
Innovations in Computer Science 2010

Adversarial Leakage in Games
Noga Alon1,2 Yuval Emek1 Michal Feldman1,3 Moshe Tennenholtz1,4

1Microsoft Israel R&D Center, Herzeliya, Israel.
2Tel-Aviv University, Tel Aviv, Israel.

3School of Business Administration, The Hebrew University of Jerusalem, Jerusalem, Israel.
4Technion-Israel Institute of Technology, Haifa, Israel.

nogaa@tau.ac.il yuvale@eng.tau.ac.il mfeldman@huji.ac.il moshet@microsoft.com

Abstract: While the maximin strategy has become the standard, and most agreed-upon solution for decision-
making in adversarial settings, as discussed in game theory, computer science and other disciplines, its power
arises from the use of mixed strategies, a.k.a. probabilistic algorithms. Nevertheless, in adversarial settings we
face the risk of information leakage about the actual strategy instantiation. Hence, real robust algorithms should
take information leakage into account. To address this fundamental issue, we introduce the study of adversarial
leakage in games. We consider two models of leakage. In both of them the adversary is able to learn the value of
b binary predicates about the strategy instantiation. In one of the models these predicates are selected after the
decision-maker announces its probabilistic algorithm and in the other one they are decided in advance. We give
tight results about the effects of adversarial leakage in general zero-sum games with binary payoffs as a function
of the level of leakage captured by b in both models. We also compare the power of adversarial leakage in the
two models and the robustness of the original maximin strategies of games to adversarial leakage. Finally, we
study the computation of optimal strategies for adversarial leakage models. Together, our study introduces a
new framework for robust decision-making, and provides rigorous fundamental understanding of its properties.
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1 Introduction
Decision-Making lies in the foundations of fields

such as Economics, Operations Research, and Arti-
ficial Intelligence. The question of what should be
the action to be taken by a decision-maker when fac-
ing an uncertain environment, potentially consisting
of other decision makers, is a fundamental problem
which led to a wide variety of models and solutions.
The only type of situations for which this question got
an agreed-upon answer is in the context of two-player
zero-sum games. This setting can model any situa-
tion in which a decision-maker aims at maximizing
his guaranteed payoff. When mixed strategies are al-
lowed, such desired behavior, termed an agent’s max-
imin (or safety level) strategy, leads to a well defined
expected payoff (known as the value of the game).
Moreover, when presented explicitly in a matrix form,
the computation of a maximin strategy is polynomial
(by solving a linear program). Various equilibrium
concepts have been considered in the game-theoretic
literature, but none of them provides a prescriptive
advice to a decision-maker which will be as accept-
able as the maximin strategy solution in adversar-
ial settings. Since the introduction of the study of
two-person zero-sum games [17], maximin strategies
have received very little criticism (see [5] for an ex-

ception). Moreover, the safety level strategy has been
advocated for some non zero-sum settings as well (see
[15], following observations by [4]).

Much of the power of a maximin strategy is associ-
ated with the use of mixed strategies, a.k.a. random-
ized algorithms. In such algorithms the randomiza-
tion phase is assumed to be done in a private manner
by the decision-maker, and no information about the
instantiation selected in that phase is assumed to be
revealed. In reality, however, nothing is really pri-
vate; for example, competitors will always strive to
obtain the private actions of a business, possibly by
means of industrial espionage [12]; hence, information
leakage should be considered. As a result, it may be
of interest to study the effects of adversarial leakage,
where a limited amount of information on an agent’s
instantiation of its mixed strategy may leak in an ad-
versarial manner. We believe that only by considering
this situation, it will be possible to construct robust
strategies when acting in an adversarial setting.

Information leakage appeared in game theory in the
context of conditioning a player’s strategy about the
other player’s strategy [10, 16]; however that work
did not consider the leakage of mixed strategy instan-
tiations nor its effects on designing robust algorithms
in adversarial settings taking information leakage into
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account. Other papers whose focus is related to infor-
mation leakage studied purchasing noisy information
[14], partial exposure in games with many players [6],
and spies in matrix games [13].

Our model of adversarial leakage is general. We
consider a two-player zero-sum game in strategic form
(a.k.a. matrix form), where the MAX player is our
decision-maker and the MIN player is the adversary.
Both MAX and MIN have a set of (pure) strategies
they can choose from. MAX chooses a mixed strat-
egy, that is, a distribution vector over its pure strate-
gies. MIN may base its action on the value of b binary
predicates defined on MAX’ pure strategies; each such
predicate is a Boolean formula on the set of strategies
whose value is determined according to the actual in-
stantiation of MAX’ mixed strategy. The parameter b
can be thought of as the amount of information leak-
age (or number of leaking bits) regarding the instance
of MAX’ mixed strategy; MAX would like to maxi-
mize his guaranteed expected payoff against such b
binary predicates.

We consider two settings, distinguished by the in-
formation structure assumed in them. In the Strong
Model the MAX player chooses a mixed strategy,
which is observable by the MIN player, who can then
act upon it in determining the b predicates. In the
Weak Model, on the other hand, the MIN player
chooses the b predicates first, and MAX can observe
it and act upon it in choosing his mixed strategy.

Note that by von Neumann’s minimax theorem, if
MIN is allowed to choose the b predicates probabilisti-
cally, then the Weak Model becomes equivalent to the
Strong Model in terms of the value that MAX (and
MIN) can guarantee. However, the information struc-
ture in the Weak Model is such that MIN is restricted
to deterministically choosing the b predicates. This
clearly provides MAX with a potential advantage and
we are interested in understanding and quantifying
this advantage.

Other intriguing questions arise in this setting of
adversarial leakage. What would be the best mixed
strategy for the MAX player? How well will the orig-
inal maximin strategy of the game perform? What
is the computational complexity of finding the opti-
mal strategy under information leakage? We address
all these questions, focusing our attention on general
two-person games, where the decision-maker has m
strategies to choose from, the adversary has n strate-
gies to choose form, and the payoffs to the decision
maker are either 1 or 0. This is known to be a highly
applicable model, as it captures games in which a goal
is either achieved or not.
Our results. For the Strong Model, if the value of

the game is q = 1 − ε (for small positive ε) and 2b is
much smaller than 1/ε, then MAX can ensure value
close to 1 (at least 1 − 2bε), and this is tight. To do
so, she simply uses the maximin strategy (that is, the
optimal mixed strategy for the original game with no
predicates). On the other hand, if 2b is much bigger
than 1/ε, then for every mixed strategy of MAX, the
MIN player can ensure value close to zero (at most
e−2bε). Therefore, for EVERY such game with value
1− ε, which is close to 1, a sharp transition occurs at
b which is about log(1/ε): if b is slightly smaller, the
value stays close to 1; if it is slightly larger, the value
drops to nearly zero.

For games with value q bounded away from 1, even
one bit enables MIN to square the value and drop it to
at most q2, and every additional bit squares the value
again. There are also examples showing that this is
essentially tight. Finally, for any fixed value q < 1,
log logm + Oq(1) bits suffice to enable MIN to drop
the value to precisely 0.

For the Weak Model, the situation is different.
Clearly, here MAX is in a better shape, hence if the
value of the game is q = 1 − ε (for small positive
ε), MAX can still ensure a value close to 1 if the
number of bits is much smaller than log(1/ε) as in
the Strong Model. For games with value q bounded
away from 1, however, there are examples in which
she can do much better than in the Strong Model,
and in fact can ensure no essential drop in the value
as long as the number of leaking bits is somewhat
smaller than log logm. More precisely, for any fixed
value 0 < q < 1 and for every large polynomially re-
lated m,n, there are examples of games represented
by a binary m by n matrix with value q+o(1), so that
even if b = log logm−O(1), MAX can ensure that the
value will stay roughly q. This should be contrasted
with the Strong Model, where every additional bit
squares MAX’ value.

Somewhat surprisingly, once the number of leaking
bits is slightly larger, that is, b = log logm+O(1), the
MIN player can already ensure value 0 in any game
with a fixed value q < 1. Thus, in the examples above
a sharp transition occurs at nearly b = log logm under
the Weak Model: nearly log logm bits have essentially
no effect on the value, while slightly more bits already
suffice to drop the value to 0.

Note that, in contrast to leakage-free settings,
where no advantage is gained by observing the oppo-
nent’s mixed strategy (due to the minimax theorem),
in settings of adversarial leakage, such information
can contribute a great deal to the informed player,
reflected by the advantage obtained by MAX in the
Weak Model compared with the Strong Model.
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With respect to computation complexity, comput-
ing the optimal strategy in the Strong Model (for the
MAX player) against b leaking bits is poly-time for
any fixed b, while this problem becomes NP-hard to
compute, or even to approximate within any factor,
for a general b. In the Weak Model, the optimal strat-
egy of MAX can be computed in polynomial time for
every b.

2 Model
We consider two-player zero-sum games defined by

an m by n matrix M with {0, 1} entries, where the
rows correspond to MAX’ pure strategies and the
columns correspond to MIN’s pure strategies: Mi,j
is the payoff of MAX if MAX and MIN play row i
and column j, respectively (the payoff of MIN is then
−Mi,j).1 The matrix M is known to both players.

Given a matrixM and an integer b ≥ 0, we describe
a precise setting of adversarial leakage, as follows:
(1) MAX chooses a distribution vector p =
(p1, . . . , pm) on [m] and MIN chooses a b-bit leakage
function f : [m]→ {0, 1}b.
(2) MAX realizes i ∈ [m] according to p (i.e., chooses
row i with probability pi).
(3) MIN observes f(i) (for i realized by MAX) and
chooses a strategy j ∈ [n].
(4) MAX and MIN receive payoffs Mi,j and −Mi,j,
respectively.
The two leakage models we consider, referred to as
the Strong Model and the Weak Model differ in the
order in which the choices in step (1) are made. In
the Strong Model MAX first chooses a mixed strategy
p and MIN may base its choice of f on the knowledge
of p. In the Weak Model MIN first choose a leakage
function f and MAX may base its choice of p on the
knowledge of f .

It will be convenient to formalize the choice of
(pure) strategy made by MIN in step (3) as a function
g : {0, 1}b→ [n]. Note that MIN decides on g when it
already knows the mixed strategy p of MAX. This is
less important under the Strong Model, where it can
be assumed that MIN chooses g simultaneously with
its choice of f . However, under the Weak Model, the
choice of g must be made at a later stage (when MIN
already knows p).

Given a matrix M , a non-negative integer b, a dis-
tribution vector p on [m], a function f : [m]→ {0, 1}b,

1While we focus on the natural binary case, some of our
results hold for any matrix with entries in [0, 1] as well, while
some become non-interesting or easily seen to be false.

and a function g : {0, 1}b→ [n], let

u(M, b,p, f, g) =
∑

w∈{0,1}b

∑
i:f(i)=w

piMi,g(w)

denote the expected payoff of MAX (with re-
spect to these parameters). Denote up(M, b) =
minf :[m]→{0,1}b and g:{0,1}b→[n]{u(M, b,p, f, g)}. The
value of M against b leaking bits under the Strong
Model is defined as

vstrong(M, b) = max
p∈∆(m)

up(M, b) ,

where ∆(m) is the set of all distribution vectors on
[m]. We denote by p∗b a distribution vector that real-
izes vstrong(M, b), i.e., up∗

b
(M, b) = vstrong(M, b). The

value of M against b leaking bits under the Weak
Model is defined as

vweak(M, b) = min
f :[m]→{0,1}b

max
p∈∆(m)

min
g:{0,1}b→[n]

u(M, b,p, f, g) .

When the leakage model is clear from the context, we
may omit the superscripts and write simply v(M, b).
Observe that under this notation, v(M, 0) is the clas-
sical value of (the game defined by) M .

Unless otherwise specified, all logarithms are in
base 2.

3 Adversarial Leakage in the Strong
Model

We first show that for any m by n matrix with
{0, 1} entries of value q = 1− ε, the MAX player can
guarantee herself at least a payoff of 1 − 2bε. This
can be done, in particular, by playing the maximin
strategy.

Proposition 3.1. Let M be an m by n matrix with
{0, 1} entries. Let q = 1− ε be the value of the game
defined by M , that is, v(M, 0) = 1 − ε. Then, for
every b ≥ 0, up∗0 (M, b) ≥ 1− 2bε.

Proof. Let p = (p1, . . . , pm). For every w ∈ {0, 1}b,
let Sw = {i|f(i) = w}, and let pw =

∑
i∈Sw pi.

Fix some column j. Since 1 − ε is the value of
the game, it holds that for every w,

∑
i∈Sw piMi,j +∑

i/∈Sw piMi,j ≥ 1 − ε. As Mi,j ≤ 1 for every i, j, we
have

∑
i∈Sw piMi,j +

∑
i∈[m]\Sw pi ≥ 1 − ε. Substi-

tuting
∑
i∈Sw pi = 1 − pw and rearranging the last

inequality yields
∑
i∈Sw
piMi,j ≥ pw − ε. (1)
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The expected payoff of MAX is given by the ex-
pression

∑
w∈{0,1}b

∑
i:f(i)=w pi ·Mi,g(w) and the ex-

pected payoff of MAX conditioned on the event that
some row i ∈ Sw is played is given by the expression∑
i:f(i)=w

pi
pw ·Mi,g(w), which is at least 1

pw (pw−ε), by
Equation (1). Therefore the expected payoff of MAX
is at least

∑
w∈{0,1}b p

w 1
pw (pw − ε) = 1− 2bε.

The above bound is tight, as established in the fol-
lowing proposition.

Proposition 3.2. For every ε > 0 and every b ≥ 0,
there exists a matrix M with {0, 1} entries so that (1)
v(M, 0) = 1 − ε; and (2) up∗0 (M, b) = up∗

b
(M, b) =

1− 2bε.

Proof. Let n = 1/ε and consider the n by n matrix
M in which Mi,i = 0 for every i, and Mi,j = 1 for
every i �= j. From symmetry considerations, both the
maximin strategy and the optimal strategy against b
leaking bits is the uniform distribution over the rows.
Let f be a function which imposes the following parti-
tion on the rows: each one of the first 2b−1 rows con-
stitutes its own subset, and the remaining rows con-
stitute the last subset. In this case, if one of the first
2b − 1 rows is chosen (each with probability ε), then
MAX’ payoff is 0, while if one of the remaining rows is
chosen (with a total probability of 1− (2b−1)ε), then
the payoff obtained by the MAX player is

1
ε−2b

1
ε−(2b−1) .

The expected payoff of the MAX player is therefore
(1− (2b − 1)ε) · 1

ε−2b
1
ε−(2b−1) = 1− 2bε.

The above two propositions essentially say that for
games with value q = 1−ε and b such that 2bε = o(1),
MAX can guarantee a payoff of about q2b by playing
the maximin strategy, and this is optimal. The case
of general q and b, however, requires more work, and
this is the focus of the following statement.

Theorem 3.3. LetM be an m by n matrix with {0, 1}
entries. Let q be the value of the game defined by M ,
that is, q = v(M, 0). Then, for every b ≥ 0 and every
distribution vector p of the MAX player, up(M, b) ≤
q2
b .

Proof. Put p(1) = p, and let j1 ∈ [n] be a pure strat-
egy of MIN (a column of M) ensuring a value of q1 ≤ q
against the mixed strategy p(1) of MAX. Such a pure
strategy must exist since q is the value of the game.
Define S1 = {i ∈ [m] | Mi,j1 = 0}. It holds that∑
i∈S1

p(1)
i Mi,j1 +

∑
i∈[m]−S1

p(1)
i Mi,j1 = q1, hence∑

i∈[m]−S1
p(1)
i = q1.

Let p(2) be the distribution vector defined by re-
stricting p(1) to the rows in [m]− S1, namely,

p(2)
i =

{
p(1)
i /q1 if i ∈ [m]− S1;

0 otherwise.

Let j2 be a pure strategy of MIN ensuring a value
of q2 ≤ q against the mixed strategy p(2) of MAX.
Once again, such a pure strategy must exist since
q is the value of the game. Define S2 = {i ∈
[m] − S1 | Mi,j2 = 0}. As before, it holds that∑
i∈S2

p(2)
i Mi,j2 +

∑
i∈[m]−S1−S2

p(2)
i Mi,j2 = q2, hence∑

i∈[m]−S1−S2
p(2)
i = q2.

Continuing in this manner for 2b steps, we obtain
2b pairwise disjoint subsets S1, . . . , S2b of [m] with
corresponding columns j1, . . . , j2b such thatMi,jk = 0
for every 1 ≤ k ≤ 2b and i ∈ Sk. For convenience we
index the words in {0, 1}b by w1, . . . , w2b and fix

f(i) =
{
wk if 1 ≤ k < 2b and i ∈ Sk;
w2b if i /∈ ∪k<2bSk

and
g(wk) = jk for every 1 ≤ k ≤ 2b .

The above construction guarantees that when MAX
plays according to p, and MIN follows f and g, the
payoff is 1 with probability at most q1q2 · · · q2b ≤ q2b .
It follows that up(M, b) = q1 · · · q2b ≤ q2b as required.

As a corollary of Theorem 3.3, we get the following.
Corollary 3.4. Let M be an m by n matrix with
{0, 1} entries, and let q be the value of the game de-
fined by M , as above. If q2b < 1/m, then for every
distribution vector p of the MAX player, up(M, b) =
0. Therefore, for every fixed q satisfying 0 < q < 1,
b = log logm+Oq(1) suffices to ensure value 0 for the
MIN player.
Proof. Let p be the uniform distribution on [m]. The-
orem 3.3 guarantees the existence of f : [m]→ {0, 1}b
and g : {0, 1}b → [n] such that if MAX plays accord-
ing to p and MIN follows f and g, then the expected
payoff is at most q2b < 1/m. We argue that if MIN
follows f and g, then in fact, the expected payoff is 0.
Indeed, since pi = 1/m for every i ∈ [m], a positive
expected payoff is possible only if it is at least 1/m,
which derives a contradiction. It follows that for every
w ∈ {0, 1}b and for every i ∈ [m] such that f(i) = w,
we must have Mi,g(w) = 0. But this means that the
same f and g guarantees that the expected payoff is
0 regardless2 of the mixed strategy of MAX.

2Note that as here the same f and g work against any mixed
strategy of MAX, this works in the weak model as well, pro-
viding a proof of Theorem 4.5.
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Remark: The corollary is essentially the known sim-
ple fact (proved in [7], [9]) that the ratio between the
fractional cover and the integer cover of a hypergraph
with m edges is at most lnm.

The following theorem shows that both Theo-
rem 3.3 and Corollary 3.4 are essentially tight.

Theorem 3.5. For every real 0 < q < 1, for every
integer b ≥ 0 and for every large polynomially related
m and n satisfying q2bm > 2b logn, there exists an m
by n {0, 1}-matrix M that satisfies
(i) v(M, 0) = q ± o(1), where the o(1)-term tends to
0 as m and n grow; and
(ii) if p = (p1, p2, . . . , pm) is the uniform distribution
on the rows, then up(M, b) ≥ (1− o(1))q2b (and thus
up(M, b) = (1± o(1))q2b , by Theorem 3.3).
In particular, for, say, m = n2 and b ≤ log logm −
Θ(1), up(M, b) > 0.

Proof. LetM be a randomm by n matrix with {0, 1}-
entries obtained by choosing each entry Mi,j , ran-
domly and independently, to be 1 with probability q
and 0 with probability 1−q. We show thatM satisfies
the assertion of the theorem with positive probability.

Since m,n are large and are polynomially related,
almost surely (that is, with probability that tends
to 1 as m,n tend to infinity) every row of M has
(1 ± o(1))qn 1-entries, and every column of M has
(1 ± o(1))qm 1 entries. This follows easily by the
standard known estimates for Binomial distributions,
see, for example, [3]. This implies that the value of
the game is (1± o(1))q: indeed, if MAX (respectively,
MIN) plays according to the uniform distribution on
the rows (resp., columns), then it guarantees an ex-
pected payoff of at least (resp., at most) (1 ± o(1))q.
Thus (i) holds almost surely.

We establish the assertion by showing that (ii) holds
with high probability as well. For that purpose, we ar-
gue that for every choice of a set J ⊂ [n] of size |J | =
2b, the number of indices i ∈ [m] so that Mi,j = 1 for
all j ∈ J is, almost surely, (1± o(1))q2bm. Indeed, for
a fixed choice of a set J , the random variable X that
counts the number of such indices i is a Binomial ran-
dom variable with parameters m and q2b . Therefore
the probability that X is not (1±o(1))q2bm decreases
exponentially with q2bm > 2b logn = log

(
n2b
)

. The
assertion is established by applying the union bound
over all

(
n
2b
)
< n2b choices of the set J .

Remark: The proof of existence of M as in the last
theorem is probabilistic. In the appendix we give sim-
ilar explicit examples using either finite geometries, or

character sum estimates (Weil’s Theorem [18]), or any
example of small sample spaces supporting nearly 2b-
wise independent random variables. See [11] or [1] for
some such examples.

4 Adversarial Leakage in the Weak
Model

The following result deals with the Weak Model.
It shows that in sharp contrast to the situation with
the Strong Model, here there are examples in which
log logm−O(1) bits of information do not enable the
MIN player to gain any significant advantage.

Theorem 4.1. For every real q, 0 < q < 1, for every
positive δ and for all large polynomially related n,m
satisfying

[(
10
δ

)]n2b < δm/
√
n and [

q(1 − q)
10

]2
b ≥ 1√

n
,

there is an m by n matrix M with {0, 1}-entries so
that the value of the game it determines v(M, 0) is
q + o(1), and vweak(M, b) ≥ q − δ.

In particular, if m = n2 and b = log logm − Θ(1),
vweak(M, b) is essentially equal to v(M, 0).

The proof of the above theorem is more complicated
than the ones in the previous section, and requires
several preparations. We need the following known
result.

Lemma 4.2 ([2], Lemma 3.2). Let Y be a random
variable with expectation E[Y ] = 0, variance E[Y 2]
and fourth moment E[Y 4] ≤ k(E[Y 2])2, where k is a
positive real. Then Prob[Y ≥ 0] ≥ 1

24/3k
.

Using the above lemma, we prove the following.

Lemma 4.3. Let q be a real, 0 < q < 1, and let p =
(p1, p2, . . . , pn) be a distribution vector on [n], that is,
pj ≥ 0 for all j and

∑
j pj = 1. Let X1, X2, . . . , Xn be

independent, identically distributed indicator random
variables, where each Xj is 1 with probability q (and 0
with probability 1− q.) Define X =

∑n
j=1Xjpj . Then

the probability that X is at least its expectation (which
is q) is bigger than q(1−q)

10 .

Proof. Define Yj = Xjpj − E[Xjpj ] = Xjpj − qpj ,
and Y =

∑
j Yj . By linearity of expectation Y =

X − E[X ], and E[Y ] = 0. In order to apply the
previous lemma, we compute the variance of Y , and
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estimate its forth moment.

V ar[Y ] =
∑
j

V ar[Yj ]

=
∑
j

[q(1 − q)2p2j + (1− q)q2p2j ]

=q(1 − q)
∑
j

p2j .

Similarly

E[Y 4] =
∑
j

E[Y 4
j ] + 6

∑
i<j

E[Y 2
i ]E[Y 2

j ]

=
∑
j

[q(1 − q)4p4j + (1− q)q4p4j ]

+ 6
∑
i<j

q2(1− q)2p2i p
2
j

≤q(1− q)
∑
j

p4j + 6
∑
i<j

q2(1 − q)2p2i p
2
j

≤ 1
q(1− q) [q2(1− q)2

∑
j

p4j

+ 6
∑
i<j

q2(1− q)2p2i p
2
j ]

≤ 3
q(1− q) (V ar[Y ])2 .

The desired result now follows from Lemma 4.2, (us-
ing the fact that 24/3 · 3 < 10).

Remark: For q ≤ 1/2 the estimate in the lemma
is tight, up to a constant factor. Indeed, for p =
(1, 0, 0, . . . , 0) the probability that X is at least q is
precisely the probability that X1 = 1, which is q. For
q = 1/k with k being an integer there is a simpler ar-
gument showing that in this case the probability that
X is at least its expectation is at least q (which is pre-
cisely tight). The idea is to choose the random vector
(X1, X2, . . . , Xn) by first choosing, for each 1 ≤ j ≤ n,
a random uniform number nj in {1, 2, , . . . , k} with
all choices being independent, and then by selecting a
uniform random Z ∈ {1, 2, . . . , k}, defining Xj to be
1 iff nj = Z. Since the sum

∑
Z∈[k](

∑
j:nj=Z pj) = 1,

it follows that for each choice of the values nj , there
is at least one Z so that

∑
j:nj=Z pj ≥ 1/k, and there-

fore the probability that the obtained random sum is
at least q = 1/k is at least 1/k, as claimed. Note
that for some values of q the probability that X is at
least q is strictly smaller than q. Indeed, for example,
if q = 0.501 and the vector p is (0.5, 0.5, 0, 0, . . . , 0),
then the probability that X is at least q is the proba-
bility that X1 = X2 = 1, which is q2, that is, roughly
q/2.

Corollary 4.4. Let v be a random vector of length
n with {0, 1} entries obtained by selecting each entry,
randomly and independently, to be 1 with probability
q, and 0 with probability 1−q. Let P be any fixed set of
distribution vectors of length n. Then, the probability
that the inner product of the vector v with each of the
vectors p ∈ P is at least q, is at least ( q(1−q)

10 )|P|.

Proof. By the FKG Inequality (c.f., e.g., [3], Chap-
ter 6.), the probability that the inner product of v
with each of the vectors p ∈ P is at least q is greater
or equal to the product of these probabilities. But
according to Lemma 4.3, for every p ∈ P, the proba-
bility that the inner product of v with p is at least q
is greater than q(1−q)

10 . The desired result follows.

We are now ready to state the proof of Theorem 4.1:

Proof. (sketch) Take a δ-net N of distributions of
length n with respect to the �1-norm. Apply the last
lemma to every set P of 2b of them to conclude, using
the union bound, that almost surely for every such
set there is a pure strategy of the MAX player that
ensures her value at least q with respect to each of
these mixed strategies. Here we use the fact that
|N | ≤ [(10

δ )]n, and hence there are at most [(10
δ )]n2b

ways to choose a set of 2b members of N . The desired
result follows. The missing details are deferred to the
full version.

Somewhat surprisingly, even in the Weak Model,
although there are examples in which the MIN player
cannot decrease the value by much using at most
log logm − O(1) bits of information, if he is allowed
to use log logm + O(1) bits, he can always decrease
the value to 0. This is described in the next (sim-
ple) result, which, together with the previous theo-
rem, exhibits an unexpected sharp phase transition
at b = log logm.

Theorem 4.5. LetM be anm by n matrix with {0, 1}
entries, and let q be the value of the game defined by
M . If q2b < 1/m, then vweak(M, b) = 0. Therefore,
for every fixed q satisfying 0 < q < 1, b = log logm+
Oq(1) suffice to ensure value 0 for the MIN player,
even in the Weak Model.

The proof of Theorem 4.5 follows from the proof of
Corollary 3.4.

5 Optimal Strategy Computation
We begin with a simple example of a {0, 1} ma-

trix M with a maximin strategy p∗0 that satisfies (i)
up∗0 (M, 0) = 1/2; and (ii) up∗0 (M, 1) = 0. On the
other hand, there exists another mixed strategy p

116



ADVERSARIAL LEAKAGE IN GAMES

1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
T7 T7

Table 1: M ∈ {0, 1}9×14 of value 1/2, satisfying: (i)
up∗0 (M, 1) = 0; and (ii) up∗1 (M, 1) ≥ 1/7.

of MAX that satisfies (i) up(M, 0) = 3/7; and (ii)
up∗1 (M, 1) ≥ 1/7. This shows that playing the max-
imin strategy may be a naive behavior for b > 0, and
hence motivates the computation of better strategies.
The matrix M showing the above is of dimension
9 × 14 and it is depicted in Table 1. The main in-
gredient in the construction is a 7 by 7 matrix T7
with {0, 1} entries that satisfies the following prop-
erties: (1) every row and every column of T7 con-
tains exactly 3 1-entries; and (2) for every choice of
1 ≤ j ≤ j′ ≤ 7, there exists some 1 ≤ i ≤ 7 such
that Mi,j = Mi,j′ = 1. (Refer to Example 1 in the
appendix.) Playing the first two rows with proba-
bility 1/2 each yields an expected payoff of 1/2 for
MAX. One can easily verify that this is a unique op-
timal strategy when b = 0, while its expected payoff
is clearly 0 when b = 1. Yet, by playing the uniform
distribution on the bottom 7 rows, MAX ensures an
expected payoff of 3/7 when b = 0 and an expected
payoff of at least 1/7 when b = 1.

We now turn to consider the computational com-
plexity of finding the optimal strategy for the MAX
player in the Strong Model. The following theorem
shows that computing the optimal strategy against b
bits is poly-time for any fixed b.

Theorem 5.1. Given an m by n matrix M with
{0, 1} entries and a fixed b ≥ 0, computing the op-
timal strategy against b leaking bits (p∗b) under the
Strong Model is poly-time.

Proof. An optimal strategy p∗b = (p1, . . . , pm) can be
computed by solving the following linear program:

maximize z s.t.∑
w∈{0,1}b

∑
i:f(i)=w

piMi,g(w) ≥ z

∀f : [m]→ {0, 1}b, ∀g : {0, 1}b→ [n]∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] .

Since there are 2bm possible functions f and n2b pos-
sible functions g, this linear program admits a polyno-
mial number of variables, but an exponential number

of constraints. However, a closer analysis shows that
it can be rewritten with a polynomial number of con-
straints.

The composition of f and g is essentially a mapping
h : [m] → [n] with image of cardinality at most 2b.
Fixing some subset J ⊆ [n], |J | ≤ 2b, it is easy to
compute a mapping hJ that minimizes the expected
payoff of MAX over all mappings h with image J : hJ
simply maps each row i ∈ [m] to a column j ∈ J that
minimizesMi,j . Therefore an optimal strategy p∗b can
be computed by solving the linear program

maximize z s.t.∑
j∈J

∑
i:hJ (i)=j

piMi,j ≥ z ∀J ⊆ [n], |J | ≤ 2b (2)

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] ,

whose size is polynomial as long as b is a constant.

We next show that for general b, computing the op-
timal strategy against b bits is NP-hard. Moreover,
we show that it is NP-hard to approximate the opti-
mal value by any factor.

Theorem 5.2. Given an m by n matrix M with
{0, 1} entries, it is NP-hard to approximate v(M, b)
by any factor under the Strong Model.

Proof. We show that given an m by n matrixM with
{0, 1} entries and some b ≥ 0, it is NP-hard to decide
whether v(M, b) > 0. This is done by reduction from
set cover (SC). An instance of SC is composed of a
finite set of elements U = {1, . . . ,m}, a collection C =
{C1, . . . , Cr} of subsets of U and an integer k. The
question is whether there is a subcollection C′ ⊆ C,
|C′| ≤ k, such that every element in U belongs to at
least one member of C′.

Given an instance of SC , 〈U, C, k〉, we construct the
following instance of our problem. LetM be a binary
matrix with m = |U | rows and n = r columns such
that Mi,j = 0 ⇔ i ∈ Cj . Fix b = log k. We show
that there is a set cover of size at most k if and only
if v(M, b) = 0.
Sufficiency: Suppose the size of the set cover is
greater than k. Then, we show that taking the uni-
form distribution over the whole action set (i.e. set-
ting pi = 1

m ∀i ∈ [m]) yields v(M, b) > 0.
Consider inequality 2 and let p be the uniform

distribution as described above. For every choice of
J ⊆ [n], the left-hand side of the inequality is com-
posed of a finite set of summands. In order to show
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that the obtained payoff is greater than zero, it is suf-
ficient to show that at least one summand is greater
than zero. Indeed, since the set cover is greater than
k = 2b, there must exist some row i ∈ [m], call it
i′, such that Mi′,j = 1 for every j ∈ J , and also
p(i′) > 0 (since p has a full support). Consequently,
v(M, b) > 0.
Necessity: Suppose there exists a set cover of size
at most k = 2b. Then, there is a set of columns S,
|S| ≤ 2b, s.t. for every i ∈ [m] there exists j ∈ |S| for
which Mi,j = 0. Let g be a function that maps every
w ∈ {0, 1}b to a different column in S (arbitrarily).
By the choice of S, it must hold that for every i ∈
[m], Mi,g(fg(i)) = 0. Therefore, for every distribution
vector p, every summand in inequality 2 equals zero.
Consequently, v(M, b) = 0.

In contrast to the last theorem, under the Weak
Model, computing the optimal strategy for a given
f : [m] → {0, 1}b is trivially poly-time: For every
w ∈ {0, 1}b, let Sw = {i : f(i) = w}, and let Mw
denote the sub-matrix Mw ∈ ℝ

|Sw|×n, induced by
Sw. MAX will choose w that maximizes v(Mw, 0)
and play the corresponding maximin strategy.

Finally, we consider the computational complexity
of finding the optimal f function for the MIN player
in the Weak Model. For a general b, the exact same
reduction from Set Cover, presented in the proof of
Theorem 5.2, shows that computing the optimal f
function is NP-hard and that it is NP-hard to find an
f function that approximates the optimal value (for
the MIN player) within any factor. The computa-
tional complexity of computing the optimal f function
for a fixed b is still open.
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Appendix — Explicit Constructions
In this appendix we describe several explicit con-

structions of n by n {0, 1}-matrices representing
games with value q, such that if the MIN player has
b bits and b is smaller than log logn+O(1), then the
MAX player can guarantee a payoff of at least roughly
q2
b . This shows (by explicit examples) that the state-

ments of Theorem 3.3 and Corollary 3.4 are essentially
tight.

Example 1:
Let p be a prime power and let r be a positive inte-

ger. Fix n = pr−1. LetM = (Mu,v) be the following
n by n binary matrix whose rows and columns are
indexed by the set N of all nonzero vectors of length
r over GF (p). For each such u, v, Mu,v = 1 if and
only if the two vectors u and v are orthogonal over
GF (p) (namely, their inner product over GF (p) is
zero). Note that M is a symmetric matrix, and every
row and every column of it contains exactly pr−1 − 1
1-entries. Indeed, this is the number of non-zero so-
lutions of a single linear equation in r variables over
GF (p). It is easy to check that the maximin strategy
of the game determined by M is the uniform distri-
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bution over N , yielding a value of q = pr−1−1
pr−1 . Note

that for large n = pr − 1 this is very close to 1/p.
We claim that for every set J ⊆ N of at most logp n

columns, there are at least pr−|J| − 1 rows u so that
Mu,v = 1 for every v ∈ J . Note that if pr−|J| is large,
then this number is very close to q|J|n, implying that
by playing the uniform distribution on the rows of
M , MAX can ensure a value close to q|J|. Note also
that if b ≤ log r − O(1) = log logn − Op(1), then 2b
is much smaller than r, and hence pr−|J| is large pro-
vided |J | ≤ 2b. Fix a subset J ⊆ N of cardinality at
most logp n. By definition, row u satisfies Mu,v = 1
for every v ∈ J if and only if the inner product of u
and v over GF (p) is zero for every v ∈ J . This is a
homogeneous system of |J | linear equations in the r
variables representing the coordinates of u. This sys-
tem clearly admits at least pr−|J| − 1 non-trivial so-
lutions; each such non-trivial solution corresponds to
a row with the desired properties, proving the claim.

This completes the description of the first set of
examples. Note that it works for every value q which
is about 1/p, where p is a prime power.

Example 2 (sketch):
Let p be a prime and let M be a p×p binary matrix,

whereMi,j = 1 if and only if i−j is a quadratic residue
modulo p (where here zero is considered a quadratic
residue). The value of the game represented by M is
(p+ 1)/(2p) which, for large p, is roughly 1/2. Using
Weil’s Theorem, it is not difficult to show that for ev-
ery subset S of Zp of size at most (0.5 − δ) log p, the
number of rows i such that Mi,j = 1 for all j ∈ S,
is (1 + o(1)) p2|S| . A similar example holds for charac-
ters of other orders instead of the quadratic character,
providing examples with values close to 1/d for any
desired positive integer d > 1 (where here we have to
choose a prime p so that d divides p − 1- by Dirich-
let’s Theorem on primes in arithmetic progressions it
is known that there are infinitely many such primes
for any such d).

More generally, one can use any construction of
small sample spaces supporting nearly 2b-wise inde-
pendent binary random variables to supply additional
examples. We omit the details, which will appear in
the full version of the paper.
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