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Abstract: We revisit price of anarchy in network routing, in a new model in which routing decisions are made
by self-interested components of the network, as opposed to by the flows as in [12]. This significant departure
from previous work on the problem seeks to model Internet routing more accurately. We propose two models:
the latency model in which the network edges seek to minimize the average latency of the flow through them
on the basis of knowledge of latency conditions in the whole network, and the pricing model in which network
edges advertise pricing schemes to their neighbors and seek to maximize their profit.

We show two rather surprising results: the price of stability in the latency model is unbounded — Ω(n 1
60 )

— even with linear latencies (as compared with 4
3 in [12] for the case in which routing decisions are made by

the flows themselves). However, in the pricing model in which edges advertise pricing schemes — how the price
varies as a function of the total amount of flow — we show that, under a condition ruling out monopolistic
situations, all Nash equilibria have optimal flows; that is, the price of anarchy in this model is one, in the case
of linear latencies with no constant term.
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1 Introduction
Computer Science is not like farming. It is about

building things right, not watching them grow in
hope. It is therefore natural that many computer
scientists had been uncomfortable about the Inter-
net and the mysterious ability of its many thousands
of autonomous systems to connect, quite efficiently
and reliably, millions of nodes through uncoordinated,
decentralized, and ultimately selfish decisions. The
technical expression of this discomfort was the con-
cept of the price of anarchy (POA) [6], gauging the
loss of efficiency due to this lack of design and unity
of purpose. Therefore, the result of Roughgarden and
Tardos [10, 12] that this only entails a 33% loss of ef-
ficiency, was a welcome, and celebrated, reassurance.

The model of [12] deviates significantly from the
realities of the Internet (as it happens, the Internet
is never explicitly mentioned in [12] as the underlying
motivation): they assume that routing decisions are
made
• by the flows in the network, not self-interested

components of the network; and in fact
• based on information about network conditions

far downstream.
These weaknesses of the model of [12] were pointed

out very early, for example in [9]. In this paper we
examine what happens when one removes these as-
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†Research supported under a National Science Foundation
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sumptions, bringing the game much closer to the real
Internet. Briefly, it gets much worse, and then much
better.

If routing decisions are made by selfish network
components, one immediate question is, what is the
objective of each component? We examine two possi-
bilities:

1. One possible answer is to postulate that each net-
work component charges a per-unit-of-flow price
to its flows, and seeks to maximize its profit:
payments received, minus payments made, mi-
nus cost. It is rather natural to postulate that
the operating costs of each component are pro-
portional to the cumulative amount of time the
flows spend within the domain of that compo-
nent. We call this the pricing model.

2. In the absence of monetary charges, another nat-
ural assumption is the following: each compo-
nent strives to enhance its reputation by routing
in such a way that its flows arrive at their desti-
nation with the least possible delay. We call this
the latency model.

These are the two models considered in this pa-
per. For simplicity, throughout this paper we assume
that each selfish network component is simply an edge
(as opposed to the more realistic assumption that the
agents can be collections of edges). We note that
many of our results hold in the case that the nodes
are the routing agents, and we suspect that there are
few, if any, qualitative differences in behavior.
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Let us start with the latter model — that is, when
edges split their flow so as to minimize the down-
stream latency experienced by it. (Notice that this
model addresses only our first objection above to
the [12] model.) It turns out that, in this case,
Braess’s famous paradox network (which is worst-case
in the Roughgarden-Tardos model) behaves much bet-
ter: the loss decreases from 33% to 3%. But there is
one important — and ominous — difference: this loss
scales, in that it persists no matter how much flow
traverses the network (while in [12]’s model the price
of anarchy is very close to 1 for all but a narrow range
of traffic rates); this enables a recursive construction
that establishes the POA is unbounded in this model.

Theorem: The price of anarchy of the latency model
is Ω(n 1

60 ), where n is the number of nodes in the net-
work.

In fact, we prove something much stronger: Not
just the price of anarchy (the cost of the worst Nash
equilibrium) is bad; but so is the price of stability
(the cost of the best Nash equilibrium). We also show
(Theorem 3.1) that pure Nash equilibria in this game
always exist.

There is an interesting issue in defining Nash equi-
libria in this and similar games, that is worth dis-
cussing here. A pure Nash equilibrium is, of course,
a set of choices (routing decisions by edges) such that
no edge can gain by changing its decision, if one as-
sumes that all other edges do not change theirs. In
this particular game, the highlighted sentence is a lit-
tle ambiguous. If I change my outgoing flows, down-
stream edges will have different incoming flows, and
so they will have to change something in their out-
going flows! There are two ways to define what it
means that an edge “does not change its decision.” In
the fixed ratio version of the model Nash equilibrium
is defined assuming that all other edges keep allocat-
ing their incoming flows to their outgoing edges in the
same ratios as before. In the fully rational variant, it
is assumed that downstream edges readjust optimally
to the new situation. This latter model is less real-
istic (as it suggests that autonomous systems in the
Internet anticipate sophisticated behavior by far-away
autonomous systems, something that is quite implau-
sible); however, it does correspond more closely to the
demanding notions of rationality of mainstream Game
Theory. As it turns out, these variants behave quite
similarly in terms of our present interests and results
(even though we can show, see Proposition 3.2, that
they can lead to different equilibria).

There is one ray of hope in the latency model:
In a network of parallel links (in which we already
have nontrivial price of anarchy in the Roughgarden-

Tardos model), the price of anarchy is one. This is
easy to see, but it does raise our hopes, because it
can be interpreted to mean that the reason for the
abysmal performance of the latency model is its de-
pendence on non-local information; perhaps by ad-
dressing this problem (by pursuing the second de-
parture above from the Roughgarden-Tardos model)
good performance can be restored. (As a matter of
fact, our positive result is more general: The price of
anarchy is one even in series parallel networks (The-
orem 3.3).)

Which brings us to the non-local information prob-
lem. The procrustean way of fixing it, by restrict-
ing information about marginal latencies to the im-
mediate neighborhood of each edge, results in essen-
tially random decisions and terrible worst-case per-
formance. On the other extreme, it could be argued
that no fixing is needed: the latency model does not
really require non-local information, in that what is
needed by each routing agent to reach a decision is
only the average marginal delay of the immediately
downstream edges — the kind of information that
could be propagated in the network through local ex-
changes, and be reported by the downstream neigh-
bors. But this argument misses the important point of
incentive compatibility: The next edge could lie about
its flow’s downstream delays — for example, exagger-
ating them so that its upstream neighbors avoid the
paths it uses, and so its own average latency improves.

By what means can information about latency con-
ditions propagate upstream in a manner that is both
efficient and incentive compatible? The answer is
prices — the economist’s instrument of choice for in-
formational efficiency.1 In Section 3 we describe a
model in which edges make both routing and pricing
decisions, all based on local information.

This is not the first time that prices have been sug-
gested in this context, see for example [3–5, 13] and
Chapter 22 in [8]. However, in these previous works,
while prices are set by the edges as they are here,
routing decisions are still made by flows, as in the
Roughgarden-Tardos model. It is the combination of
pricing and routing decisions by the edges that makes
the difference.

Suppose that we assume that edges charge per-
unit-of-flow prices to upstream neighbors routing flow
through them, and compete with other edges for up-
stream flow by announcing these prices. The utility

1Economic history studies some astonishingly long chains of
exchanges between neighbors, such as the trade routes for tin
from Cornwall and Afghanistan to Bronze Age Greece ca. 1500
BC [2, 7], which were apparently created in the absence of any
non-local information and solely by the local propagation of
price-like information.
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of each edge now boils down to the payments received
from upstream neighbors, minus the amounts paid to
downstream neighbors, minus the costs incurred due
to the flow through the edge. It is natural to assume
that this latter cost is proportional to the total la-
tency suffered by the flow at the edge — since this
latency reflects the total amount of computational
work, or energy, needed in order to process the flow.
And this defines our new game: Strategies are pric-
ing schemes (per unit price as a linear function of the
flow routed), announced to upstream neighbors, and
decisions about splitting the received flow among the
downstream neighbors. The utility of an edge is the
sum total of the payments it receives, minus the sum
of its payments downstream, minus the total activity
taking place at the edge.

As it often happens in the analysis of competition in
networks [1], to arrive at a meaningful answer we need
to exclude “monopolistic” networks, in which one edge
has too much control over the outcome. The condition
needed is rather technical: there must be an optimum
flow in which, for every node other then the destina-
tion, there are two edge-disjoint flow-carrying paths
from the node to the destination. In the absence of
this, things fall apart. Importantly, however, bad ex-
amples in the latency model game can be constructed
to satisfy this condition. We assume latency functions
of the form �(x) = a · x. We can prove:
Theorem: The price of anarchy in monopoly-free
networks in which edges announce linear pricing
schemes is one.

The price charged by each edge at equilibrium is
flat (constant), and, importantly, coincides with the
marginal latency to the destination (which, at opti-
mality, is independent of the path) — in other words,
precisely the non-local information the decision-
makers are missing to make efficient decisions. That
is, prices here are a mechanism for achieving total ef-
ficiency — in networks where it can be achieved, of
course. Our proof starts by establishing that at equi-
librium all pricing schemes are flat. We then show
that charging above the marginal latency by any sub-
set of the edges leads to a redirection of flow to the
competition. The argument is based on a result in
resistive electrical networks (Lemma 4.9) that seems
to be new to that field (the connection to resistive
networks is this: with latency functions of the form
a·x, edges are resistors with resistance a and optimum
flows are (energy-minimizing) currents.)

One parenthesis on our restricted latency functions:
we believe that the result holds for much more general
functions (any nondecreasing function, possibly pos-
itive at zero), and that the proof is within the reach

of our method, despite the fact that it has eluded us.
One may argue that this restriction trivializes our re-
sult, or at least renders it unsurprising, since the price
of anarchy for such latency functions is one already in
the Roughgarden-Tardos model. A cursory inspection
of our proof reveals that this conclusion is wrong: the
mathematical origins and proof techniques of the two
results could not be more different (one comes from
optimization, the other from variational analysis of
resistive networks). And it is a very delicate result:
We show that the price of stability for such latencies is
unbounded without prices, and similarly for the price
of anarchy when the prices are restricted to being flat.
Finally, we note that the price of stability is 1 for ar-
bitrary nondecreasing latency functions, underscoring
the incomparability of our results with previous ones
on the strategic flows models.

Naturally, the Economics literature abounds with
results showing that prices beget efficiency, most no-
tably the so-called First Theorem of Welfare Eco-
nomics (stating that a price equilibrium results in an
allocation that is Pareto efficient). The nature (and,
of course, proof) of our result is very different; we
show an extreme form of efficiency, viz. maximiza-
tion of social welfare. Additionally, the presence of
(nonconstant) latencies in our network precludes the
application of many Economics tools and results. It
would be interesting to investigate whether our result
can be generalized to broader contexts in Economic
Theory, such as trading networks.

Finally, let us recall that the main stated goal and
motivation behind the body of literature on game-
theoretic routing is to gain insights into the Internet
— insights that may be useful in guiding its evolution.
Seen this way, our work can be interpreted as rigorous,
if tentative, evidence that:
• Selfish routing may be more inefficient than we

thought;
• prices bring efficiency in a subtle way;
• common practices for preventing monopolistic

situations (such as double-sourcing, i.e. having
agreements with several downstream providers)
are necessary for this efficiency to arise; and
• short-term competition between routing agents,

informed by congestion conditions — something
that is, arguably, absent from the current Inter-
net — is crucial for achieving this efficiency.

Some of these insights were inaccessible with exist-
ing models. But of course, much work needs to be
done to make these implications less tentative.

In Section 2 we define our models, in Section 3 we
study the latency model and prove, among other re-
sults, our lower bound for general networks. We then
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prove our POA = 1 result for the pricing model in
Section 4, while in Section 5 we briefly discuss the
many questions left open by our work.

2 The Models
We introduce two distinct models, one for latency

minimization and one for pricing.

The Latency Model
A network N = (V,E, s, t, �) is a directed acyclic

graph with nodes V , edges E, source s ∈ V and a sink
t ∈ V , and for each edge e ∈ E a latency function
�e : ℝ+ �→ ℝ+, assumed to be linear of the form
�e(x) = ae · x, where ae > 0. We call all edges of the
form (u, t) terminal edges. The set of non-terminal
edges is denoted Ent. (Actually, all the results in
Section 3 hold in the more general setting with edge
latencies of the form �e(x) = aex+ be, for ae, be ≥ 0.)

We assume that flow of total value r is injected
in s and siphoned off t. Each edge e = (u, v), is a
strategic player with strategy space ∆k, the k − 1-
dimensional simplex {(α1, . . . , αk) : αi ≥ 0,

∑
i αi =

1}, where there are k > 0 edges leaving v, e1, . . . , ek.
If edge e = (u, v) plays strategy A = (αe1 , . . . , αek),
this means that if the total flow of e is fe, edge ei will
receive αei · fe of this flow (in addition to any other
flows received from other edges leading into v). To
treat the source s uniformly, we assume that there is
a single edge (s, s′) leaving s, and this edge decides
how the flow injected to s splits.

Thus, a strategy profile A = (Ae : e ∈ Ent) of all
nonterminal edges defines a flow fA in the network.
The utility of edge e = (u, v) is then defined to be the
average latency of the flow through e to t; that is,

Ue(A) = −
∑

(e0=e,e1,...,ep)∈Pv,t

p∑

i=1

�ei (f
A
ei

)
i∏

j=1

α
ej−1
ej

where by Pv,t we denote the set of all paths from e
to t.

A (pure) Nash equilibrium is a strategy profile A
such that, for each edge e, Ae is the distribution that
maximizes Ue if all other distributions are kept the
same. We shall see (Theorem 1) that such equilibria
always exist. This is the equilibrium in the fixed ratio
model.

An equilibrium in the fully rational model is a strat-
egy profile A such that, for all e, if e changes its dis-
tribution Ae in any way, and all downstream edges re-
spond by optimally changing their distributions, the
utility Ue does not improve. As we shall see, this
model results in potentially different equilibria, but
in a way that does not affect our upper and lower
bounds.

The Pricing Model
In the pricing model our network N = (V,E, s, t, �)

is an undirected graph, again with a source, sink, and
latency functions (and a single edge [s, s′] out of s).
Our reason for adopting undirected networks is tech-
nical convenience, as certain insights from resistive
networks that we need are more accessible in this case;
we strongly believe that our results hold for dags (as
well as for many other extensions), but we have not
shown this yet.

A strategy for a nonterminal edge e = (u, v) is now
an object of the form S = (Au, Av, Pu, Pv), where Au
is a distribution of the flow in the (v, u) direction into
the other edges incident upon u, Av a distribution of
the (u, v) flow into the other edges incident upon v,
Pu is a set of pricing functions (assumed to be of the
form p(x) = a · x+ b with a, b ≥ 0), one advertised to
each edge incident upon u, and Pv is a similar set of
advertised pricing schemes to the edges incident upon
v. (At equilibrium, of course, only one direction of
the flow will be in effect.) Edge (s, s′)’s strategy only
has the Au component.

The utility of edge e = (u, v) under the strategy
profile S = {Se′} is defined as the sum of all pay-
ments received, minus the sum of all payments made
for outgoing flows, minus the total latency at the edge:

Ue(S) =
∑

e′=(w,u)

peu,e′(fS(w,u) ·Ae
′
u,e)

+
∑

e′=(v,w)

pev,e′(fS(w,v) ·Ae
′
v,e)

−
∑

e′=(w,u)

pe
′
u,e(fS(v,u) · Aeu,e′)

−
∑

e′=(v,w)

pe
′
v,e(fS(u,v) · Aev,e′)

−[fS(u,v) + fS(v,u)] · �e([fS(u,v) + fS(v,u)]).

A Nash equilibrium is a strategy profile in which
each edge plays the best response to the pricing and
routing choices of the remaining edges together with
the assumption that immediate upstream neighbors
will always adjust their routing so as to route opti-
mally given the advertised prices. Additionally, we
assume that edges that route zero flow advertise price
schemes p(·) such that p(0) is equal to their true
cost—that is, edges that don’t receive flow advertise
the smallest price for which they would be willing to
route flow. We believe that this assumption is rea-
sonable, and that it can be justified in several natural
ways. One informal justification is that these are net-
work operators who are being undercut by more effi-
cient competitors, so it would be irrational for them to
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further exaggerate their costs. Also, this assumption
would be obviated by a stronger definition of ratio-
nality based on local information beyond immediate
neighbors. In the absence of this assumption, infor-
mation might not effectively propagate, and unrealis-
tic equilibria with high cost can arise.

The pricing model behaves very badly in the ab-
sence of some assumption that eliminates monopolies,
that is, situations in which a player can demand and
get unboundedly high prices. Define a flow in the net-
work to be optimal if its total latency is as small as
possible among all flows. That is, an optimal flow is
the solution of the min-cost problem associated with
the network; it turns out to be, in the case of the
ae · c latencies we are considering, the current flow-
ing through this network under voltage difference of r
between s and t, where the resistance of edge e is ae.

Definition 2.1 We say that a given instance of the
routing problem is monopoly free if in every optimal
flow, any edge that routes positive flow is either di-
rectly connected to the destination, or has at least two
downstream edge-disjoint paths to the destination that
carry positive flow.

3 Minimizing Latency
In this section we focus on the model in which edges

seek to minimize the latency experienced by their
flow. We begin by stating some basic facts about the
Nash equilibria for the fixed ratio and fully rational
model dynamics, then prove our main results about
the price of anarchy for series parallel networks and
the price of stability for arbitrary networks. We note
that throughout this section, identical results can be
obtained by having the routing agents be the network
nodes, rather than the edges.

Theorem 3.1 In both the fixed ratio model and the
fully rational model with directed acyclic graphs, pure
strategy Nash Equilibria exist.

The proof of Proposition 3.1 is by induction on the
edges in topological order, beginning with the edges
connected to the sink. We defer details to the full
version.

Although the fixed ratio and fully rational mod-
els differ, one might hope that the equilibria of the
fixed ratio model would be a subset of equilibria of
the fully rational model. The following proposition,
whose proof is by a simple example (which we defer
to the full version) demonstrates that this need not
be the case, and highlights the sensitivity of the equi-
libria to the choices in definition of best responses.

Proposition 3.2 There are instances of strategic
routing networks with latencies �e(x) = aex + be
for which the fixed ratio model and the fully rational
model have disjoint sets of equilibria.

The above proposition illustrates that the fixed ra-
tio model and the fully rational model yield distinctly
different games. The results in the remainder of this
section illustrate that, although there are differences
in the two models, similar price of anarchy and price
of stability results hold for both models. We believe
that it would be worthwhile to try to extend these re-
sults to the class of all ‘reasonable’ definitions of best
responses.

Theorem 3.3 For both the fixed ratio model and the
fully rational model, the price of anarchy is one, for
series parallel networks.

The proof of the above theorem is by induction on
the graph structure, and is included in the Appendix.

Theorem 3.4 For arbitrary, even monopoly-free
networks, the price of stability is Ω(nlog3(51/50)) for
linear latency functions.

Our proof of Theorem 3.4 is by construction, and
relies on recursively embedding the network given in
Figure 2, which we refer to as the beetle network. We
begin by characterizing the unique equilibrium of the
beetle network.

Figure 1: The beetle network. For any traffic rate, POA =
51/50.
ÐÇÆÚËÄ, ÊőűþÔÂ 3, 2009 at 4:52 pm

Lemma 3.5 The price of stability of the beetle net-
work is 51/50, for any positive traffic rate entering
the network.

We defer the proof of the above lemma to the Ap-
pendix.
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Remark 3.6 The price of stability of the beetle net-
work is independent of the amount of (nonzero) traffic
entering the network; this is a fundamental difference
in behaviors of our models and the Roughgarden and
Tardos’s strategic flows model, for which any given
network has a relatively small range of traffic rates
which induce significant POA.

Proof of Theorem 3.4: We exploit the independence
of the price of stability and traffic rate in the bee-
tle network by recursively replacing edges (a, t), (b, t),
and (c, t) with copies of the entire beetle network.
From Lemma 3.5, at equilibrium the beetle with in-
put traffic rate r behaves like a single edges connected
to the sink, with latency �(x) = 51

50x, and thus, af-
ter k − 1 recursions, the unique equilibrium of the
network will resemble that of a single link of latency
�(x) =

( 51
50·3
)k
x. The optimal flow has cost equivalent

to that of a single link of latency �(x) = x
3k . Finally,

note that the network has size n = 2 + 3k nodes, and
thus, in terms of the network size, the price of stability
is Ω(nlog3(51/50)), as desired.

Note that although the beetle network does not sat-
isfy the monopoly-free condition, by splitting the (c, t)
edge into two edges of latency �(x) = 2x, and replac-
ing all latency 0 edges with edges of latency l(x) = εx
for any small ε > 0, the network will be monopoly-
free, and the price of anarchy approaches that for the
beetle network as ε→ 0.

4 Maximizing Profit
We now consider the setting in which edges adver-

tise prices to their neighbors. The hope, which proves
to be well-founded, is that the prices allow informa-
tion to propagate in a local fashion in such a manner
as to ensure societally ‘good’ equilibria. As a moti-
vation for considering advertised pricing schemes—a
price-per-unit-flow that is a nondecreasing function of
the amount of traffic—the following proposition sum-
marizes what happens if edges can only advertise con-
stant functions.

Proposition 4.1 If edges can only advertise con-
stant per-unit-flow prices, then the price of stability
is one in monopoly-free networks with arbitrary non-
decreasing latencies, but worst-case price of anarchy
is at least n− 2 even for linear latency functions.

For the POS = 1 result, it is not hard to verify that
the following is an equilibrium: The flow is an opti-
mal flow, and each edge advertises a constant price
ce equal to the marginal cost of its internal latency
plus the minimum price advertised by its downstream

neighbors. For the price of anarchy result, consider a
network of n parallel links of latency �(x) = x. We
defer the details of these proofs to the full version.

Intuitively, the inefficient equilibria caused by re-
quiring that prices be constants arise because the
strategy-space is too restricted; an edge has no way of
indicating that it would like to route a small amount
of flow at a modest price. The problem is that an edge
cannot control how much flow it receives–it receives ei-
ther zero flow, or all the flow from its upstream neigh-
bors depending on whether its price is greater or less
than the price of its competitors. As we shall see, this
problem can be remedied by expanding the strategy
space to allow linear nondecreasing functions as pric-
ing schemes. At a high level, this added power enables
edges to control the amount of flow they receive from
each upstream neighbor, allowing them to be more
specific in expressing their selfishness; somewhat re-
markably, this increased expressive power results in
optimal flows at equilibrium.

Theorem 4.2 In monopoly free instances with edge
latency functions of the form �(x) = aex with ae >
0, the price of anarchy is one if nodes can advertise
linear, nondecreasing price schemes.

To prove Theorem 4.2, we’ll argue that in every
equilibrium, any edge that is competing with an-
other edge will end up advertising a constant pricing
schemes. Then, we show that the value of this con-
stant must be equal to the edge’s true marginal cost
for routing the amount of flow it receives, and thus
it is the threat of advertising a nonconstant pricing
scheme that forces the upstream edges to split their
outgoing flow in the desired fashion. Finally, we’ll re-
quire a technical lemma that relies on properties of
electrical resistive networks to show that in any equi-
librium it must be the case that all edges that receive
positive flow split their outgoing flow to at least two
edges, from which our claim follows.

First, we observe that the optimal equilibrium de-
scribed in the sketch of the proof of Proposition 4.1
remains an equilibrium in this more general setting
in which edges may advertise nondecreasing linear
prices, yielding the following proposition:

Proposition 4.3 The following instance is a Nash
equilibrium: fix an optimal flow f , and let each edge
e = (u, v) advertises a constant price ce equal to the
marginal cost of all u−t paths that carry positive flow.

We now show that in all equilibria, edges that
compete over flow must advertise constant pricing
schemes by demonstrating that an edge that competes
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with an adjacent edge for flow from a common up-
stream neighboring edge has an improving deviation
unless it is advertising a constant pricing scheme. We
begin with an easy technical lemma, whose proof we
defer to the full version.

Lemma 4.4 Let p(x) = ax+b, with some fixed a > 0
be the pricing scheme of edge e = (u, v), that is com-
peting with edge e′ = (u, v′) for flow from an upstream
neighbor. Given a fixed non-decreasing price scheme
p′(x) = a′x+b′ of edge e′ and total flow fu to be routed
through u, the amount of flow fe routed through e is
a continuous nonincreasing function of b.

Remark 4.5 It is precisely in the case that both the
derivative of p and p′ are zero that Lemma 4.4 breaks.
At first glance, this seems troubling given our charac-
terization of equilibria as exclusively having constant
prices. Nevertheless, as noted above, the threat of ei-
ther e or e′ using a nonconstant price is enough to
ensure that flow through u splits in the desirable fash-
ion.

Lemma 4.6 In a pure strategy Nash equilibrium, for
any edge e and an upstream edge u sharing an end-
point, either e receives all of u’s flow, or e advertises
a constant pricing scheme to u.

Proof: For clarity of exposition, we give the proof in
the case that edge e is competing with a single edge e′
for flow from u. The proof in the general case in which
e is competing with multiple edges is similar though
slightly more involved, and we defer the details to the
full version.

Let p(x) = ax + b, with some fixed a > 0 be
the pricing scheme of edge e = (u, v). Fix a non-
decreasing price scheme p′(x) = a′x+ b′ of competing
edge e′ = (u, v′) and total flow fu > 0 to be routed
through u by an upstream neighbor. If e receives flow
fe with 0 < fe < fu, then e can strictly improve its
utility by advertising price p(x) = ax/2 + b′ for some
b′ ≥ b.

Consider the pricing scheme p0(x) = ax/2 + b0
where b0 = b+afe/2 is chosen so that p0(fe) = p(fe).
We claim that the pricing scheme p0(·), induces an
increased flow to e. By assumption the upstream
neighbor chose the routing fe, fu − fe to edges e, e′
respectively so as to equalize the marginal costs to e
and e′. With pricing scheme p0, the marginal cost of
routing to e has been decreased, and thus with price
p0, e will receive flow f0

e > fe.
There is some value b1 > b such that e would receive

zero flow were it to advertise price p(x) = ax/2 + b1.
By Lemma 4.4, there must be some constant β, with

b0 < β < b1 such that pricing scheme p(x) = ax/2+β
induces the upstream neighbor to split the flow in
the same manner as was done with pricing scheme
p(x) = ax + b. To complete the proof, observe that
given this new pricing scheme, e receives the same
amount of flow as for its original pricing scheme, yet
receives a strictly higher per-unit-flow payment.

Given that edges actively competing for flow will
advertise constant pricing schemes at equilibrium, the
following lemma states that either the flow at equilib-
rium is the optimal flow, or there are edges who have
‘local monopolies’, meaning that they receive all of an
upstream neighbor’s flow.

Lemma 4.7 In any equilibrium in which all edges
that receive nonzero flow split this flow between at
least two downstream edges (aside from edges con-
nected directly to the sink), the routing must be an
optimal flow.

At a high level, the proof of the above lemma fol-
lows from noting that, by Lemma 4.6, since at such
an equilibrium all edges will advertise constant pric-
ing schemes, it must advertise the same constant, c to
all its upstream neighbors. Then, for any ε > 0, we
show that an edge can augment its advertised pricing
scheme so as to receive any amount of flow in some
range independent of ε, at price-per-unit c− ε. It then
follows that each edge (that doesn’t recieve all of an
upstream neighbor’s flow) must receive its preferred
amount of flow, given its constant advertised price,
which corresponds to its true marginal cost. The de-
tails can be found in the Appendix.

To complete the proof of Theorem 4.2, we must
show that given the monopoly-free condition, there
are no equilibria in which some edges receive all of
an upstream neighbor’s flow. Intuitively, such a lo-
cal monopoly seems at odds with our monopoly-free
condition—if no monopolies exist when all edges ad-
vertise their true marginal costs, then if some edge
were to exaggerate his costs, it seems like the flow
should penalize him rather than rewarding him with
the entire flow from an upstream neighbor. This in-
tuition turns out to be correct. We will show that if
some set of edges S advertises prices more than their
true marginal costs, at equilibrium it must be the case
that at least one of them receives flow from a neigh-
bor who also sends positive flow to a different edge,
and thus by Lemma 4.6 we have a contradiction. Our
proof relies on viewing the equilibrium flow as an op-
timal flow in a related network, and then using ideas
from electrical circuit analysis to characterize this op-
timal flow.
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Lemma 4.8 Given a network N at equilibrium, the
flow is an optimal flow for a related network N ′, which
is a network with identical structure to that of N but
with latency functions modified as follows. For every
edge that does not receive the entire flow of an up-
stream neighbors, the edge latency in N ′ is the same
as in N . For edges that receive the entire flow from an
upstream edge, the latency in N ′ is lN ′(x) = (a+α)x
for some α ≥ 0 where the latency of the edge in N
was l(x) = ax.

The proof of the above lemma is intuitively clear,
and we defer details to the full version. Now, to con-
clude our proof of Theorem 4.2 it suffices to consider
possible equilibria in which only edges that receive
nonzero flow at the optimal flow advertise exagger-
ated marginal costs. This is true because at least one
of these edges must receive nonzero flow in the optimal
flow, otherwise the routing would still be the optimal
routing. Furthermore, for each edge e that doesn’t
receive flow at the optimal flow who exaggerates its
marginal cost at an equilibrium, we can construct a
related instance of the game in which everything is
identical, except where edge e’s true marginal cost
is equal to its advertised cost at equilibrium (by in-
creasing its latency function, which obviously does not
change the optimal flow, and doesn’t change the fact
that it is at equilibrium).

Lemma 4.9 Consider a network N where the
monopoly-free property holds, and some set of edges
e1, . . . , ek with the property that no two edges share a
source in the optimal flow. Let F denote the optimal
flow in N and consider increasing the coefficients of
the latency functions of edges e1, . . . , ek to yield net-
work N ′. Let F ′ denote an optimal flow for N ′. If all
edges e1, . . . , ek carry nonzero flow in F ′, then there
is at least one ei = (u, v) such that some nonzero flow
is routed along another edge e′ = (u, v′).

Before proving the above lemma, we state a fact
adapted from circuit analysis. Consider a network N
with edge latencies le(x) = aex and an optimal flow
F . Choose an edge e = (u, v) carrying flow fe at
the optimal flow, and consider increasing its latency
function from l(x) = aex to l(x) = (ae + δ)x to get
network N ′. Define the associated network Nm to be
identical to N , but with an extra node v′ inserted into
edge e. Let the latency of (u, v′) be l(x) = (ae + δ)x,
remove the edge connecting v′ and v. Let Fm denote
the optimal flow in Nm with source v′ and sink v
given a traffic rate that induces latency δfe between
v′ and v. Note that such a traffic rate exists because
the optimal flow scales directly with the input traffic

rate. We now have the following fact:

Fact 4.10 In the above setup,

Fm + F = F ′,

where we view Fm as a circulation in network N ′ by
merging vertex v′ and v.

Proof: First observe that Fm + F is a valid flow for
network N ′, since F is a valid flow for N ′, and Fm is
a circulation. Next, to see that Fm+F is optimal for
N ′, it suffices to check that the sum of the marginal
costs around any cycle is zero (where ’backwards’ ori-
ented flows contribute negatively). First consider a
cycle that contains edge (u, v); let f1, . . . , fk denote
the flows of F around the cycle with f1 being the flow
on edge (u, v) and let fm1 . . . , fmk denote the flows on
these edges in Fm. We have

∑
i
fi
|fi| (ai|fi|) = 0, and

(ai + δ)fm1 +
∑k
i=2 aif

m
i = δf1, and thus

(a1 + δ)(fm1 + f1) + b1 +
k∑

i=2

fi
|fi| (ai|fi + fmi |) = 0,

as desired. For a cycle that does not include edge
(u, v), the argument is similar.

We are now ready to prove Lemma 4.9, completing
our proof of Theorem 4.2.
Proof of Lemma 4.9: First note that Fact 4.10 gener-
alizes to a set of edges S = (u1, v1), . . . , (uk, vk) who
increase their latencies, by viewing the network Nm
as a resistive network identical to N ′, but with volt-
age sources inserted in each edge of increased latency.
Consider the set of nodes U ⊂ {u1, . . . , uk} of highest
voltage potential. It must be the case that the voltage
potential of all nodes in U is higher than any other
node in network Nm, aside from the added nodes v′.
For each ui ∈ U , let (ui, wi) be an edge that receives
positive flow in F , and note that since (ui, wi) �∈ S by
assumption, it must be the case that wi has strictly
lower voltage than ui. Thus in Fm, no current travels
from wi to ui, and thus the total flow on edge (ui, wi)
in F ′ must be at least that in F , which is positive as
claimed.

5 Discussion and Open Problems
We have revisited the classical problem of the price

of anarchy in routing, and showed that the price of
anarchy becomes unbearable when decisions are made
by autonomous systems and are based on knowledge
of global traffic conditions, but becomes exquisite in
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the presence of prices (and absence of monopolis-
tic situations). One immediate question is, how ro-
bust are these results? Do they extend to models
in which latencies are more general? (We conjecture
that they do extend, by a simple variant of our proof
technique that is still eluding us, to arbitrary nonde-
creasing continuous functions—for example, we can
show that any non-optimal equilibrium must involve
at least three edges who advertise prices higher than
their true marginal costs.) When more elaborate pric-
ing schemes are allowed? When the networks are di-
rected? Or when the latencies, as well as the pricing
and routing decisions, are at the nodes? When au-
tonomous systems are modeled, more accurately, as
hyperedges? Or when there are multiple sources and
multiple sinks? We believe that our results extend
to many of these models, but we can see technical
obstacles for each extension.

One important question is, what do these result
tell us about the Internet, as it is today and as it
may evolve in the near future? In the real Internet
edges/autonomous systems exchange traffic through
the BGP protocol, which implements existing, and
more-or-less long-term, agreements between them —
agreements that often involve prices. In view of our
results, both the positive one and the negative one,
we may want to ask: Which of these current practices
are impeding the Internet’s ideal efficiency?
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Appendix
Proof of Theorem 3.3: We proceed by induction on
the graph structure. The claim is trivially satisfied
for the base case–a single link. Assuming the claim
holds for series parallel networks α, β, we consider the
two possible types of compositions. The claim holds
trivially in the case that we compose α and β in se-
ries, via associating the sink tα with the source sβ ,
and letting the new source and new sink be sα, tβ ,
respectively.

For the case where we compose α and β in par-
allel by associating sα with sβ , and tα with tβ , in
both the fractional and fully rational dynamics, all
edges other than the source edge will still route op-
timally at equilibrium because after the composition,
the utility of these nodes for routing in a given man-
ner is identical to their utilities given such a routing
in the subnetwork α, or β. Thus it suffices to consider
the routing decisions of the source under the two dy-
namics. Under the fully rational dynamics, the source
will route as in an optimal flow because it assumes the
downstream nodes will route optimally for their flow,
which, by our inductive hypothesis, means optimally
for the network as a while, and optimal routings of
series parallel networks consist of optimal routings in
each component. Under the fixed ratio dynamics at
equilibrium, by our inductive hypothesis, the source’s
evaluation of the marginal cost of sending flow to ei-
ther subnetwork α, or β is the true marginal cost, be-
cause at optimum the marginal costs along all paths
are equal, and thus the source will have a deviation
unless these marginal costs are equal, completing our
proof.

Proof of Lemma 3.5: Assume a traffic rate of r enter-
ing the network. At equilibrium, edges e and e′ will
each equalize the marginal cost experienced by their
traffic along the two possible routes available to each
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node. Thus we have that

2f(a,c) + f(b,c) = 2f(a,t)
2f(b,c) + f(a,c) = 2f(b,t).

For the fully rational model, using the above charac-
terization of the behavior of edges e and e′ together
with the conservation of flow constraints, the cost of
the source as a function of f(s,a) is proportional to
89r2− 50rf(s,a) + 50f2

(s,a), which is minimized by set-
ting f(s,a) = f(s,b) = r/2. Similarly for the fixed ratio
model, given the above characterization of the equi-
librium behaviors of edges e, e′, and the constraints
imposed by conservation of flow, one can express the
source’s best-response move as a function of f(s,a).
Requiring that there is no best-response move yields
that f(s,a) = f(s,b) = r/2, as in the case of the fully
rational model.

To conclude, note that f(s,a) = f(s,b) = r/2 and
the characterization of how edges e,e′ route at equi-
librium imply that f(a,c) = f(b,c) = r/5, and f(b,t) =
f(a,t) = 3r/10, and thus the total cost of the flow is
17r2

50 . The optimal flow routes r/3 flow on each of the
edges incident to the sink, and thus has cost r

2

3 .

Proof of Lemma 4.7: From Lemma 4.6, we know that
at such an equilibrium all edges will advertise con-
stant pricing schemes. Consider an edge e that is
competing with edges e1, . . . , ek for flow from some
edge u. Let edge ei advertise (necessarily constant)
pricing scheme pi. For any f0 ∈ (0, fu], and any ε > 0,
there is a pricing scheme pf0(·) which will induce u to
route exactly f0 units of flow to v0 at price-per-unit
c− ε, where c := mini(pi). Indeed, it is easily verified
that the pricing scheme

pf0(x) := ε
f0
x+ c− 2ε

induces such a routing.
Now, we show that under the conditions of our

lemma, edge e must advertise the same constant to
each of its upstream neighboring edges. Let c1, . . . , ck
be the constant prices it advertises to its k up-
stream neighboring edges that route positive flows
f1,e, . . . , fk,e, respectively to e. Let f1, . . . , fk be the
total amount of flow arriving at each upstream neigh-
bor, and by assumption we have 0 < fi,e < fi.
First, observe that c1 = c2 = . . . = ck; if this were
not the case, assume without loss of generality that
c1 > c2, and from above, for any ε > 0, e could
augmenting its advertised prices so as to receive flow
f ′1,e = min(f1, f1,e + f2,e) > f1,e at price c1 − ε and
flow f ′2,e = f2,e − (f ′1,e − f1,e) < f2,e at price c2 − ε.
Such a change would strictly increase the utility of e.

To see that the flow is optimal, observe that e will
have an improving deviation unless it receives the
amount of flow f∗e that maximizes its utility given
its advertised constant price-per-unit flow c. By defi-
nition,

f∗e := (cx− xC(x)) ,

where C(x) is the private cost per unit flow of edge e
as a function the total flow it receives, encapsulating
both the internal latency of e, and the prices of the
downstream edges. Setting the derivative of the above
expression equal to zero, we see that c = d[xC(x)]

dx ,
which is precisely the marginal cost of node e evalu-
ated at the amount of flow it receives.

A symmetric argument applies to the competitors
of e, and thus in order for the instance to be at equi-
librium, one of the following conditions must hold:
• A single edge ei receives the entire flow fu at cost
c and all other edges ej have cost-per-unit flow
strictly larger than c.
• m ≥ 2 edges ei1 , . . . , eim receive positive flow

from u, and each advertises the same constant
price c, and receives flows f1, . . . , fm, respec-
tively, such that for all j ∈ {1, . . . ,m},

c = d[xCj(x)]
dx

(fj),

where Cj(x) is the private cost per unit flow for
edge vij to route x units of flow. Furthermore,
every edge vi that receives zero flow from u has
cost-per-unit flow at least c for routing the flow
they receive.

Given an instance at equilibrium in which every
edge that receives nonzero flow routes nonzero flow
to at least two distinct edges, the above requirements
of equilibria guarantee that the routing induces a so-
cially optimal flow. To see why, observe that every
edge that routes nonzero flow must satisfy the second
condition above, and thus all source-sink paths that
carry nonzero flow will have identical costs c∗, equal
to their marginal costs, and all source-sink paths that
carry zero flow have marginal cost at least c∗; this is
precisely the characterization of optimal flows.
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