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Abstract: We initiate the study of local, sublinear time algorithms for finding vertices with extreme topological
properties — such as high degree or clustering coefficient — in large social or other networks. We introduce a
new model, called the Jump and Crawl model, in which algorithms are permitted only two graph operations.
The Jump operation returns a randomly chosen vertex, and is meant to model the ability to discover “new”
vertices via keyword search in the Web, shared hobbies or interests in social networks such as Facebook, and
other mechanisms that may return vertices that are distant from all those currently known. The Crawl operation
permits an algorithm to explore the neighbors of any currently known vertex, and has clear analogous in many
modern networks.
We give both upper and lower bounds in the Jump and Crawl model for the problems of finding vertices of high
degree and high clustering coefficient. We consider both arbitrary graphs, and specializations in which some
common assumptions are made on the global topology (such as power law degree distributions or generation
via preferential attachment). We also examine local algorithms for some related vertex or graph properties, and
discuss areas for future investigation.
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1 Introduction
The proliferation of very large social and techno-

logical networks over the last decade or so — and the
attendant scientific and cultural interest they have at-
tracted — has led to the documentation of certain
local topological properties that are now believed to
be quite common. Perhaps beginning with earlier so-
ciological interest in global structure such as the “six
degrees” phenomenon (small diameter) and structural
holes, recent research has further identified local topo-
logical properties, such as individuals with extraordi-
narily high degree (sometimes dubbed “connectors”
or “hubs”), local neighborhoods with a high degree of
clustering (fraction of edges present) compared to the
overall edge density, vertices of high “centrality” for
various definitions of that term, and so on. There
is now a compelling dialogue in the literature be-
tween empirical works documenting and refining these
various notions of extreme individuals and neighbor-
hoods, and theoretical works attempting to explain
their persistent emergence via generative models for
network formation [11].

Given the presence of such “interesting” individuals
in large networks, how would we actually find them
— especially considering that for many such networks
(including the Web, or for non-employee researchers
of online social networks such as Facebook), there may

not exist an accessible, centralized description of the
network? This question is the topic of the current pa-
per, and while there are a few prior works that touch
on related topics (see Related Work below), it ap-
pears there has been no systematic study of finding
extremal vertices from only local operations. In this
paper we initiate and partially populate such a study.

We introduce a simple model for local graph explo-
ration that we call the Jump and Crawl model. As
mentioned in the Abstract and detailed below, this
model is meant to capture the two kinds of opera-
tions that seem to be commonly available in many
modern networks:
• Crawling. In many networks, once we are aware

of the existence or identity of a vertex, we are
also provided with links that allow us to exam-
ine any or all of its neighbors. For instance, in
the Web we have text hyperlinks allowing us to
crawl to neighboring pages. In Facebook (ignor-
ing privacy settings) and other social networks,
knowing one user’s profile lets us visit those of all
their friends.
• Jumping. Many modern networks also provide

some sort of global search mechanism that per-
mits the discovery of “new” vertices that may
be quite distant from all those previously known.
Web search lets us enter text phrases and see
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relevant pages; Facebook’s “Friend Finder” and
other mechanisms lets one similarly “jump” to
new profiles. Obviously in such cases there is
clear structure or bias to the vertices returned in
response to a query (since they are relevant to the
query itself); for simplicity we assume the Jump
operation produces a vertex uniformly chosen at
random from the entire network. Obviously other
distributional assumptions or other Jump mech-
anisms should be considered in future work.

As the Web, Facebook and other networks are mas-
sive and growing, we would like to examine algorithms
in the Jump and Crawl model whose running time
scales slowly (certainly sublinearly) with the global
network size. Within this framework, we examine the
problems of finding vertices of high degree, high clus-
tering coefficient, and a number of related properties.

1.1 Summary of Results
In Section 2 we provide nearly tight upper and lower

bounds for the problem of approximating the maxi-
mum degree vertex in arbitrary graphs; these bounds
show a general trade-off between increased Jump and
Crawl operations and improved approximation.

Still considering high degree vertices, we then
proceed to show that considerably improved upper
bounds can be obtained for more specific classes of
graphs. For graphs with a power law degree distribu-
tion, we prove that a sampling-based algorithm enjoys
an improved bound due to the assumed degree struc-
ture. For networks generated according to preferential
attachment — which have a power law degree distri-
bution in expectation, but also obey additional struc-
tural restrictions — we exploit rapid mixing results
to obtain further improvements in approximation.

In Section 3 we turn our attention to finding ver-
tices of both high degree and high clustering coeffi-
cient (densely connected neighborhood); retaining the
high-degree condition prevents trivial solutions such
as a triangle of vertices. We provide a general im-
possibility result and a general approximation algo-
rithm, as well as an improved approximation algo-
rithm for power law networks with some structural
assumptions. We conclude by discussing future re-
search directions.

We now more formally define the Jump and Crawl
model, mention some related work, and proceed with
the technical development.

1.2 The Jump and Crawl Model
We assume a graph G of n vertices, with the value

of n given 1. We assume that each vertex is identified
1In Appendix B we prove that knowledge of n is necessary

in general, in that it cannot be approximated sublinearly in
√
n

by a unique and arbitrary label, with no structure or
relationship assumed between the vertex labels and
graph connectivity.

Upon visiting a vertex, we learn its label and also
the labels of all its neighbors (these are the hyperlinks
of the Web or the friends’ profiles of Facebook), and
nothing more. In a Jump operation, we visit a vertex
uniformly chosen at random from the n vertices. In
a Crawl operation, we must first know the label of
a given vertex and one of its neighbors in G, upon
which we can then visit that neighbor via crawling.
Our goal is to study algorithms finding “interesting”
individuals in G, as discussed in the Introduction, us-
ing only Jump and Crawl operations on G. The total
number of such operations is our complexity measure
of interest.

A little thought (and our subsequent results) will
reveal that in general it is too much to expect algo-
rithms can find truly extremal vertices in sublinear
time. For this reason we introduce a natural notion
of approximation.

Definition 1 Given a numerical property P of ver-
tices (such as degree or clustering coefficient), let u∗
be the vertex with the maximum value for P . Then if
vertex v is such that P (u∗) ≤ k · P (v), we say that v
is a k-approximation to u∗. A similar definition holds
for the minimum.

1.3 Related Work
While we are not aware of any systematic prior

studies of approximating extreme vertex properties
from only local operations, there are a number of re-
lated works that we now briefly survey. Schank et al.
[16] are interested in estimating the average cluster-
ing coefficient across the entire network (in contrast
to our interest in finding individual vertices with high
clustering, which is not implied by a global approx-
imation). The authors assume a model where Jump
queries are allowed and there is a constant time oracle
that checks whether two vertices are connected by an
edge. Under this model the authors provide a con-
stant time randomized algorithm which computes an
unbiased estimator for the average clustering coeffi-
cient in the network. The estimator is based towards
counting triangles in the network, and thus not ap-
propriate for finding extreme individual vertices.

Eubank et al. [8] are interested in computing sta-
tistical properties of social networks, under a model
similar to the Jump and Crawl model. The authors
provide a general method for estimating the number
of pairs of vertices that are at distance i from each

in the Jump and Crawl model.
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other, given that the number of such pairs is at least
a constant fraction of all possible pairs. In general
their method runs in linear time in the network size, in
contrast to our interest in sublinear algorithms. The
authors also provide a good estimation of the (again
global) average clustering coefficient using a logarith-
mic query size, based on random sampling of vertices.

Also somewhat related is the large literature on ef-
ficient search or message routing in social networks
from local information [1, 2, 12], where messages are
passed between network vertices in search of a tar-
get or destination individual; but again there is no
direct interest in explicitly identifying extremal ver-
tices. Similarly, the literature on property testing in
large graphs often considers local operations that are
somewhat different than Jump and Crawl (such as
testing for the presence of an edge between any pair
of vertices) but again focuses on global properties such
as connectivity rather than extreme vertices.

2 Finding a High Degree Vertex
Given a network on n vertices, denote the maximum

degree in the network by d∗. Then given 0 < β < 1,
consider the goal of finding a vertex v such that d∗ ≤
degree(v) · n1−β . In this section we provide upper
and lower bounds for this problem under a variety of
assumptions on the network structure, beginning with
no assumptions.

2.1 Arbitrary Networks
Let us first assume we know the value d∗ in advance,

an assumption we eventually remove. One possible
strategy proceeds as follows: If the maximum degree
is smaller than n1−β , then any vertex would provide
the necessary approximation. If not, we notice that
the expected size of a random sample one has to take
in order to see a neighbor of the maximum degree
vertex is at most nd∗ . We therefore sample about nd∗
random vertices. If one of them has a degree more
than d∗

n1−β we stop and return its degree. Otherwise,
one of these vertices is a neighbor of the maximum
degree vertex. This strategy, which we call FindHigh-
DegreeVertex, is formalized below. Finally, to remove
the assumption that d∗ is known, we are only left with
simulating the possible values of d∗. This is done with
logarithmic overhead via a simple doubling trick.

Theorem 1 (Upper Bound) For any given 0 <
β < 1, algorithm FindHighDegreeVertex uses nβ logn
Jump and Crawl queries and approximates the max-
imum degree to an expected multiplicative factor of
O(n1−β).

Proof: Without loss of generality one may assume
the network size to be a power of two. Next, we may
assume that d∗, the highest degree in the network,
is known since we may use a simple doubling trick
where we may simulate the possible values of d∗ in
multiplicative intervals of 2, from 1 to n. Algorithm
FindHighDegreeVertex, given below, finds a O(n1−β)
approximation, with nβ logn queries.

The outer loop of the algorithm (line 5) costs at
most n

d∗ logn and the inner loop (line 10) at most
d∗
n1−β . Therefore the total cost is bounded by their
product O(nβ logn).

The maximum degree vertex has d∗ neighbors.
Therefore, the probability of hitting such a neighbor
by making a Jump query is d

∗
n . Therefore, by mak-

ing n
d∗ logn Jump queries, we hit such a vertex with

probability at least 1− (1− d∗n ) nd∗ logn ≥ 1−O( 1
n ).

A close inspection of the algorithm reveals that by
feeding it with a value of d that differ by a factor of
two, the approximation value the algorithm returns
would change by at most a factor of at two.

As mentioned before, we end by using a simple dou-
bling trick where we simulate all the possible values
of d∗ as 1, 2, 4, . . . , n2 , n. This simulation adds only a
multiplicative factor of logn to the query complexity.
By the previous lemma, for one of the simulated val-
ues, we will find a vertex of degree at least d∗ · n1−β .

We next show that FindHighDegreeVertex is opti-
mal (up to logarithmic factors).

Theorem 2 (Lower Bound) Let A be an algorithm
for approximating the maximum degree property in the
Jump and Crawl model. Let 0 < β < 1. Then if A
uses at most nβ queries, A approximates the maxi-
mum degree to an expected multiplicative approxima-
tion of Ω

(
n1−β).

Proof: We shall build, for any given values of n and
β, a network G(n, β). First set m = n(1−β), k =
n− n(1−β). Denote the set of vertices in the network
by V = {v1.v2, . . . , vn}. The network G(n, β) may
be thought of as a concatenation of a line subgraph
with a star subgraph; see Figure 1. The line subgraph
is made up of the vertices v1, v2, . . . , vk, where two
consecutive vertices are connected by an edge. The
star subgraph is made of a vertex vk+1 connected tom
leaf vertices (degree one vertices) vk+2, vk+3, . . . , vn.
The final network G(n, β) is created by connecting vk
(the rightmost vertex of the line subgraph) with the
hub of the star subgraph, vertex vk+1.

Now set

S = {vk−m, vk−m+1, vk−m+2, . . . , vk, . . . , vn}.
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Algorithm 1 FindHighDegreeVertex
Require: Network G, the maximum degree value d∗,

parameter 0 < β < 1.
1: Initialize a pointer p to point to an arbitrary ver-

tex.
2: if d∗ < n1−β then
3: Stop and return the vertex found with one

Jump query.
4: else
5: for n

d∗ logn times do
6: Make a Jump query. Let v be the vertex

found.
7: if degree(v) ≥ d∗

n1−β then
8: Stop and return v.
9: else

10: Make degree(v) Crawl queries from v to
all of v’s neighbors to find the maximum
degree neighbor of v, call it u.

11: if degree(p) > degree(u) then
12: Set p = u
13: end if
14: end if
15: end for
16: Output p
17: end if

Clearly, |S| = 2n1−β. Therefore, using nβ Jump
queries algorithmA would fail to sample a vertex from
S with probability

(
1− 2n

1−β

n

)nβ
≈ 1
e2
.

Therefore, with constant probability, any Jump query
will return a degree 2 vertex from V − S (namely,
from the “left side” of the line subgraph). Now in
order for A to discover the hub vertex it must cross
all the “right side” of the line subgraph, namely the
vertices in S, which is impossible since the number of
queries needed for doing so is more than nβ . There-
fore, with constant probability, A would see only de-
gree 2 vertices, while the highest degree is n1−β and
we are done. We remark that a similar construction
to G(n, β) would give an analogous lower bound for
densely connected graphs.

2.2 Power Law Networks
Over the past decade researchers have discovered

that the degree distribution of many natural networks
resembles a power law. By this it is usually meant
that for some constant γ, the fraction of degree d ver-
tices is “close” to 1

dγ , if d is “large enough”. Both
“close” and “large enough” are often left unspecified

Figure 1: The network G(n, β)

in the literature, but for rigorous statements must be
quantified. We thus suggest a simple, rigorous defi-
nition of power law networks. Our definition formal-
izes the above intuition and has the advantage that it
treats all degree values in a unifying way.

2.3 Rigorous Definition
We first define a finite power law distribution.

Definition 2 (Finite Power Law Distribution)
Let m < n be positive integers. Let γ > 1. We
say the P is a finite power law distribution, denoted
PL(m,n, γ), if:

I The support of P is the integers between m and
n.

II P (d) = (1/Z) 1
dγ for m ≤ d ≤ m, where Z =

Z(m,n, γ) =
∑d=n
d=m

1
dγ .

Definition 3 (Power Law Network) Let G be a
network on n vertices. Let Q be its empirical degree
distribution, namely, Q(d) = 1

n · |v ∈ G : degree(v) =
d|. Let P be a finite power law distribution P =
PL(m,n, γ). We say that G is a power law network,
denoted G ∈ Network(m,n, γ), if:

1. The support of Q is on the integers between m
and n.

2. For m ≤ d ≤ n, |Q(d)− P (d)| ≤ 1
dγ+1 .

It can be easily shown that many such networks
exist.

Two useful properties of power law networks are
given below.
Lemma 1 Let G ∈ Network(m,n, γ) be a power law
network. Then the highest degree in the network d∗ is
upper bounded by ( nZ (1 + Zo(1)))

1
γ .

Lemma 2 Let G ∈ Network(m,n, γ) be a power law
network with γ > 2 and let d ≤ d∗

2 , where d∗ is the
maximum degree in G. Then the fraction of vertices
with degree of at least d is θ( 1

Zdγ−1 )

The proof of the lemmas is given in appendix A.
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2.4 A Faster Algorithm for Power Laws
We now show that faster algorithms for the max-

imum degree property exist when the network is a
power law network with exponent γ.

Theorem 3 (Upper Bound) Let 0 < β < γ−1
γ .

Assume γ > 2. Then algorithm FindHighDegreeV-
ertexOnPowerLaws (see pseudocode) uses O(nβ logn)
Jump and Crawl queries and approximates the max-
imum degree to an expected multiplicative factor of
O
(
n

1
γ− β

(γ−1)
)
.

Proof: Since γ > 2 it follows that 1 ≤ Z ≤ π2

6
so we may regard Z as a constant. The strategy
behind the algorithm is to randomly sample the ex-
pected number of vertices needed in order to see a
vertex of degree at least d = n

β
(γ−1) . The algo-

rithm makes Θ(dγ−1 logn) Jump queries. By Lemma
2 the inverse probability of sampling a vertex of de-
gree at least d is Θ(dγ−1). Therefore, by a standard
amplification argument, one indeed find such a ver-
tex, with Θ(dγ−1 logn) Jump queries, with probabil-
ity 1 − O( 1

n ). Since the maximum degree in the net-
work is at most ( nZ (1 + Zo(1))

1
γ , the approximation

guarantee is O( ( nZ )
1
γ

d ) = O
(
n

1
γ− β

(γ−1)
)

Algorithm 2 FindHighDegreeVertexOnPowerLaws
Require: Power law network G, the power law net-

work’s exponent γ, parameter 0 < β < 1.
1: Initialize a pointer p to point to an arbitrary ver-

tex.
2: for nβ logn times do
3: Make a Jump query. Let v be the vertex found.
4: if degree(p) > degree(v) then
5: Let p = v
6: end if
7: end for
8: Output p

2.5 Preferential Attachment Networks
In this section we make the further assumption that

the unknown network was created by the preferential
attachment process of Barabasi [3]. In this model,
one first fixes an integer parameter m ≥ 1. Then on
each round, a new vertex is added and is connected
to m existing (previously added) vertices; the proba-
bility the new vertex is connected to existing vertex
v is proportional to the (current) degree of v. As was
shown by Bollobás et al. [4], asymptotically, the ex-
pected degree distribution of the network is a power
law with exponent γ = 3; but it is also known that

the actually realized degree sequence may be far from
its expectation. However, for small degree values, the
degree distribution is close to its expectation[6]. In
this sense a preferential attachment network may be
seen as a special family of power law networks. More-
over, the highest degree in a typical preferential at-
tachment network is

√
n [9]. Therefore in order to

find a vertex with high degree one can apply the tech-
niques of the upper bound given in the previous sec-
tion and get a n 1

2− β2 approximation using a query size
of O(nβ logn).

However, due to additional network structure in-
herent in the preferential attachment process we can
do even better, based on the following two facts. Fact
1: a Lazy Random Walk on the preferential attach-
ment network is rapidly mixing (in polylog time in
n) to the degree distribution; Fact 2: When sampling
the degree distribution, the expected time one has to
wait in order to see a vertex of degree at least d is d.
These intuitions are formalized in FindHighDegreeV-
ertexOnPA below.

Algorithm 3 FindHighDegreeVertexOnPA
Require: Preferential attachment network G, pa-

rameter 0 < β < 1
11 .

1: Initialize a pointer p to point to an arbitrary ver-
tex.

2: for nβ logn times do
3: Run a lazy random walk from any arbitrary ver-

tex for 2 log2 n steps via Crawl queries.
4: Take the vertex v found at the end of the walk.
5: if degree(p) > degree(v) then
6: Let p = v
7: end if
8: end for
9: Output p

Theorem 4 (Upper Bound) Let 0 < β < 1
11 .

Then algorithm FindHighDegreeVertexOnPA uses
O(nβ logn) Jump and Crawl queries and approxi-
mates the maximum degree to an expected multiplica-
tive ratio of O(n 1

2−β).

The first proof ingredient is to show that the prefer-
ential attachment network mixes, w.h.p., in poly log-
arithmic time. We start by defining the lazy random
walk on G and then proceed to show it is rapidly mix-
ing.

Definition 4 A lazy random walk on a connected
network G (LRW for short) stays at the current ver-
tex with probability 1

2 , and with probability 1
2 moves
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to a uniformly chosen random neighbor. This ran-
dom walk forms an ergodic Markov chain. We denote
this chain by K. We denote by Kt its t-th power, the
stationary distribution of K by π, and the spectral gap
of K as g = max{λ2, |λn|}.

Note that the LRW requires only Jump and Crawl
queries in its operation. Algebraically, the LRW is
more appealing than its random walk counterpart
since all its eigenvalues are non-negative. We next
state a few known facts about LRWs on connected
networks (the proofs may be found in [7], pages 153-
167):

1. The unique stationary distribution ofK is π(v) =
degree(v)

2mn .

2. The spectral gap equals λ2 since all the eigenval-
ues of the LRW are nonnegative.

3. maxi,j{|K
t(i,j)
π(j) − 1|} ≤ 1

πmin
gt.

4. 1− g ≥ h2

2 .

5. The conductance

h = minπ(S)≤ 1
2

∑
i∈S,j∈Sc π(i)K(i, j)

π(S)

is constant for preferential attachment networks.

Corollary 1 The mixing time for the lazy random
walk on a typical preferential attachment graph is t =
θ(log n). That is, maxi,j{|K

t(i,j)
π(j) − 1|} ≤ O( 1

n )

Proof: By the previous lemma we get that the spec-
tral gap is less than a constant smaller than 1. Next,
πmin = Ω( 1

n ), and the corollary follows immediately.
The second proof ingredient is a theorem due to

Chung and Lu:

Theorem 5 (Adapted from [6], page 70) Let G
be a network of n vertices created using the preferen-
tial attachment process with parameter m. Let mk,0
the number of vertices with degree k in the initial net-
work. Then the number of vertices mn with degree
d is nMk + mk,0 + O(

√
(k +m− 1)3n logn), where

Mm = 2
3 and Mk = O(k−3), for k ≥ m+ 1.

Next, we provide the proof sketch for Theorem
4. Line 4 in the algorithm returns the last node
visited in an LRW walk of length log2 n queries.
By returning this node we are in fact sampling a
node from the degree distribution of the network, as
shown in Corollary 1. Consider small degree val-
ues of d, for which we know by the Chung and Lu

theorem that the degree distribution is very close to
its expected values. Choose the maximum k such
that 1

n

√
(k +m− 1)3n logn ≤ 1

k3+1 . The solution
is k = o(n 1

11 ). Under such a k we conclude, us-
ing Theorem 5, that the probability of seeing a ver-
tex with degree exactly d, under the degree distribu-
tion, is n · c 1

d3 · d2mn ∼ 1
d2 . By Lemma 2, the prob-

ability of sampling a vertex of degree d or more is
O(
∑
v:degree(v)≥d

1
d2 ) = O( 1

d) (this is true since sam-
pling a smaller than d vertex is 1 minus the value
given by the lemma). Next, notice that the maximum
degree of a preferential attachment network is about√
n [9]. Now define the degree d to be the solution to
d = nβ (any 0 < β < 1

11 is valid). Then FindHigh-
DegreeVertexOnPA, constructs, with nβ logn queries,
an expected multiplicative approximation of

(
n

1
2−β
)
.

Discussion: Random walks allow effective sampling
from the degree distribution of the preferential attach-
ment network. In fact, for sparse graphs the proba-
bility of sampling a vertex of degree d or more, from
any degree distribution is always bigger then sampling
such a vertex from the uniform distribution. Thus, for
any network where the LRW mixes in polylogarithmic
time we may devise an analog algorithm to FindHigh-
DegreeVertexOnPA. This algorithm would give better
query results then an algorithm that samples directly
from the uniform distribution.

2.6 Comparing the Rates
It is interesting to compare the approximation

rate achievable for arbitrary connected networks with
those possible for power law and preferential attach-
ment networks. The relevant plots are given in Figure
2. The x-axis measures the number of queries used,
and units are the log number of queries divided by
log network size (thus extracting the exponent or root
of n). The y-axis measures the approximation guar-
antee and is given in units of log of approximation
ratio divided by log network size (again extracting
the approximation exponent). As we proved, for ar-
bitrary networks the optimal algorithm may achieve
with query exponent β an approximation exponent of
1−β. For power law networks with given degree distri-
bution exponent γ > 1 we could do better and achieve,
with query exponent β, an approximation exponent of
1
γ− β
γ−1 . This exponent is always better than the 1−β

exponent achievable for arbitrary graphs; we plot the
achievable power law network rates for two values of
γ. For preferential attachment networks, with a query
exponent of β we can achieve an approximation ratio
of 1

2 − β, but could only prove so for β < 1/11, and
thus this trade-off is represented as a line fragment
rather than a full line. We note that while power law
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Figure 2: Summary of achievable trade-offs between Jump
and Crawl query complexity and maximum degree approx-
imation for various assumptions on the network; see text
for details and discussion.

and preferential graphs are of course subsets of the
class of all graphs, they are not directly comparable
to each other — as discussed above, preferential at-
tachment graphs obey our definition of power law de-
gree distributions only in expectation, and are known
with high probability to violate this expectation at
large degrees.

3 High Clustering Coefficient
The clustering coefficient (CC for short) of a given

vertex measures how densely connected its neighbors
are.

Definition 5 (Clustering Coefficient) Given a
vertex v with degree d, the clustering coefficient (CC)
of v is defined as

CC(v) =
number of triangles containing v(

d
2
) .

If d = 0 we define CC(v) = 0.

This definition is equivalent to the edge density
(fraction of possible edges present) among the neigh-
bors of v (excluding v itself).

Many empirical papers have shown natural net-
works often have vertices of high clustering coefficient

(as well as high degree); see for instance [11] Chap-
ter 2 for a detailed survey. In this section we exam-
ine the problem of finding such vertices in the Jump
and Crawl model. Eubank et al. [8] showed that the
global average of the CC can be estimated quickly
in a Jump and Crawl model using standard Chernoff
bounds. This immediately provides a strategy to find
a vertex with more than the average CC value (using
Markov’s inequality). However, finding a vertex with
a high CC may not be that illuminating: it may be
the case that the vertex with the highest CC has only
very few neighbors. Take the extreme case of a vertex
with two neighbors that are also connected to each
other (a triangle). In this case the CC of v would be
the highest possible of 1. This motivates us to ask
how hard is it to find a vertex with simultaneously
high CC and high degree. We shall phrase this ap-
proximation problem as follows: given a degree lower
bound d as input, find a vertex of degree not much
smaller than d whose CC approximates the maximum
CC among all vertices of degree d or larger.

Definition 6 Given a graph on n vertices, and a de-
gree value d, let v∗ be the vertex with the highest CC
among vertices of degree d or more. We say that v
is a (α, d, ε)-approximation to the maximum CC if
degree(v) ≥ α · d and CC(v∗) ≤ CC(v) + ε, for
0 < α ≤ 1 and 0 < ε < 1. If there are no vertices
of degree at least α · d in the network we say that ev-
ery vertex is a (α, d, 0)-approximation.

Let us start by noting that since we are requiring
a degree lower bound on the vertices found in addi-
tion to high CC, it is natural to begin by attempting
to adapt our results for finding high degree vertices
to the CC problem. Indeed, a simple adaptation of
the lower bound for arbitrary networks given in Theo-
rem 2 already yields similar difficulty for the CC prob-
lem. Consider Figures 3 and 4, which are slight vari-
ants of the construction in Theorem 2. In each variant
there is a single high-degree vertex, but in one variant
the CC of that vertex is 0 (the lowest possible) and in
the other it is 1 (the highest possible). If an algorithm
fails to find this high-degree vertex, it cannot hope to
approximate the clustering coefficient by a nontrivial
additive amount, thus establishing a lower bound of
n1−β queries on the (1, nβ , 1/2)-approximation prob-
lem for CC.

On the other hand, it is unfortunately not clear
how to adapt the upper bound for the degree prob-
lem on arbitrary graphs given by Theorem 1 to the
CC problem. The difficulty is that the algorithm of
that upper bound will only produce some vertex of
high degree — but if there are many such vertices,
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Figure 3: The line-star network G1

Figure 4: The line-clique network G2

it provides no guarantee that the one produced will
also have high CC. Therefore we next ask whether a
(α, d, ε) is achievable for some nontrivial α < 1. In
the following theorem we show that at the expense of
a logarithmic factor in the degree, we can obtain arbi-
trarily small degradation to the maximum clustering
coefficient.

Theorem 6 (Upper Bound) For any given 0 <
β < 1, algorithm FindHighCCHighDegreeVertex uses
Õ(n1−β) Jump and Crawl queries and returns a
( 1

logn , n
β, 1

logn ) approximation to the maximum clus-
tering coefficient, whp. In other words, if v∗ is the
vertex with the highest CC value between all vertices
with degree at least nβ the algorithm returns a vertex
v of degree at least nβ

logn and cc(v∗) ≤ CC(v) + 1
logn ,

with probability of 1−O( 1
n ).

Proof: The algorithm makes all its queries in line 1
and therefore uses at most Õ(n1−β) Jump and Crawl
queries. Let v∗ = argmax{CC(v) : degree(v) ≥ d}.
Then probability the v∗ is added to T can be eas-
ily shown to be at least 1 − n− logn, using Hoeffding
bound. Next, vertices w with degree at most nβ

logn
are excluded from T with high probability. For such
vertex w the expected number of times a neighbor
of w is sampled is less then log3 n. Therefore, using
Hoeffding bound (see appendix C for restatement of
the bound), the probability that at least log4 n neigh-
bors of w are sampled and added to S is smaller then

Algorithm 4 FindHighCCHighDegreeVertex
Require: Network G, parameter 0 < β < 1.

1: Take 2n1−β log4 n Jump queries and store the ver-
tices found (including repetitions) in a multiset S.

2: for each node v in the network do
3: Compute neighbors[v] to be the number of el-

ements u in S s.t. u is a neighbor of v.
4: end for
5: Initialize T = ∅.
6: for each node v in the network do
7: if neighbors[v] ≥ log4 n then
8: Add v to T .
9: end if

10: end for
11: for each node v in T do
12: Compute Sv to equal the elements of S (includ-

ing repetitions) that are neighbors of v.
13: Compute ĈC(v)=ApproxCCBySample(v,Sv )
14: end for
15: return argmaxv∈T {ĈC(v)}

Algorithm 5 ApproxCCBySample
Require: Network G, a vertex v, a multiset Sv of

elements that are neighbors of v.
1: Set count = 0.
2: for i = 1 to log3 n do
3: Find two elements u,w in Sv that correspond to

different vertices of G and set Sv = Sv−{u,w}.
If there are none return FAIL.

4: if u is a neighbor of w then
5: count = count+ 1.
6: end if
7: end for
8: return countlog3 n
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n−2 logn. Using the union bound this probability is
kept as n− logn over all such w’s. To finish up the ar-
gument we need to show that for each vertex in T the
algorithm approximates its CC value to an additive
value of 1

logn . To show this we first notice that the
projection of S onto the set of neighbors of v, namely
Sv is a random sample of size Sv taken form the neigh-
bors of v. Next, it was shown that when one samples
uniformly at random from a set of n elements then
with probability of at least 1− n−1 each element ap-
pears at most 3 logn

log logn times (see for example [13] page
93). Therefore, Sv contains at least log3 n distinct
pairs and algorithm ApproxCCBySample, with high
probability, will not return FAIL. In that case, Find-
HighCCHighDegreeVertex computes a sum over indi-
cator functions where each indicator function checks
if two randomly sampled vertices are connected and
form a triangle together with v. By using the addi-
tive Hoeffding bound we conclude that the CC of v
will be estimated to an additive factor of 1

logn with
probability of at least 1− 1

n2 . Using the union bound
the clustering coefficient of each vertex in T is indeed
estimated to an additive factor of 1

logn with proba-
bility of at least 1 − 1

n . Thus, algorithm FindHigh-
CCHighDegreeVertex returns a vertex v of degree at
least nβ

logn and CC(v∗) ≤ CC(v) + 1
logn , with proba-

bility of 1−O( 1
n ).

For power law networks where the lazy random walk
converges fast we can do substantially better. Denote
the mixing time as usual by τ .

Theorem 7 (Upper Bound) Assume that the net-
work at hand follows a power law with exponent γ ≥ 3,
and that the LRW mixes in time τ over the network.
Then for any given 0 < β < 1, algorithm FindHigh-
CCHighDegreeVertexForPowerLaws uses Õ(n1−2β) · τ
Crawl queries and returns a (1, nβ, 1

logn ) approxima-
tion to the maximum clustering coefficient property.
In other words, if v is the vertex with the highest
CC value between all vertices with degree at least
nβ the algorithm returns vertex v of degree at least
nβ, and CC(v∗) ≤ CC(v) + 1

logn , with probability of
1− e−2 −O( 1

n ).

Proof: First, without loss of generality we assume
that the value CC(v∗) is known to the algorithm. We
can then simulate the possible values using a standard
doubling trick, starting from c = 1

logn up to 1, on
the expense of an additional logarithmic factor to the
query time. Second, the number of queries the algo-
rithm makes is Õ( nd2 ) since γ ≥ 3 and CC(v) ≥ 1

logn .
Next, we prove the correctness of the algorithm. We
use the following observation : if a vertex of degree d

has CC(v) = c then at least cd5 of v’s neighbors each
has degree at least cd5 (otherwise we get a contradic-
tion CC(v) < c). Therefore, by sampling 25kn

d2 times
from the LRW we are effectively sampling that much
from its stationary distribution which is the degree
distribution. The probability to sample a neighbor
of v∗ is therefore at least cd2

25kn . Therefore, with 50kn
cd2

samples taken from the degree distribution we shall
sample v∗ with probability 1− e−2. Using Hoeffding
bound we conclude that with probability of at least
1− n− logn we shall not sample neighbors of a vertex
with degree less than d

4 logn . Last, given a vertex v
in a graph of n vertices, ApproxVertexCCValue (see
pseudocode), with O(log3 n) Crawl queries, approxi-
mates v’s clustering coefficient to an additive error of
at most 1

logn , with probability 1− O( 1
n2 ). Using the

union bound the clustering coefficient of each vertex
in T is indeed estimated to an additive factor of 1

logn
with probability of at least 1− 1

n . Last, by lemma 2
the network has at most n(1 + o(1)( logn

d )γ−1 nodes of
degree at least d

logn so the algorithm, with high prob-
ability, won’t return FAIL and T will contain that
many vertices. Thus, the algorithm returns a vertex
v of degree at least nβ

logn and CC(v∗) ≤ CC(v)+ 1
logn ,

with probability of 1− e−2 −O( 1
n ).

Using a standard amplification trick the success prob-
ability can be amplified to 1 − O( 1

n ) on the expense
of an additional logarithmic factor in the query com-
plexity.

As a sample application of this theorem to another
well-studied class of networks, we have:

Corollary 2 Take d = nβ for 0 < β < 1. Then
with Õ(n1−2β) queries, algorithm FindHighCCHigh-
DegreeVertexForPowerLaws produces a node v of de-
gree at least nβ and CC(v∗) ≤ CC(v) + 1

logn , in the
following cases.

1. Take a network created using the preferential at-
tachment process. Then with high probability
over the process the LRW over the network is
O(logn) mixing and follows a power law over de-
grees nβ ≤ n11.

2. Consider the model of producing a random graph
with a given degree sequence of Newman et al
[14]. It was shown that with high probability a
random network would have a O(log3 n)-mixing
time, if all the degrees are bigger than 2 (see [7]
page 160 for more details). Take the given graph
to be a power law network G ∈ Network(3, n, γ),
for γ ≥ 3.

196



LOCAL ALGORITHMS FOR FINDING INTERESTING INDIVIDUALS IN LARGE NETWORKS

Algorithm 6 FindHighCCHighDegreeVertexFor-
PowerLaws
Require: Power law network G ∈ Network(m,n, γ)

with n vertices and kn edges, mixing time τ , a
degree value d, the clustering coefficient value c.

1: S = ∅.
2: for for 50kn

cd2 times do do
3: Run an LRW from an arbitrary vertex for τ

steps via Crawl queries. Add the vertex found
at the end of the walk to S.

4: end for
5: Initialize a set T = ∅.
6: for each node v in the network do
7: if there exists a vertex u in S that is a neighbor

of v then
8: Add v to T if v /∈ T .
9: end if

10: end for
11: if size of T is bigger than 2n( logn

d )
γ−1

then
12: return FAIL
13: end if
14: if ∀v ∈ T degree(v) < d then
15: return FAIL
16: end if
17: for each node v in T do
18: Approximate CC[v] directly by computing

ĈC(v)=ApproxVertexCCValue(v).
19: end for
20: return argmaxv∈T {ĈC(v) : degree(v) ≥ d}

Algorithm 7 ApproxVertexCCValue
Require: Network G, a vertex v.

1: Initialize a counter, cnt = 0.
2: for log3 n times do
3: choose two distinct random neighbors of v, call

them u,w.
4: if u appears in the adjacency list of w then
5: cnt = cnt+ 1.
6: end if
7: end for
8: Output cnt

log3 n

Thus, we again beat the hardness results for arbi-
trary networks — by making structural assumptions
that allow the additive error to go to 0 with network
size.

4 Future Research
In this work we initiated a study of local algo-

rithms for finding vertices with extreme topological
properties in large social or other networks. The next
property we wish to understand is the betweenness
centrality (and other common centrality measures).
Betweenness centrality measures how many shortest
paths are passing through a vertex. Vertices with high
betweenness centrality value may therefore be suscep-
tible to many kinds of attacks, or play important roles
in organizations. It is of interest to understand how
quickly one can find such vertices in the Jump and
Crawl model.
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Appendix A: Omitted Proofs
Proof of lemma 1: Let Q be the empirical de-
gree distribution of G. We need to find a degree
d such that Q(d) = 1

n . Namely, we need to solve
1
Zdγ +∆ = 1

n , where ∆ is the difference between P (d),
the power law distribution PL(m,n, γ) and the dis-
tribution Q(d). Since 1

dγ+1 = o( 1
dγ ), the solution is

( nZ (1− Zo(1)))
1
γ ≤ d ≤ ( nZ (1 + Zo(1)))

1
γ .

Proof of lemma 2: As before, let P be a finite power
law distribution PL(m,n, γ), and denote as usual Z =∑d=n
d=m

1
dγ . By the previous lemma the probability to

uniformly sample a vertex v with a degree at least d

is at least
∑i=( nZ (1−Zo(1))

1
γ

i=d [ 1
Z(d+i)γ (1−o(1))]. Denote

r1 =
∑i=( nZ )

1
γ

i=d
1

Z(d+i)γ . It suffices to show that r1 =
θ( 1
Zdγ−1 ).

Let d > 1. Since f(x) = 1
xγ is continuous and mono-

tonically decreasing we get,

∫ x=( nZ )
1
γ

x=d−1

1
Z(d+ x)γ

dx ≤ r1

and

r1 ≤
∫ x=( nZ )

1
γ +1

x=d−1

1
Z(d+ x)γ

dx.

Next, ∫ x=( nZ )
1
γ

x=d

1
Z(d+ x)γ

dx =

1
Z(γ + 1)dγ−1 −

1
Z(γ + 1)(d+ ( nZ )

1
γ )γ−1

=

θ( 1
Zdγ−1 ) , since d ≤ d∗2 .

Appendix B: Network Size
We discuss here a related problem of estimating

the network size in the Jump and Crawl model. The
goal is to compute an estimator n̂ which gives a k-
approximation to the network size: 1

k ≤ n̂
n ≤ k.

Clearly, any known algorithm that estimates the uni-
form distribution support size is a valid algorithm to
use here. For the distribution support size problem
it is known that any algorithm must use at least

√
n

samples and that O(
√
n) suffices, in order to get a

tight approximation (see [15] for a discussion). How-
ever, in the Jump and Crawl model one is allowed
to take Crawl queries in addition to Jump queries.
Therefore, given a connected network the Jump and
Crawl model seems more powerful than just a model
with Jump queries. Interestingly, we next show this
isn’t the case - namely, no algorithm can estimate the
network size well using less than

√
n queries.

Theorem 8 (Lower Bound) Let G be a 2-vertex
connected graph. Let A be an algorithm for estimating
the network size, working under the Jump and Crawl
model. Then if A uses o(

√
n) queries A would fail to

approximate the network size to any finite factor.

Proof: Fix an integer s > 1. Take two cycle networks
one with n nodes and the other with ns (a cycle net-
work is another name for a 2 regular graph). We next
show that with o(

√
n) queries A will fail to differenti-

ate between the two networks.
First, without loss of generality, we may assume

that any given algorithm first make all its Jump
queries before making its Crawl queries. We can al-
ways simulate the behavior of the original algorithm
by first taking all the Jump queries. The cost (number
of queries) of the simulation would be at most twice
of that the original algorithm. Saying that, we now
consider what strategy an algorithm may use on the
cycle network (even when knowing in advance it is a
cycle network). After the Jump phase, the algorithm
is only left with making Crawl queries so it can move
left or right from each vertex found, a long the cycle.
We next show that not only there are no repetitions
in the vertices found in the Jump phase but that these
vertices are spread around the cycle, with distance of
at least o(

√
n) between any pair of them. Therefore,

any algorithm that uses o(
√
n) queries will never see a

vertex twice. This behavior would still be true even if
we replaced n by ns. Therefore, the algorithm cannot
differentiate between these two cases. To finish up the
proof we are left with the calculation of the distance
between vertices found in the Jump phase. Let vi be
the vertex found by the i’th Jump query. Let k be the
total number of vertices found in the Jump phase. We
know that k = o(

√
n). Next we show the probability

that the distance between any two such vertices is less
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than k tends to 1 as n goes to infinity. It is suffice to
show that the complement probability goes to zero.
Let Ei be the event that the vertex added by the i’th
Jump query is closer than k to some of the vertices
v1, v2, . . . , vn. In particular we are interested in calcu-
lating Pr(Ei|¬Ei−1, . . . ,¬E2,¬E1). This probability
is upper bounded by 2ik

n (1− (i−1)k
n )(1− (i−2)k

n ) . . . (1−
k
n ). Using the inequality 1− x ≤ exp(−x), we get,

Pr(Ei|¬Ei−1, . . . ,¬E2,¬E1) ≤ 2ik
n

exp (−ki
2

2n
)

≤ 2i√
n

exp (
−ki2
2n

).

By the union bound the probability that some query
i is bad, namely, the new vertex is close to some pre-
vious vertex, is o(1) and goes to zero as n goes to
infinity.

Appendix C: Concentration Bounds
Theorem 9 (Additive Hoeffding Bound) [10]
Let X1, X2, . . . , Xm be a sequence of m independent
Bernoulli trials, each with probability of success
E[Xi] = p. Let, S = X1 + X2 + . . . + Xm. Let
0 ≤ γ ≤ 1. Then,

Pr[ S
m
> p+ γ] ≤ exp(−2mγ2)

and,
Pr[ S
m
< p− γ] ≤ exp(−2mγ2).

Theorem 10 (Multiplicative Chernoff Bound)
[5] Let X1, X2, . . . , Xm be a sequence of m indepen-
dent Bernoulli trials, each with probability of success
E[Xi] = p. Let, S = X1 +X2 + . . .+Xm. Let γ ≥ 0.
Then,

Pr[ S
m
> (1 + γ)p] ≤ exp(−mpγ

2

3
)

and,

Pr[ S
m
< (1 − γ)p] ≤ exp(−mpγ

2

2
).
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