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Abstract: Maximizing revenue in the presence of perfectly informed players is a well known goal in mechanism
design. Yet, all current mechanisms for this goal are vulnerable to equilibrium selection, collusion, privacy and
complexity problems, and therefore far from guaranteeing that maximum revenue will be obtained. In this
paper we both clarify and rectify this situation by
• Proving that no weakly dominant-strategy mechanism (traditionally considered immune to equilibrium

selection) guarantees an arbitrarily small fraction of the maximum possible revenue;
and, more importantly,
• Constructing a new mechanism, of extensive-form and with a unique sub-game-perfect equilibrium, which

(a) guarantees a fraction arbitrarily close to 1 of the maximum possible revenue;
(b) is provably robust against equilibrium selection, collusion, complexity, and privacy problems; and
(c) works for any number of players n > 1, and without relying on special conditions for the players utilities.
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1 Introduction
1.1 Classical Mechanism Design

Contexts and mechanisms. A context C describes
the players, the outcomes and the players’ preferences
over the outcomes. A mechanism M describes the
strategies available to the players, and how strategies
determine outcomes. Together, a context C and a
mechanismM define a game G, G = (C,M), in which
each rational player will endeavor to choose his own
strategy so as to maximize his own utility.

Mechanism design. Mechanism design aims at find-
ing a mechanism M such that, for any context C (or
any C in a given class), a desired property ℙ holds
for the outcomes of the game (C,M), when rationally
played. The difficulty is that the designer does not ex-
actly know the players’ preferences, while ℙ typically
depends on such preferences. In the purest form of
mechanism design, all knowledge about the players lies
with the players themselves. The designer can count
only on the players’ rationality. And based solely on
this fact, he must design M so that it becomes “in
the best interest of the players" to satisfy ℙ. That is,
he must ensure that ℙ holds in a rational play of M .
But: What is a rational play?

The classical interpretation of a rational

play. The classical interpretation of a rational play
is an equilibrium, that is a profile of strategies σ =
σ1, . . . , σn such that no player i has an incentive to

deviate from his specified strategy σi to an alterna-
tive strategy σ′i. But equilibria are vastly different in
their “quality." The weakest form is that of a Nash
equilibrium, simply stating that i prefers σi to any al-
ternative σ′i only if he believes that every other player
j will stick to his specified σj. That is, Nash equilib-
rium only guarantees that i prefers σ1, . . . , σi, . . . , σn
to σ1, . . . , σ

′
i, . . . , σn. If σ is a dominant-strategy equi-

librium, the strongest form of equilibrium, then, for
any player i, σi is i’s best strategy no matter what
strategies the other players may choose. More pre-
cisely, a dominant-strategy equilibrium σ is called
strict (respectively, weak) if, for any player i, any
alternative strategy σ′i, and any strategy sub-profile
τ−i for the other players, i’s utility when playing σi is
strictly larger than (respectively, larger than or equal
to) his utility when playing σ′i.

1.2 Our Goal
This paper focuses on a classical context: quasi-

linear utilities with non-negative valuations. Namely,
there are finitely many possible states, ω1, . . . , ωk, in-
cluding the null state, which every player values 0;
each player i has non-negative value vi(ωj) for each
state ωj ; each outcome consists of a state ω together
with a price Pi for each player i; and the utility of
each player i for such an outcome is vi(ω)− Pi. (The
revenue of an outcome (ω, P ) consists of

∑
i Pi. The

function vi is i’s valuation.)
Such context models a great deal of situations. For
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instance, in an auction of multiple goods, a state ω
represents which player wins which items. Accord-
ingly, the utility of player i in an outcome (ω, P ) nat-
urally is his value for the items he gets in ω, minus
the price he pays. In another example, each state
ω represents one of finitely many ways of building a
bridge across a given river. Accordingly, and naturally
too, each player has different values for each possible
bridge. (For instance, a player’s value for a given po-
tential bridge may dependent on how distant it would
be from his house.) The list of examples could go
on and on. In all of them, however, no matter what
the mechanisms may be, it is also natural for different
subsets of the players to collude —that is, to coordi-
nate their strategies— so as to improve their utilities.

In such a classical context, our goal is equally clas-
sical: getting an outcome of maximum revenue when
the players have perfect knowledge. That is, when
each player knows the valuations of all players (as well
as who colludes with whom, if collusion exists among
the players).

When the players’ knowledge is best possible, it is
natural to ask whether the best possible revenue can
be obtained. Note that, without the ability of impos-
ing arbitrary prices, the best possible revenue that a
mechanism can hope to get from rational players is
the maximum social welfare, that is, maxω

∑
i vi(ω).

Thus:

Can a mechanism guarantee perfect revenue from
perfectly informed players?

1.3 Four Main Obstacles
Plenty of mechanisms have been proposed for our

goal. Yet, none of them achieves it in a robust way.
Four main obstacles stand on their way. Let us ex-
plain.

Equilibrium Selection
It should be realized that designing a mechanism so

as to guarantee a property ℙ “at a Nash Equilibrium"
is a weak guarantee. First, because there may be
several Nash equilibria, while ℙ holds for just some
of them. Moreover, even if ℙ held for all equilibria,
ℙ may not hold at all in a real play. For instance,
assume that there exist two equilibria, σ and τ , and
that some players believe that σ will be played out,
while others believe that τ will. Then, rather than
an equilibrium, a mixture of σ and τ will be played
out, so that ℙ may not hold. Of course, this problem
worsens as the number of players and/or equilibria
grows.

Collusion
The problem of collusion in mechanism design is

well recognized. The problem occurs for obvious rea-
sons. Any equilibrium, even a dominant-strategy one,
only guarantees that no single player has incentive to
deviate from his strategy. However, two or more play-
ers may have all the incentive in the world to jointly
deviate from their equilibrium strategies. Accord-
ingly, by “guaranteeing" a property ℙ at equilibrium,
a classical mechanism is typically vulnerable to collu-
sion. In a second-price auction, although the mech-
anism is dominant-strategy, if the players with the
highest two valuations for the item on sale collude,
then the revenue generated drops from the second-
highest to the third-highest valuation. As for a more
extreme example, Ausubel and Milgrom [2] show that
two sufficiently informed players can totally destroy
the economic efficiency of the famous VCG mecha-
nism [9, 12, 26], although it too is dominant-strategy.

Complexity
Traditional mechanism design disregards the “com-

plexity of a mechanism." A mechanism of normal-form
may require the players to simultaneously announce
exponentially long strings. And a mechanism of ex-
tensive form may require the players to act over expo-
nentially many rounds. In both cases, therefore, such
mechanisms in practice fail to reach their objectives,
no matter what their theoretical claims, unless their
contexts are extremely “tiny."

Privacy
Privacy has been traditionally neglected in mecha-

nism design, and considered a quite separate desider-
atum: nice to have perhaps, but not central for an
incentive analysis. Yet, as especially argued by [13],
it has a great potential to distort incentives, and thus
to derail classical mechanisms from achieving their de-
sired properties. A mechanism typically neglects pri-
vacy by requiring the players to reveal a lot of infor-
mation about themselves. But if the players value pri-
vacy (which by definition implies that divulging their
secret information causes them to receive a negative
utility), then the mechanism gives them both positive
and negative incentives, and it is no longer clear how
these opposing forces will balance out.

1.4 Prior Mechanisms
Let us now discuss the most relevant mechanisms

for our design problem. We start with the traditional
“at equilibrium" approach, and then proceed to more
sophisticated ones.
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The Generic Mechanism
The following may be the first mechanism that

comes to mind for our context.
hope-for-the-best: Each player reports the
valuations of all players (including himself). If
all reports are the same, then (1) choose the state
ω maximizing the sum of the reported valuations
and (2) for each player i, choose the price Pi
to be his reported value for ω (possibly minus a
small discount ε to encourage i’s participation).
If not all reports coincide, then choose the “null
outcome" (which all players are assumed to value
0) and price 0 for every player.

Unfortunately, hope-for-the-best is extremely vul-
nerable to equilibrium selection. It is trivial to see
that the strategy profile in which each player reports
all true valuations is a Nash equilibrium for hope-

for-the-best, indeed, it is the truthful equilibrium.
It is also trivial to see that in this equilibrium the
revenue is the maximum possible (disregarding the
negligible quantity nε). Notice too, however, that
hope-for-the-best also has additional equilibria,
E2, E3, . . ., where in Ex all players report all true val-
uations divided by x. Thus, the truthful equilibrium
is E1, and in each Ex the utility of each player is in-
creased by a factor x, and the money collected is a
fraction 1/x of the maximum possible revenue. Ac-
cordingly,
• In the truthful equilibrium E1 the designer is

“happy", but the players are “sad", while
• in all other equilibria Ex the players are “happy"

and the designer is “sad."
This being the case: which equilibrium Ex is more
likely to be selected? Further, while each Ex at least
maximizes social welfare, in plenty of other equilib-
ria both revenue and social welfare are quite poor.1
Given the multitude of available equilibria and the
fact that different equilibria are preferable to differ-
ent players: will a play of hope-for-the-best be an
equilibrium and generate any revenue at all?

The JPS Mechanism
Jackson, Palfrey, and Srivastava [15] provided a

quite different mechanism. Again, their mechanism
yields optimal revenue only at the truthful equilib-
rium τ . But this time τ is a much more meaningful
equilibrium: it is the only Nash equilibrium composed

1Let ω be any state such that vi(ω) >> c > 0 for all players
i. And let σ be the strategy profile, where each σj consists
of reporting that all players have the following valuation v:
v(ω) = c and v(x) = 0 for any state x �= ω. Then, it is easy to
see that σ is an equilibrium. Moreover, the revenue of σ is cn,
and the social welfare of σ is

∑
i
vi(ω).

of weakly undominated strategies. Somewhat coun-
terintuitively, however, their solution too is vulner-
able to equilibrium-selection. The point is that, as
in hope-for-the-best, there are plenty of equilib-
ria σ that generate smaller revenue while being more
attractive to all players. Again too, each such σ con-
sists of reporting all true valuations divided by the
same factor x. To be sure, this time each compo-
nent σi is weakly dominated by some other strategy
σ′i. This means that, in all cases (i.e., for all possi-
ble subprofiles of strategies for the other players) σi
provides no more utility to i than σ′i does, while in at
least some cases σi provides less utility to i than σ′i.
But in the JPS mechanism this happens in only one
case: when all other players “suicide" (i.e., when all
other players deliberately choose the worst possible
strategies for themselves). Thus, as long as a single
player does not believe that all others will commit
mass suicide, all players prefer σ to the truthful and
revenue-maximizing equilibrium τ . Accordingly, the
JPS mechanism too is very vulnerable to equilibrium
selection.

What has happened? At a first glance, the JPS
mechanism looks very “robust," because “no one
should want to play a weakly dominated strategy."
But the problem is that the process of eliminating all
weakly dominated strategies for yourself and the other
players is not well defined. Unlike the iterated elim-
ination of strictly dominated strategies, the iterated
elimination of weakly dominated strategies depends
on the order of elimination. For example, if one elim-
inates first “suicidal strategies" (in fact, if one elimi-
nates first “suicide" for just another one of the play-
ers), then all equilibria become equally reasonable,
and the attractive ones from the players’ point of view
are those generating less revenue.

In addition, the JPS mechanism is totally vulner-
able to collusion. Indeed, it enables some pairs of
players (i, j) to jointly deviate from the truthful equi-
librium so as to improve the utility of i without hurt-
ing that of j. And when they so deviate its revenue
cannot be maximum.

Finally, the JPS mechanism is totally vulnerable to
privacy, because it relies on the players revealing all
their knowledge.

The AM (and GP) Mechanisms
Assuming that there are at least 3 players and that

some more technical conditions hold, Abreu and Mat-
sushima [1] present a general normal-form mechanism
that guarantees that essentially any desired property
(including ours) is satisfied in a perfect-knowledge
context. Their mechanism is robust against equilib-
rium selection, because after the iterated elimination
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of strictly dominated strategies, each player is left
with a single (and truthful) strategy, and thus the
resulting game has a single equilibrium. However, the
AM mechanism is highly vulnerable to collusion, com-
plexity, and privacy problems. That is, (1) it no longer
guarantees its desired property when any two players
jointly deviate from their equilibrium strategies; (2) it
requires the players to announce a doubly-exponential
number of bits even when there are a constant num-
ber of outcomes, a constant number of player, and
each player can have one of two types; and (3) it re-
lies on the players revealing all the knowledge in their
possession.

A variant of the AM mechanism was put forward
by Glazer and Perry [11]. The GP mechanism is of
extensive form: informally this means that the play-
ers act one at a time, over several rounds. The GP
mechanism did not suffer from any equilibrium selec-
tion problems either, because its corresponding game
admits a unique subgame-perfect equilibrium. Essen-
tially, this means that, at each decision node of the
game tree, every acting player has a single best ac-
tion available to him. However, the GP mechanism
continues to be vulnerable to collusion, complexity
and privacy problems. The vulnerability to collusion
and privacy is essentially identical to that of the AM
mechanism. Complexity wise the GP mechanisms ac-
tually requires exponentially many rounds of commu-
nication. A justification of this fact is presented in
the appendix.

1.5 Our Results
Our Impossibility Result

The problem of equilibrium selection fully disap-
pears when a mechanism achieves its desired property
ℙ at a strictly dominant-strategy equilibrium, while
still “lurks around" for weakly dominant-strategy
equilibria. Unfortunately, we prove that neither
strong nor weakly dominant-strategy mechanisms ex-
ist that can guarantee perfect revenue from perfectly
informed players. Worse, our impossibility result
holds even even if the mechanism designer were con-
tent to generate an arbitrarily small fraction of the
optimal revenue. In sum, we prove the following.

Thm 1: No weakly dominant-strategy mechanism
guarantees a fraction ε of the optimal revenue.

Our impossibility theorem shows that, in order to
guarantee perfect revenue, we must adopt a different
solution concept.

Our Possibility Result
To enable the design of mechanisms reasonably re-

silient against equilibrium selection, collusion, com-

plexity, and privacy, the first and third author have
developed rational robustness, a new solution concept
and implementation notion [7]. (Essentially, rational
robustness is based on iterated elimination of distin-
guishably dominated strategies, a new notion “in be-
tween" iterated elimination of strictly and weakly dom-
inated strategies.) But in our perfect knowledge con-
text we are able to achieve perfect revenue and per-
fect resiliency, by means of an extensive-form mech-
anism, under the classical solution concept of unique
subgame-perfect equilibrium (which indeed is a spe-
cial case of rationally robust implementation).

Informal Thm 2: There exists an extensive-form
mechanism M, guaranteeing a fraction 1 − ε of the
optimal revenue, that
• Works for any number of players n > 1;
• Has a unique subgame perfect equilibrium;
• Enjoys perfect collusion resilience;
• Enjoys perfect privacy;
• Does not require any trust from the players; and
• Has perfect communication complexity and n+1

rounds.

Remarks
• Note that M works with just two players. By

contrast, the mechanism of Jackson, Palfrey and
Srivasta, that of Abreu and Matsushima, that of
Glazer and Perry, and the generic mechanism all
require more than 2 players. In essence, because
this requirement facilitates (or makes it possible
and meaningful) to identify which player devi-
ated from his equilibrium strategies.
• We stress the word “unique" because a game

with multiple subgame-perfect equilibria can
still suffer from equilibrium-selection problems.
• Perhaps interestingly, in the presence of collusive

players, our mechanismM has multiple ways to
be truthful, but only one of them is a subgame-
perfect equilibrium.
• By saying that M is perfectly resilient to col-

lusion we mean two things. First, M guaran-
tees perfect revenue as long as not all players
belong to the same coalition, and each coali-
tion acts rationally. (In our setting, a rational
coalition maximizes the sum of the individual
utilities of its members. Only when the players
have imperfect knowledge about each other, one
may want to consider weaker models of coali-
tion rationality.) Second, M achieves perfect
revenue no matter how well players belonging
to the same collusive set, if any, may coordinate
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their actions. In particular,M works even when
such players are free to make side-payments to
each other and/or to enter into binding contracts
with each other.

• By saying thatM is perfectly private we essen-
tially mean that, in any rational play, nothing
can be learned about the players’ valuations, by
the mechanism designer or any observer of the
play, except for what is deducible from a perfect-
revenue outcome. Of course, our M can be so
“perfect" only because we are dealing with per-
fectly informed players (so that the only privacy
concern is with respect to the “outside world").
But this is our setting, and thus one has both the
right to demand and the obligation to deliver as
a perfect solution as possible.

• By saying that M does not require any trust
from the players we mean several things. First,
M is not a mediated mechanism. (Indeed, pri-
vacy would be easy to achieve if the players could
confide their strategies or their preferences to
mediator trusted to announce the right outcome
and never to reveal to anyone else any infor-
mation received from the players). Second, M
does not rely on any complexity assumptions, as
needed for running a cryptographically secure
protocol. (After all, at least some of such as-
sumptions may turn out to be false.) Third,M
does not rely on the security of some underly-
ing communication channels. Fourth, M does
not rely on the “honesty" of even some of the
players.
Indeed, in our mechanism M any action of the
players becomes public as soon as it is taken.

• By saying that M has perfect communication
complexity we mean that M’s players need to
announce, altogether, the same number of bits
necessary to describe the desired outcome.
In addition to “mechanism complexity", one may
consider also “player complexity," that is the
time required to a player to figure out and thus
choose a rational strategy. Here it is worth
pointing out that, to play rationallyM, a player
performs a computation linear in the number
of states —and the number of players. This is
essentially optimal given the generality of our
setting. (Only with respect to a specific choice
of states, one can consider whether there exists
a compact representation of the states together
with a compact representation of the players’
utilities for them.)

Comparison with other work
• Note that our notion of collusion resiliency

is stronger than that offered by other mech-
anisms. In particular, group —or coalition—
strategyproofness [3, 16, 19, 21, 25] rules out
collusion, but only under the assumption that
the players are not able to make side payments
to each other. Without restricting how play-
ers might cooperate, t-truthful mechanisms [10]
offer protection against coalitions of at most t
players, but only for single-value games. (In
such games, a player i values some outcomes 0,
and all other outcomes a fixed value vi.) Again
without restricting cooperation abilities, collu-
sion neutralization [6, 20] offers collusion protec-
tion in more general games, but their notion too
is weaker than the one considered in our paper.
(Protection against the coalition of all players
has also been considered and achieved, but only
in Bayesian settings, where the distributions of
player preferences are known to everyone, in-
cluding the mechanism designer [4, 5, 17, 18].)
Finally, a different approach altogether, collu-
sion leveraging, has been submitted to this same
conference [8].

• Some work on privacy preserving mechanisms
has already started. However, the privacy is
either limited or gained by adding an addi-
tional layer to the mechanism —such as one
or more mediators, envelopes, or encryption—
[13, 22, 23]. By contrast, our mechanism M
achieves perfect privacy without relying on any
additional infrastructure. Indeed, M works by
asking the players to take only public actions.

Easy Variants and Forthcoming Work
By hindsight, it is easy to modify our mecha-

nism in various ways —or even the original Abreu-
Matsushima or Glazer-Perry mechanisms— so as to
keep our perfect robustness against collusion, com-
plexity, and privacy, while gaining some perceived ad-
ditional advantage, such as reducing the number of
steps, achieving additive revenue approximation, etc.

There are, however, quite important variants that
we would like to point out now, and develop in later
versions of this paper. Namely, we can achieve per-
fect revenue not from just perfectly informed players
(as in this paper), but also from players with perfect
distributed knowledge. For instance, it suffices that
for each fact about a player i (i.e., for each TVi(ω))
there exists an additional player who knows this fact.
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2 Preliminaries
Our Contexts

We work with reasonably general contexts with
quasi-linear utilities, where the players can be col-
lusive and are perfectly informed about each other.
More formally,

Definition 1. A perfect-knowledge context C is iden-
tified by four quantities, C = (N,Ω, TV,ℂ), where
• N is the finite set of players, N = {1, . . . , n}
• Ω is the finite set of states, which includes the

empty state, ⊥.
The set Ω defines the set of outcomes: namely,
Ω × ℝn. It also defines the set V of valua-
tion profiles v: namely, each valuation vi is a
function from Ω to non-negative reals such that
vi(⊥) = 0.
• TV is the profile of true valuations (or types):

namely, each valuation TVi describes player i’s
actual value for each possible state.
Each TVi defines the utility function ui of player
i as follows: for each outcome (ω, P ), ui(ω, P ) =
TVi(ω)−Pi. That is, i’s utility is his true value
for the state minus the price he pays. The profile
P is referred to as a price profile.
• ℂ is the collusion structure: namely, a partition

of N .
If S is a subset in ℂ, then S is the maximal
subset of players colluding with each other. A
collusive set is a member of ℂ with cardinality
greater than 1. A player i is independent if {i} ∈
ℂ. The context is non-collusive if all players are
independent, and collusive otherwise.
Each independent player tries to maximize his
own utility function, and each collusive set tries
to maximize the sum of the utilities of its mem-
bers.

The sets N and Ω are common knowledge to every-
body; while the profile TV and the partition ℂ are only
common knowledge to the players.

We stress that the mechanism designer has no
knowledge about TV (or ℂ)! In other words, we ad-
here to the classic spirit of mechanism design, where
all knowledge lies with just the players.
Our Mechanisms

Recall that each mechanism M must specify the
players’ strategies, including the opt-out strategy (for
each player i this strategy is always denoted by outi),
and the outcome (or distribution over outcomes if M
is probabilistic), M(σ), associated to each possible
strategy profile σ. In addition, we insist that each
mechanism M must satisfy the following

Opt-Out Condition: M(σ) = (⊥, (0, . . . , 0))
whenever σi = outi for some player i.

For conciseness, we refer to a profile of strategies as
a play. The expected utility of player i in a play σ
is 𝔼[ui(M(σ))]. As announced, our mechanisms are
finite, of extensive form, and public-action, that is,
each of ourM specifies a game tree, where exactly one
player acts at each node, knowing all actions played
so far.

Definition 2. (Unique Subgame Perfect Equi-
librium) Let G = (C,M) be a game where M is
an extensive-form public-action mechanism. G has a
unique subgame perfect equilibrium if there is only one
strategy profile σ satisfying the following property:
• for each decision node N in G’s game tree, let-

ting GN be the subgame of G rooted at N , and
letting σN be the restriction of σ to GN , then
σN is a Nash equilibrium of GN .

Note that essentially, G has a unique subgame per-
fect equilibrium if at each decision node of G’s game
tree, every acting player has a single best action avail-
able to him, given that all players will choose their
best action in every decision node thereafter.

Social Welfare, Revenue, and Our Goal
The social welfare and the revenue of an outcome

(ω, P ) are respectively defined to be
∑
i TVi(ω) and∑

i Pi.
The maximum rational revenue for a context
C = (N,Ω, TV,ℂ) is defined to coincide with the
maximum social welfare (MSW for short), that is,
max
ω

∑
i TVi(ω).

3 Impossibility Result for DST mech-
anisms

Let us prove that DST mechanisms are incapable
of properly leveraging external knowledge: namely, in
a perfect-knowledge context, they cannot guarantee
even a minuscule fraction of the maximum rational
revenue.

Definition 3. A DST mechanism M guarantees a
fraction ε of the maximum rational revenue if for any
context C = (N,Ω, TV ) we have
(∗) M(TV, . . . , TV ) = (x, P ) implies

∑
Pi ≥ ε ·

MSW .

Note that, in proposition (∗), each TV is not just
the true valuation of a single player, but the profile
of all such valuations, because a player’s strategy in-
cludes his declaration about the others’ valuations as
well.
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Note too that the mechanism is not required to
choose the outcome which maximizes the social wel-
fare. Moreover, when not all the players are telling
the truth, there is no requirement on the behavior of
the mechanism.

Finally note the following immediate corollary of
the opt-out condition. Namely,

Non-negative utility property: if M is a DST
mechanism and M(v1, . . . , vn) = (ω, P ), then
Pi ≤ vii(ω).

Theorem 1. For any ε > 0 no DST mechanism M
guarantees a fraction ε of the maximum rational rev-
enue.

Proof. We actually prove our result even for con-
texts with just two players and only two possible out-
comes. Without loss of generality, consider the con-
text (N,Ω, TV ) where N = {1, 2} and Ω = {⊥, ω}.
In such a context, a valuation vi of a player i coincides
with a single number vi(ω) (because vi(⊥) is bound
to be 0), and so a strategy v for i coincides with a
pair of numbers, v = (c1, c2), where c1 is the declared
value for player 1 and c2 the declared value for player
2.

Our proof is by contradiction. We start by ana-
lyzing the behavior of M when the two players make
identical and positive (but not necessarily truthful)
declarations. More precisely, we prove the following
proposition:
(�) if c1, c2 > 0, then M( (c1, c2) , (c1, c2) ) =

(x, (P1, P2)) where
�1: P1 + P2 ≥ ε · (c1 + c2)
�2: x = ω

To see that proposition (�) holds, assume the play-
ers bid truthfully; that is assume that c1 = TV1(ω)
and c2 = TV2(ω). In this case, according to (∗)
the mechanism must extract a revenue of at least
ε ·MSW = ε ·(c1 +c2), and thus P1 +P2 ≥ ε ·(c1 +c2),
in agreement with inequality �1.

Now, the hypothesis c1+c2 > 0 implies P1+P2 > 0.
Thus, in light of the non-negative utility property, the
state returned byM cannot be ⊥. Since ω is the only
other state, M has to return ω in agreement with
equality �2.

Consider now the declaration K = (1, 1) and let
M(K,K) = (y,Q). Then proposition (�) guarantees
that y = ω and that Q1 +Q2 ≥ 2ε. This implies that
Qi ≥ ε for at least a player i. Thus, without loss of
generality, we can assume Q1 ≥ ε.

Consider now the strategy K̃ = (ε/2, ε/2), and let
us analyze the behavior ofM(K̃,K). LetM(K̃,K) =
(x, P ).

We start by proving that x = ω. Assume for con-
tradiction purposes that x =⊥. Then, when TV = K
(and thus player 1 is not truthful), player 2 has an
incentive to lie. Indeed, by being truthful, under the
current assumption, his utility is 0. However, if player
2 chose the strategy K̃, then according to (�), the
outcome would be (ω, P1, P2). In this case, according
to the non-negative utility property, since player 2’s
self-valuation is ε/2, P2 ≤ ε/2. Thus player 2’s utility
would be at least 1−ε/2. Since this utility is positive,
while his utility of being truthful is 0, player 2 has an
incentive to lie when TV = K and player 1’s strategy
is K̃. Therefore we must have x �=⊥, or equivalently
x = ω.

Let us now analyze the possible values for P1 and
derive a contradiction in every case.

1. Case 1: P1 < ε. In this case, assume that
TV = K and compute player 1’s utility under
the following two strategy profiles: (K,K) and
(K̃,K). In the first case we already know that
M(K,K) = (ω,Q), where Q1 ≥ ε. Therefore
player 1’s utility when being truthful is 1 − Q1
which is at most 1 − ε. On the other hand, un-
der the strategy profile (K̃,K), player 1’s utility
is equal to 1 − P1 and thus strictly greater than
1−ε by hypothesis. Thus, the context ({1, 2}, {⊥
, ω},K) contradicts the dominant-strategy truth-
fulness of M .

2. Case 2: P1 > ε/2. In this case, sinceM(K̃,K) =
(ω, P ) and K̃ = (ε/2, ε/2), the non-negative util-
ity property implies that P1 ≤ ε/2, and thus a
contradiction.

In sum, if M guarantees an ε fraction of the max-
imum possible revenue, no price profile exists for
M(K̃,K) that does not contradict the dominant-
strategy truthfulness of M . Since we have not as-
sumed any property of M beyond its being DST, this
establishes our theorem. Q.E.D.

4 Our Mechanism
Notation

In the mechanism below,
• ε and εij , for i ∈ {2, . . . , n} and j ∈ {1, . . . , n},

are constants such that1
5n > ε > ε

2
1 > · · · > ε2n > ε31 > . . . > ε3n > · · · >
εn1 > · · · > εnn > 0.

• Numbered steps are taken by the players, while
steps marked by letters are taken by the mecha-
nism.
• Sentences between quotation marks are com-

ments, and could be excised if no clarification
is needed.
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• We denote by nr the number of outcomes (ω, P )
with revenue r. For all such outcomes, we denote
by 0 ≤ fr(ω, P ) < nr the rank of the outcome
(ω, P ) in the lexicographic order that first con-
siders the state and then the price profile (where
P1, . . . Pn precedes P ′1 . . . P ′n whenever P1 > P

′
1,

etc.).

Mechanism M
(1) Player 1 announces a state ω� and a profile K1

of natural numbers.
“(ω�,K1) is player 1’s proposed outcome,
allegedly an outcome of maximum revenue."

(a) Set ω = ⊥, and Pi = 0 ∀i. If
∑
iK

1
i = 0, the

mechanism ends right now. Otherwise, proceed
to Step 2.

“Whenever the mechanism ends, ω and P
will be, respectively, the final state and
price profile."

(2,. . . , n) In Step i, 2 ≤ i ≤ n, player i publicly an-
nounces a profile ∆i of natural numbers such that
∆ii = 0.

“By so doing i suggests to raise the current
price of j, that is K1

j +
∑i−1
�=2 ∆�j , by the

amount ∆ij ."
(b) For each player i, publicly select bipi and P �i as

follows. Let Ri = {j : ∆ji > 0}.
If Ri �= ∅, then bipi is highest player in Ri, and
P �i = K1

i +
∑bipi
�=2 ∆�i . Else, bipi = 1 and P �i =

K1
i .

“We refer to bipi as the best informed player
about i, and to P �i as the provisional price
of i."

(n+ 1) Each player i such that P �i > 0 simultane-
ously announces YES or NO.
By default, each player i such that P �i = 0 an-
nounces YES, and player 1 announces YES if
bip1 = 1.

“Each player i announces YES or NO to ω�
as the final state and to P �i − ε as his own
price. (By default player 1 accepts his own
price if no one raises it.) At this point the
players are done playing, and the mecha-
nism proceeds as follows. If all say YES, the
updated proposal (ω�, P �) is implemented
with probability 1. Else:
• With very high probability the null

outcome is chosen, except that the
best-informed players of those saying
NO are punished.
• With small probability the null out-

come is chosen

• With very small probability, propor-
tional to the number of players saying
YES, we implement (ω�, P �) as if all
said YES.

Importantly, as we shall see, all get a small
reward at the end for their knowledge."

(c) Let Y be the number of players announcing YES.
If Y = n, then reset ω to ω� and each Pi to P �i −ε,
and go to Step g. If Y < n, proceed to Step d.

(d) Publicly flip a biased coin c1 such that Pr[c1 =
Heads] = 1− ε.

(e) If c1 = Heads, reset Pbipi to Pbipi + 2P �i for each
player i announcing NO.

(f) If c1 = Tails, letting B =
∑

i announces NO
P �i , flip

a biased coin c2 such that Pr[c2 = Heads] = Y
nB .

If c2 = Heads, reset ω to ω� and each Pi to P �i −ε.
If c2 = Tails, ω and P continue to be ⊥ and 0n.

(g) Reset P1 to P1− ε−2ε
∑
jK

1
j + ε fr(ω�)

nr
and each

other Pi to Pi − ε−
∑
j ε
i
j∆ij.

“Although players’ prices may be negative,
we prove that the mechanism never loses
money, and that in the unique rational play
the utility of every player is non-negative.
For clarity, our rewards are proportional to
prices and raises."

5 Analysis of Our Mechanism
MechanismM induces a game G whose game tree

has height n+ 1, and where only players act at each
internal node. (The mechanism tosses all its coins at
leaf nodes, that are defined to be of height 0.) At
each node of height 1 all players act simultaneously,
and at every other internal node only a single player
acts. Specifically, at each node of height h ≥ 2 the
only acting player is player

ih ≜ n− h+ 2.

For each internal node N , we denote by GN the
subgame rooted at N . Recall that a strategy σi of
player i in G specifies, for each node at which i acts,
which action i chooses among all those available to
him. By σNi we denote the restriction of σi to sub-
game GN . Given a restricted strategy profile σN for
GN , the outcome of M obtained by executing σN is
denoted byM(σN ).

For uniformity, we find it sometimes convenient to
assume that every player i belongs to a (necessarily
unique) collusive set, denoted by Ci. If i is indepen-
dent, then Ci = {i}.
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5.1 Statements of Our Lemmas
Lemma 1. If N is a node of height 1, then GN has
a unique subgame-perfect equilibrium σN , where
• If i is independent, then σNi consists of announc-

ing YES if and only if TVi(ω�) ≥ P �i .
• If i belongs to a coalition C , then σNi consists of

announcing YES if and only if

bipi ∈ C or
∑
j∈C

TVj(ω�) ≥
∑
j∈C

P �j .

The proof of this lemma is based on the fact that the
probability that an outcome is executed is monotone
with the number of players who announce YES. Thus,
it is strictly dominant to announce YES, if and only if
the player has positive utility from this outcome and
price.

Lemma 2. Let N be a node of height h ∈ [2, n],
i = ih, and C = Ci. Then GN has a unique subgame-
perfect equilibrium where i acts as follows at node N :
For each collusive set D �= C ,

1. if ∑
j∈D

(
K1
j +

i−1∑
�=2

∆�j

)
≥
∑
j∈D

TVj(ω�)

then i announces ∆ij = 0 for all j ∈ D ;
2. if ∑

j∈D

(
K1
j +

i−1∑
�=2

∆�j

)
<
∑
j∈D

TVj(ω�)

then letting k be the minimal player in D , i an-
nounces ∆ij = 0 for all j ∈ D \ {k} and

∆ik =
∑
j∈D

(
TVj(ω�)−K1

j −
i−1∑
�=2

∆�j

)
.

For his own collusive set C ,
1. if

∑
j∈C

(
K1
j +

i−1∑
�=2

∆�j

)
≥
∑
j∈C

TVj(ω�) or

it is the case that k ∈ C for all k > i,

then i announces ∆ij = 0 for all j ∈ C ;
2. if

∑
j∈C

(
K1
j +

i−1∑
�=2

∆�j

)
<
∑
j∈C

TVj(ω�) and

there exists player j > i such that j �∈ C ,

then letting k be the minimal player in C \ {i},
i announces

∆ik =
∑
j∈C

(
TVj(ω�)−K1

j −
i−1∑
�=2

∆�j

)
.

This lemma is technically involved, but conceptually
simple. First, we show that a player i never wants to
“overbid," that is raise the price of another player j
to more than j’s true valuation for the proposed state
ω�. When j is independent, this holds because we
know that j will announce NO to any price above his
true valuation, and thus no player after i will want
to further raise j’s price. Therefore, overbidding on j
will cause i to be punished. Care must still be taken
to verify the Step-g rewards of i and j will not change
this simple analysis. (For example j will not accept
a higher price in order to get more reward for volun-
teering his knowledge about others.) For coalitions,
the argument is more subtle.

After ruling out overbidding, we also show that a
player i never wants to “underbid," that is not raise
the price of a player j when it is below j’s true valu-
ation for the proposed state. Again, this is easier to
argue for independent players. Arguing this point for
coalitions is the only time that requires exploiting the
n2 reward values εi,j .

Lemma 3. Let N be the root of the tree (so that
GN = G), then G has a unique subgame-perfect equi-
librium where player 1 acts as follows at node N :

1. player 1 announces ω�, the lexicographically first
state ω such that

∑
� TV�(ω) =MSW ;

2. for each collusive set D , letting i be the min-
imal player in D , player 1 announces K1

i =∑
j∈D TVj(ω�), and K1

j = 0 for each j ∈ D\{i}.
The proof of this lemma is also done in two stages.
First, given Lemma 2, we prove that it is dominant
for player 1 to set the prices correctly (although not
exactly truthfully in the case of a coalition). Fi-
nally, as the prices are set correctly, choosing the out-
come which maximizes the total welfare dominates
any other course of action.

Detailed proofs of our lemmas are in the full version
of this paper, available at
http://people.csail.mit.edu/silvio/Selected Scientific
Papers/Mechanism Design/.

5.2 Our Main Theorem
Theorem 2. Let σ be the unique subgame perfect
equilibrium of G, and let (ω, P ) =M(σ). Then:
(1)
∑
i TVi(ω) =MSW , and

102
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(2)
∑
i Pi ≥ (1− 4εn)MSW .

Proof. In execution σ, by Lemma 3, player 1
announces ω� such that

∑
� TV�(ω�) = MSW

and, for each coalition D , also announces K1
� =∑

j∈D TVj(ω�), where � is the minimal player in D .
Thus

∑
iK

1
i =MSW .

If MSW = 0, then
∑
iK

1
i = 0 and M ends at

Step a, with ω = ⊥ and Pi = 0 for each player i.
Therefore

∑
i TVi(ω) =

∑
i TVi(⊥) = 0 =MSW and∑

i Pi = 0 =MSW .
If MSW > 0, then

∑
iK

1
i > 0 and M ends at

Step g. By Lemma 2, for each player i �= 1, i an-
nounces ∆ik = 0 for each k. Therefore for each player
i, bipi = 1. Furthermore, the total price for each
coalition D equals D ’s total true valuation for ω�:
that is,

∑
�∈D P

�
� =
∑
�∈D K

1
� =
∑
�∈D TV�(ω�). By

Lemma 1, every player in D announces YES in Step
n + 1. This implies that, at the end of Step c we
have Y = n, ω = ω�, and, for each coalition D ,∑
�∈D P� =

∑
�∈D P

�
� − |D |ε =

∑
�∈D TV�(ω�)− |D |ε.

Because Y = n, the execution ofM will then proceed
directly to Step g, which does not reset the current
state. Thus we have that∑

i

TVi(ω) =
∑
i

TVi(ω�) =MSW.

Because the reward given to each player i > 1 in Step
g is ε, and player 1 gets at most ε + 2εMSW , then
the final revenue of the mechanism is

∑
i

Pi >

(∑
i

TVi(ω�)− nε
)
− (n− 1)ε

−ε− 2εMSW
> (1− 4εn)MSW,

where we parenthesized the prices after step c, and
used that MSW is integer and thus MSW ≥ 1.
Q.E.D.
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A The Complexity of the GP Mecha-
nism

In this appendix we give an example in which the
GP mechanism requires an exponential number of
rounds, although the number outcomes is two, there
are five players, each player can have at most two
types, and the mechanism is only required to succeed
with constant probability (The same example also re-
quires a double-exponential amount of communica-
tion in the AM mechanism).

Context Sketch
We give an informal description of the context of

the AM [1] and GP [11, 24] mechanisms. Let n denote
the number of players. Each player pi has a set Ti of
all possible types for this player. The set Ti is finite,
and is known to the designer. In the example we
present |Ti| = 2 for every i. There is also a set of
outcomes A, and for ti ∈ Ti, and α ∈ A we denote
by ti(α) how much player i values the outcome α if
his type is ti. The GP mechanism requires that if
s, t ∈ Ti, then there exists an outcome α such that
s(α) �= t(α). In addition, each player has a true type
Θi ∈ Ti, which is unknown to the designer.

The designer is also given as input a Social Choice
Function, which is a function from the type of all the
players to outcomes

SCC : T1 × T2 × . . .× Tn → A.

The goal of the designer is to guarantee that with
probability at least 1− ε the output of the mechanism
is SCC(Θ1, . . . ,Θn).

Sketch of the GP Mechanism
Following Abreu and Matsushima, Glazer and

Perry design rely on a function f from types of
the players to probability distribution over outcomes,

such that for every two types ti, t̃i ∈ Ti, we have that
if the player’s true valuation is ti, then he strictly
prefers f(ti) to f(t̃i). The GP mechanism then pro-
ceeds by performing k+1 rounds, where in each round
all the players speak, one after the other. In the first
k rounds, every player declares the types of all the
players, while in the last round each player declares
only his own type. Finally, the mechanism chooses
the outcome in the following manner:

1. Choosing the outcome:
(a) With probability ε: round k + 1 is chosen.

Pick a random player i, and let ti denote
his declaration in round k+1. The outcome
is f(ti) up to fines (which will be described
later)

(b) With probability 1 − ε: pick a random
round 1 ≤ j ≤ k. If at least n − 1
players declared the same vector of types
(t1, . . . , tn) in this round, select the outcome
SCC((t1, . . . , tn)). Else, pick an arbitrary
outcome O.

2. Choosing the fines:
(a) Let t1, . . . , tn be the vector of types declared

by the players in the final round.
(b) Let p be the last player not to declare
t1, . . . tn, in the previous k rounds. That
player pays a small fine δ.

Analysis of their Mechanism
In order for this scheme to work, one must be

careful about the choice of parameters. To define
these parameters, for ti, t̃i ∈ Ti, let Lf (ti, tj) =
U(ti, f(ti)) − U(ti, f(tj)) be the advantage that a
player whose true type is ti gains from reporting ti
and not tj , where in computing Adv we take the min-
imum over all players i and pairs of types. In ad-
dition, let Adv = minΘi,Θj Lf (Θi,Θj) be the mini-
mum such advantage. Also, let B denote the maxi-
mal difference in valuation between the default out-
come O, and the outcome dictated by the social choice
SCC(Θ1, . . .Θn). We require

εAadv/n ≥ δ ≥ B 1
k

Given these constraints, the proof of Glazer Perry uses
a backward induction argument to prove the existence
of a unique subgame perfect equilibrium. In the last
round, it is better for a player i to report his true
valuation regardless of anything which happened in
the previous rounds, as the small probability that the
result will be f(Θi) and not f(ti) for some ti �= Θi
is enough to overcome any fine which the player will
need to bear. Given that we assume that all the play-
ers report the truth in the last round, a backwards
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induction shows that no player has incentive to devi-
ate from the truth. Indeed, let i denote the last player
to deviate from the truth, and suppose he does so in
round j. In this case, consider the case in which the
player does not deviate from the truth in that round.
By telling the truth, player i can decrease the fine he
pays, but also changes the output of the mechanism
if round j is chosen in step 2. While decreasing the
fine is always good for player i, he may either gain
or loose by the new outcome. To guarantee that he
doesn’t loose too much by the new outcome, the GP
mechanism relies on the low probability of this event,
which is proportional to 1/k. This requires k to be
large.

Our Example
Finally, we can present our example. There are two

possible outcomes, α, β. We have T1 = T2 = T3 = T4,
and T1 = {tα, tβ}, where

tα(α) = 1, tα(β) = 0

and similarly

tβ(α) = 0, tβ(β) = 1.

That is, each one of the first four players has a slight
preference for one of the alternatives. The fifth player
is similar, except that he has a strong preference, that
is T5 = {t̂α, t̂β}, where

t̂α(α) = 2n, t̂α(β) = 0

and similarly

t̂β(α) = 0, t̂β(β) = 2n.

Note that this preference only requires O(n) bits to
describe; still the number of rounds will be exponen-
tial.

Finally, the required SCC picks the alternative
which is worse for most of the players. That is, if
a majority of the players have type tα or t̂α the SCC
requires to output β, and vice versa.

Analysis of Our Example
We begin by showing that the fine has to be less

than ε. We do so by considering player 1. Let f1
denote the function the mechanism uses to decide on
the outcome in the k + 1 round, given that player 1
was picked at random in the last round. Any such
function must give Adv ≤ 1 (this can be obtained by
f1(tα) = α, and f1(tβ) = β, which is essentially giving
player 1 his preferred outcome). However, since the
proof requires that the player is truthful at the last
round even if this makes him pay a fine, we must

require that the fine δ < ε/5, his expected utility gain
from being truthful.

Consider O, the default outcome outputted by the
mechanism in case that round j is chosen at random,
and there are no n− 1 = 4 players who declared the
same vector of valuations in that round. Since the
types of the players and the SCC function are sym-
metric, we can assume wlog that O = α. Suppose
that the true types of the players are Θ1 = Θ2 =
Θ3 = Θ4 = tα, and Θ5 = t̂α. Following the induc-
tion proof, we can safely assume that since the fine is
small, all the players will be truthful in round k + 1.
But what will happen in round k?

Consider the case in which the first three players
declared the truth, and the fourth player lied. We
want to argue that in this case the fifth player should
declare the truth. If the fifth player declares the truth,
and the k’th round is chosen, the outcome of the
mechanism will be β. In this case, player 5 will not
be punished, and player 4 will be.

On the other hand, if he chooses to lie, and the
mechanism chooses round k, the outcome will be α.
However, whether round k is being picked or not,
player 5 will have to pay a fine of δ < ε/5. The ex-
pected difference in the expected utility between these
options is 2n

k − δ. To make this negative (so that the
truthful option is chosen), we require δ > 2n

k , which
gives k > 5 · 2n/ε > 2n, as required.

105



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


