followed by an an-
nounced intrusion.

6.2 Continual (Announced) Intrusions
Here we show that in the presence of continual in-

trusions it is impossible to estimate the density in a
pan-private manner with error o(n). In other words,
in the presence of continual intrusions any density es-
timator must have asymptotically trivial error.

Theorem 6.3. Any density estimator that is ε-pan-
private in the presence of continual intrusions must
have error Ω(n) with probability at least 1/2−√2ε.

The proof is omitted from this extended abstract.

7 Streaming vs. Sketching
In this section we show that there are functions

or relations that can be computed with reasonable
accuracy in the streaming model with pan privacy,
but cannot be computed in the sketching model with
any amount of accuracy. In the sketching model each
party acts on its own and publishes information based
on its own input. The value of the function is then
computed from this published information. The ad-
vantage of this model is that the participants need not
trust anyone. In comparison, in the streaming model
the participants send their (sensitive) inputs to the
algorithm, and these inputs are used to update the
algorithm’s (pan-private) state.

To separate the models we assume here that the
adversary sees the output of just one party in the
sketching case (given the independent moves by each
party, this is w.l.o.g). In the streaming model we allow
continual intrusions, that is the adversary sees all the
state at any point in time (this only strengthens the
separation).

The separating function (strictly speaking this is a
relation) is not symmetric (an interesting question is
whether the two models are equivalent for symmet-
ric functions). The participant are divided into two
groups, called the y part and the x part. The input
consists of a collection of y’s which are binary and X ’s
which are binary vectors of length m (that is partic-
ipants that belong to the y part have a single bit as
their input and those that belong to the x part have
an m bit vector as input). The y’s determine a binary
vector V of length m, by means of a majority; they
are partitioned into m sets and each set, which is of
size k, is responsible for one entry in V : a majority of
the y’s in the set determines the corresponding bit in
V . Let 〈V,X〉 denote the inner product over GF [2].

The output of the function is the vector V together
with

∑
i〈V,X i〉.

In other words the input is

(y1
1 , y

2
1 , ...y

k
1 , y

1
2 , y

2
2 , ...y

k
2 ...y

1
m, y

2
m...y

k
m,X

1,X2, ..., Xn)

and the output is (V, Z) where V should be an ap-
proximate majority of the y’s (that is if

∑k
j=1 y

j
i is at

most k/3 then Vi should be 0, if it is at least 2/3k it
should be 1 and it can be any value otherwise) and
Z should be an approximation to

∑n
i=1〈V,X i〉. We

require that m � logn and k � logm. Call this the
inner product counter.
Pan Private Computation in the Streaming
Model. To compute this function in the streaming
model, we first process the y part to determine V .
This is done by each y participant outputting a noisy
version for its input yj , as in randomized response.
The state simply counts how many times each value
was output. This allows computing with very high
probability a correct value for V (provided that k is
at least logarithmic in m). When we get to the x
part, at the jth step the state consists of the approx-
imation of V (computed from the y values) and the
number of times the participants whose inputs were
X1, . . . , Xj−1 had inner-product ’1’ with V . At the
jth step a noisy version of 〈V,Xj〉 is output and the
count is added to the state. At the end of the compu-
tation, an approximation to

∑n
i=1〈V,X i〉 is computed

and this together with V is the output. Note that this
process is actually pan private with continual intru-
sion. In other words there is no secret state at any
point in time.
Impossibility of Pan Private Computation in
the Sketching Model. We claim that this function
cannot be computed in the sketching model with pan
privacy against a single intrusion. The intuition is
that each participant in the x part has to guess the
correct V . Otherwise he will be outputting enough
information to approximate 〈V,X i〉 for many values
of V ; this, in turn, is sufficient information for re-
constructing X i, in the style of Goldreich and Levin
[12].

The full proof is omitted from this extended ab-
stract.
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