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Abstract: Starting with the work of Ishai-Sahai-Wagner and Micali-Reyzin, a new goal has been set within
the theory of cryptography community, to design cryptographic primitives that are secure against large classes
of side-channel attacks. Recently, many works have focused on designing various cryptographic primitives that
are robust (retain security) even when the secret key is “leaky”, under various intractability assumptions. In
this work we propose to take a step back and ask a more basic question: which of our cryptographic assumptions
(rather than cryptographic schemes) are robust in presence of leakage of their underlying secrets?
Our main result is that the hardness of the learning with error (LWE) problem implies its hardness with leaky
secrets. More generally, we show that the standard LWE assumption implies that LWE is secure even if the
secret is taken from an arbitrary distribution with sufficient entropy, and even in the presence of hard-to-invert
auxiliary inputs. We exhibit various applications of this result.

1. Under the standard LWE assumption, we construct a symmetric-key encryption scheme that is robust to
secret key leakage, and more generally maintains security even if the secret key is taken from an arbitrary
distribution with sufficient entropy (and even in the presence of hard-to-invert auxiliary inputs).

2. Under the standard LWE assumption, we construct a (weak) obfuscator for the class of point functions
with multi-bit output.

We note that in most schemes that are known to be robust to leakage, the parameters of the scheme depend on
the maximum leakage the system can tolerate, and hence the efficiency degrades with the maximum anticipated
leakage, even if no leakage occurs at all! In contrast, the fact that we rely on a robust assumption allows us to
construct a single symmetric-key encryption scheme, with parameters that are independent of the anticipated
leakage, that is robust to any leakage (as long as the secret key has sufficient entropy left over). Namely, for
any k < n (where n is the size of the secret key), if the secret key has only entropy k, then the security relies
on the LWE assumption with secret size roughly k.

Keywords: Leakage-resilient Cryptography, Learning with Errors, Symmetric-key Encryption, Program Ob-
fuscation.

1 Introduction
The development of the theory of cryptography,

starting from the foundational work in the early 80’s
has led to rigorous definitions of security, mathemat-
ical modeling of cryptographic goals, and what it
means for a cryptographic algorithm to achieve the
stated security goals.

A typical security definition builds on the follow-
ing framework: a cryptographic algorithm is modeled
as a Turing machine (whose description is known to
all) initialized with a secret key. Adversarial entities,
modeled as arbitrary (probabilistic) polynomial-time
machines have input/output access to the algorithm.
The requirement is that it is infeasible for any such
adversary to “break” the system at hand. The (often
implicit) assumption in such a definition is that the se-

cret keys used by the algorithm are perfectly secret and
chosen afresh for the algorithm. In practice, however,
information about keys does get compromised for a
variety of reasons, including: various side-channel at-
tacks, the use of the same secret key across several
applications, or the use of correlated and imperfect
sources of randomness to generate the keys. In short,
adversaries in the real world can typically obtain in-
formation about the secret keys other than through
the prescribed input/output interface.

In recent years, starting with the work of Ishai,
Sahai and Wagner [19] and Micali and Reyzin [21],
a new goal has been set within the theory of cryp-
tography community to build general theories of se-
curity in the presence of information leakage. A
large body of work has accumulated by now (see
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[1, 3, 6, 8, 12–14, 14, 16, 19, 21, 22, 25, 26, 28] and
the references therein) in which security against dif-
ferent classes of information leakage has been defined,
and different cryptographic primitives have been de-
signed to provably withstand these attacks. A set
of works particularly relevant to our work are those
that design cryptographic primitives which are “ro-
bust” in the following sense: they remain secure
even in the presence of attacks which obtain arbi-
trary polynomial-time computable information about
the secret keys, as long as “the secret key is not fully
revealed” (either information theoretically or compu-
tationally) [1, 11, 12, 20, 22].

In this paper, we turn our attention to the notion of
robust cryptographic assumptions rather than robust
cryptographic constructions.

Robustness of Cryptographic Assumptions
Suppose one could make a non-standard assump-

tion of the form “cryptographic assumption A holds
even in the presence of arbitrary leakage of its secrets”.
An example would be that the factoring problem is
hard even given partial information about the prime
factors. Once we are at liberty to make such an as-
sumption, the task of coming up with leakage-resilient
cryptographic algorithms becomes substantially eas-
ier. However, such assumptions are rather unappeal-
ing, unsubstantiated and sometimes (as in the case of
factoring) even false! (See below.)

In addition, it is often possible to show that a quan-
titatively stronger hardness assumption translates to
some form of leakage-resilience. For example, the as-
sumption that the discrete logarithm problem is 2k-
hard (for some k > 0) directly implies its security in
the presence of roughly k bits of leakage.1 However,
in practice, what is interesting is a cryptographic as-
sumption that is secure against leakage of a constant
fraction of its secret. The problem with the above
approach is that it fails this goal, since none of the
cryptographic assumptions in common use are 2O(N)-
hard to break (where N is the length of the secret
key).

Thus, most of the recent work on leakage-resilient
cryptography focuses on constructing cryptographic
schemes whose leakage-resilience can be reduced to
standard cryptographic assumptions such as the poly-
nomial hardness of problems based on factoring,
discrete-log or various lattice problems, or in some
cases, general assumptions such as the existence of
one-way functions.

However, a question that still remains is: Which of

1It is worth noting that such an implication is not entirely
obvious for decisional assumptions.

the (standard) cryptographic assumptions are them-
selves naturally “robust to leakage”. Specifically:
• Is it hard to factor an RSA composite N = pq

(where p and q are random n-bit primes) given
arbitrary, but bounded, information about p and
q?
• Is it hard to compute x given gx (mod p), where
p is a large prime and x is uniformly random
given arbitrary, but bounded, information about
x?

As for factoring with leakage, there are known neg-
ative results: a long line of results starting from the
early work of Rivest and Shamir [29] show how to
factor N = pq given a small fraction of the bits of
one of the factors [10, 17]. Similar negative results
are known for the RSA problem, and the square-root
extraction problem.

As for the discrete-logarithm problem with leakage,
it could very well be hard. In fact, an assumption of
this nature has been put forward by Canetti and used
to construct an obfuscator for point functions [7], and
later to construct a symmetric encryption scheme that
is robust to leakage [9]. However, we do not have any
evidence for the validity of such an assumption, and
in particular, we are far from showing that a standard
cryptographic assumption implies the discrete-log as-
sumption with leakage.

Recently, Dodis, Kalai and Lovett [12] consider this
question in the context of the learning parity with
noise (LPN) problem. They showed that the LPN
assumption with leakage follows from a related, but
non-standard assumption they introduce, called the
learning subspaces with noise (LSN) assumption.

In light of this situation, we ask:

Is there a standard cryptographic
assumption that is robust with leakage?

Our first contribution is to show that the learning
with errors (LWE) assumption [27] that has recently
gained much popularity (and whose average-case com-
plexity is related to the worst-case complexity of var-
ious lattice problems) is in fact robust in the presence
of leakage (see Section 1.1 and Theorem 1 below for
details).
Leakage versus Efficiency

Typically, the way leakage-resilient cryptographic
primitives are designed is as follows: first, the de-
signer determines the maximum amount of leakage he
is willing to tolerate. Then, the scheme is designed,
and the parameters of the scheme (and hence its ef-
ficiency) depend on the maximum amount of leakage
the scheme can tolerate. The more this quantity is,
the less efficient the scheme becomes. In other words,
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the efficiency of the scheme depends on the maximum
anticipated amount of leakage. In cases where there is
no leakage at all in a typical operation of the system,
this is grossly inefficient. To our knowledge, all known
leakage-resilient cryptographic schemes that rely on
standard assumptions follow this design paradigm.

In contrast, what we would like is a scheme whose
security, and not efficiency, degrades with the actual
amount of leakage. In other words, we would like
to design a single scheme whose security with differ-
ent amounts of leakage can be proven under a (stan-
dard) cryptographic assumption, with degraded pa-
rameters. The larger the leakage, the stronger the
security assumption. In other words, the amount of
leakage never shows up in the design phase, and comes
up only in the proof of security. We call this a “grace-
ful degradation of security”. This leads us to ask:

Are there cryptosystems that exhibit a
graceful degradation of security?

Our second contribution is a symmetric-key encryp-
tion scheme with a graceful degradation of security.
The construction is based on the LWE assumption,
and uses the fact that the LWE assumption is robust
to leakage. (See Section 1.1 and Theorem 2 below for
details.)

Our final contribution is a (weak) obfuscator for the
class of point functions with multi-bit output with a
graceful degradation of security. (See Section 1.1 and
Theorem 3 below for details.)

1.1 Our Results and Techniques
The learning with error (LWE) problem, introduced

by Regev [27] is a generalization of the well-known
“learning parity with noise” problem. For a security
parameter n, and a prime number q, the LWE prob-
lem with secret s ∈ ℤ

n
q is defined as follows: given

polynomially many random, noisy linear equations
in s, find s. More precisely, given (ai, 〈ai, s〉 + xi),
where ai ← ℤ

n
q is uniformly random, and xi is drawn

from a “narrow error distribution”, the problem is
to find s. The decisional version of LWE is to dis-
tinguish between polynomially many LWE samples
{(ai, 〈ai, s〉 + xi)} and uniformly random samples.
Typically, the LWE problem is considered with a
Gaussian-like error distribution (see Section 2 for de-
tails). For notational convenience, we use a compact
matrix notation for LWE: we will denote m samples
from the LWE distribution compactly as (A,As+x),
where A is an m-by-n matrix over ℤq.

Our confidence in the LWE assumption stems from
a worst-case to average-case reduction of Regev [27],
who showed that the (average-case, search) LWE

problem is (quantumly) as hard as the approximation
versions of various standard lattice problems in the
worst-case. Furthermore, the decisional and search
LWE problems are equivalent (up to polynomial in q
factors).

1.1.1 LWE with Weak Secrets
We prove that the LWE assumption is robust to

leakage. More generally, we prove that it is robust to
weak keys and to auxiliary input functions that are
(computationally) hard to invert. Namely, we show
that (for some setting of parameters) the standard
LWE assumption implies that LWE is hard even if the
secret s is chosen from an arbitrary distribution with
sufficient min-entropy, and even given arbitrary hard-
to-invert auxiliary input f(s). For the sake of clarity,
in the introduction we focus on the case that the se-
cret s is distributed according to an arbitrary distri-
bution with sufficient min-entropy, and defer the issue
of auxiliary input to the body of the paper (though
all our theorems hold also w.r.t. auxiliary inputs).

We show that if the modulus q is any super-
polynomial function of n, then the LWE assump-
tion with weak binary secrets (i.e., when the secret s
is distributed according to an arbitrary distribution
over {0, 1}n with sufficient min-entropy) follows from
the standard LWE assumption. More specifically, we
show that the LWE assumption where the secret s
is drawn from an arbitrary weak source with min-
entropy k over {0, 1}n is true, assuming the LWE as-
sumption is true with uniform (but smaller) secrets
from ℤ

�
q, where � = k−ω(logn)

log q . Namely, we reduce
the LWE assumption with weak keys to the stan-
dard LWE assumption with “security parameter” �. A
caveat is that we need to assume that the (standard)
LWE assumption is true with a super-polynomial
modulus q, and a super-polynomially small “error-
rate”. Translated into the worst-case regime using
Regev’s worst-case to average-case reduction, the as-
sumption is that standard lattice problems are (quan-
tumly) hard to approximate with quasi-polynomial
time and within quasi-polynomial factors.2

Theorem 1 (Informal). For any super-polynomial
modulus q = q(n), any k ≥ log q, and any distribution
D = {Dn}n∈ℕ over {0, 1}n with min-entropy k, the
(non-standard) LWE assumption, where the secret is
drawn from the distribution D, follows from the (stan-
dard) LWE assumption with secret size � ≜ k−ω(logn)

log q

2By taking q to be smooth, and following an argument
from [23], our assumption translates to the assumption that
standard lattice problems are (quantumly) hard to approximate
in polynomial time and within super-polynomial factors.
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(where the “error-rate” is super-polynomially small
and the adversaries run in time poly(n)).

We sketch the main ideas behind the proof of this
theorem. Let us first perform a mental experiment
where the matrix A in the definition of the LWE prob-
lem is a non-full-rank matrix. i.e, A = B · C where
B ← ℤ

m×�
q and C ← ℤ

�×n
q are uniformly random;

this is a uniformly random matrix with rank at most
� (and exactly � if both B and C are full rank). The
LWE distribution then becomes

As + x = B · (Cs) + x

At this point, we use the leftover hash lemma,3 which
states that matrix multiplication over ℤq (and in fact,
any universal hash function) acts as a (strong) ran-
domness extractor. In other words, Cs is statisti-
cally close to a uniformly random vector t (even given
C). Now, Bt + x is exactly the LWE distribution
with a uniformly random secret t which, by the LWE
assumption with security parameter �, is pseudoran-
dom. It seems that we are done, but that is not quite
the case.

The problem is that B · C does not look anything
like a uniformly random m-by-n matrix; it is in fact
easily distinguishable from the uniform distribution.
At first, one may be tempted to simply change the
LWE assumption, by choosing A = B · C as above,
rather than a random m-by-n matrix. The problem
with this approach is that if C is fixed then the min-
entropy of the secret s may depend on C, in which
case we cannot use the leftover hash lemma and claim
that C·s is uniformly distributed. On the other hand,
if C is chosen at random each time, then we essen-
tially reduced the problem of LWE with weak keys, to
the problem to LWE with related secrets C1s, . . .Cts,
where C1, . . . ,Ct are known.

We take a different approach: we use the LWE as-
sumption to “hide” the fact that B · C is not a full-
rank matrix. More precisely, we claim that the matrix
B ·C + Z, where Z is chosen from the LWE error dis-
tribution, is computationally indistinguishable from a
uniformly random matrix A ∈ ℤ

m×n
q . This is simply

because each column B · ci + zi can be thought of as
a bunch of LWE samples with “secret” ci ∈ ℤ

�
q. By

the LWE assumption with security parameter �, this
looks random to a polynomial-time observer. This
technique was used in the work of Alekhnovitch [2]
in the context of learning parity with noise, and was
later used in a number of works in the context of the
LWE assumption [24, 27].

3In the regime of auxiliary inputs, we use the Goldreich-
Levin theorem over ℤq from the recent work of [11].

An astute reader might have noticed that introduc-
ing this trick in fact undid the “extraction” argument.
In particular, now one has to consider

(B ·C + Z)s + x = (B ·Cs) + Zs + x

Indeed, B ·Cs+x = Bt+x by itself is pseudorandom
(as before), but is not necessarily pseudorandom after
the addition of the correlated Zs component. We mit-
igate this problem by using the following elementary
property of a Gaussian distribution: shifting a Gaus-
sian distributed random variable by any number that
is super-polynomially smaller than its standard devi-
ation results in distribution that is statistically close
to the original Gaussian distribution. Thus, if we set
each entry of Z to be super-polynomially smaller than
the standard deviation of x and choose s ∈ {0, 1}n,
we see that Zs + x is distributed statistically close to
a Gaussian. Namely, the noise x “eats up” the cor-
related and troublesome term Zs. This is where the
restrictions of the LWE secret s being binary, as well
as q being super-polynomial and the noise-rate being
negligibly smaller than q come into play.

1.1.2 Applications
Our main result has several applications. We con-

struct an efficient symmetric encryption scheme se-
cure against chosen plaintext attacks, even if the se-
cret key is chosen from an arbitrary distribution with
sufficient min-entropy (and even in the presence of ar-
bitrary hard-to-invert auxiliary input). We also con-
struct an obfuscator for the class of point functions
with multi-bit output I = {I(K,M)}, that is secure
w.r.t. any distribution with sufficient min-entropy. A
point function with multi-bit output is a function
I(K,M) that always outputs ⊥, except on input K in
which it outputs M . Both of these results rely on the
standard LWE assumption.

Theorem 2 (Informal). For any super-polynomial
q = q(n) there is a symmetric-key encryption scheme
with the following property: For any k ≥ log q, the en-
cryption scheme is CPA-secure when the secret-key is
drawn from an arbitrary distribution with min-entropy
k. The assumption we rely on is the (standard) LWE
assumption with a secret of size � ≜ k−ω(logn)

log q (where
the “error-rate” is super-polynomially small and the
adversaries run in time poly(n)).

The encryption scheme is simple, and similar ver-
sions of it were used in previous works [4, 12]. The
secret-key is a uniformly random vector s ← {0, 1}n.
To encrypt a message w ∈ {0, 1}m, the encryption
algorithm computes

Es(w) = (A,As + x + q/2 ·w)
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where A ∈R ℤ
m×n
q and each component of x is drawn

from the error distribution. To decrypt a ciphertext
(A,y) using the secret-key s, the decryption algo-
rithm computes y−As and it deciphers each coordi-
nate i ∈ [m] separately, as follows: If the i’th coordi-
nate of y−As is close to q/2 (i.e., between 3q

8 and 5q
8 )

then it deciphers the i’th coordinate of the message
to be 1. If the i’th coordinate of y−As is close to 0
or q (i.e., is smaller than q8 or larger than 7q

8 ) then it
deciphers the i’th coordinate of the message to be 0.
Otherwise, it outputs ⊥.

The ciphertext corresponding to a message w
consists of polynomially many samples from the LWE
distribution with secret s, added to the message vec-
tor. Robustness of LWE means that the ciphertext is
pseudorandom even if the secret key is chosen from an
arbitrary distribution with min-entropy k (assuming
that the standard LWE assumption holds with secrets
drawn from ℤ

�
q where � = (k − ω(logn))/ log q). The

same argument also shows that the scheme is secure
in the presence of computationally uninvertible
auxiliary input functions of s.

Finally, we use a very recent work Canetti et. al.
[9], that shows a tight connection between secure en-
cryption w.r.t. weak keys and obfuscation of point
functions with multi-bit output. The security defi-
nition that they (and we) consider is a distributional
one: Rather than requiring the obfuscation to be se-
cure w.r.t. every function in the class, as defined in the
seminal work of [5], security is required only when the
functions are distributed according to a distribution
with sufficient min-entropy. Using this connection, to-
gether with our encryption scheme described above,
we get the following theorem.

Theorem 3 (Informal). There exists an obfuscator
for the class of point functions with multi-bit output
under the (standard) LWE assumption.

1.2 Related Work
There is a long line of work that considers various

models of leakage [1, 3, 8, 9, 11, 11, 12, 14, 14, 16, 19–
22, 25, 26]. Still, most of the schemes that are known
to be resilient to leakage suffer from the fact that the
parameters of the scheme depend on the maximum
anticipated leakage, and thus they are inefficient even
in the absence of leakage! There are a few exceptions.
For example, the work of [7, 9] exhibit a symmetric
encryption scheme that is based on a leakage-resilient
DDH assumption, which says that DDH holds even if
one of its secrets is taken from an arbitrary distribu-
tion with sufficient min-entropy. We also mention sev-
eral results in the continual-leakage model which rely

on exponential hardness assumptions [14, 26]. We em-
phasize that all these examples rely on non-standard
assumptions.

The work of Katz and Vaikuntanathan [20] con-
structs signature schemes that are resilient to leakage.
They, similarly to us, “push” the leakage to the as-
sumption level. To construct their signature schemes,
they use the observation that any collision-resistant
hash function (and even a universally one-way hash
function) is a leakage-resilient one-way function. In
other words, they use the fact that if h is collision-
resistant, then h(x) is hard to invert even given some
partial information about the pre-image x. This can
be interpreted as saying that the collision-resistant
hash function assumption is a robust assumption.

This differs from our work in several ways. The
most significant difference is that we show that pseu-
dorandomness (and not only one-wayness) of the LWE
distribution is preserved in the presence of leakage.
This enables us to construct various cryptographic
objects which we do not know how to construct with
the [20] assumption. We mention that, whereas the
[20] observation follows by a straightforward count-
ing argument, our proof requires non-trivial compu-
tational arguments: roughly speaking, this is because
the secret s is uniquely determined (and thus has no
information-theoretic entropy) given the LWE sam-
ples (A,As+x). Thus, we have to employ non-trivial
computational claims to prove our statements.

Finally, we would like to contrast our results with
those of Akavia et al. [1], who show that the public-key
encryption scheme of Regev [27] based on LWE is in
fact leakage-resilient. Unfortunately, achieving larger
and larger leakage in their scheme entails increasing
the modulus q correspondingly. Roughly speaking, to
obtain robustness against a leakage of (1 − ε) frac-
tion of the secret key, the modulus has to be at least
n1/ε (where n is the security parameter). In short,
the scheme does not degrade gracefully with leak-
age (much like the later works of [11, 22]). In fact,
constructing a public-key encryption scheme with a
graceful degradation of security remains a very inter-
esting open question.

2 Preliminaries

We will let n denote the main security parameter
throughout the paper. The notation X ≈c Y (resp.
X ≈s Y ) means that the random variables X and Y
are computationally indistinguishable (resp. statisti-
cally indistinguishable).
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2.1 Learning with Errors (LWE)
The LWE problem was introduced by Regev [27] as

a generalization of the “learning noisy parities” prob-
lem. Let 𝕋 = ℝ/ℤ be the reals modulo 1, repre-
sented by the interval [0, 1). For positive integers n
and q ≥ 2, a vector s ∈ ℤ

n
q , and a probability dis-

tribution φ on ℝ, let As,φ be the distribution over
ℤ
n
q × 𝕋 obtained by choosing a ∈ ℤ

n
q uniformly at

random and an error term x ← φ, and outputting
(a, b = 〈a, s〉/q + x) ∈ ℤ

n
q × 𝕋.

We also consider a discretized version of the LWE
distribution. For a distribution φ over ℝ and an (im-
plicit) modulus q, let χ = φ̄ denote the distribution
over ℤ obtained by drawing x ← φ and outputting
�q · x	. The distribution As,χ over ℤ

n
q × ℤq is ob-

tained by choosing a ∈ ℤ
n
q uniformly at random, an

error term x← χ, and outputting (a, b = 〈a, s〉 + x),
where all operations are performed over ℤq. (Equiv-
alently, draw a sample (a, b) ← As,φ and output
(a, �b · q	) ∈ ℤ

n
q × ℤq.)

Definition 1. For an integer q = q(n) and an error
distribution φ = φ(n) over 𝕋, the (worst-case, search)
learning with errors problem LWEn,q,φ in n dimen-
sions is: given access to arbitrarily many independent
samples from As,φ, output s with non-negligible prob-
ability. The problem for discretized χ = φ̄ is defined
similarly.

The (average-case) decision variant of the LWE
problem, denoted DLWEn,q,φ, is to distinguish, with
non-negligible advantage given arbitrarily many inde-
pendent samples, the uniform distribution over ℤ

n
q ×𝕋

from As,φ for a uniformly random (and secret) s ∈
ℤ
n
q . The problem for discretized χ = φ̄ is defined sim-

ilarly.

In this work, we are also concerned with the
average-case decision LWE problem where the secret
s is drawn from a distribution D over ℤnq (which may
not necessarily be the uniform distribution). We de-
note this problem by DLWEn,q,φ(D).

Observe that simply by rounding, the
DLWEn,q,χ(D) problem is no easier than the
DLWEn,q,φ(D) problem, where χ = φ̄.

We are primarily interested in the LWE problems
where the error distribution φ is a Gaussian. For
any α > 0, the density function of a one-dimensional
Gaussian probability distribution over ℝ is given by
Dα(x) = exp(−π(x/α)2)/α. We write LWEn,q,α as an
abbreviation for LWEn,q,Dα .

It is known [4, 23, 27] that for moduli q of a certain
form, the (average-case decision) DLWEn,q,φ problem
is equivalent to the (worst-case search) LWEn,q,φ prob-
lem, up to a poly(n) factor in the number of samples

used. In particular, this equivalence holds for any q
that is a product of sufficiently large poly(n)-bounded
primes.

Evidence for the hardness of LWEn,q,α follows from
results of Regev [27] and Peikert [23], who (infor-
mally speaking) showed that solving LWEn,q,α (for
appropriate parameters) is no easier than solving ap-
proximation problems on n-dimensional lattices in the
worst case. More precisely, under the hypothesis that
q ≥ ω(

√
n)/α, these reductions obtain Õ(n/α)-factor

approximations for various worst-case lattice prob-
lems. (We refer the reader to [23, 27] for the details.)
Note that if q � 1/α, then the LWEn,q,α problem
is trivially solvable because the exact value of each
〈a, s〉 can be recovered (with high probability) from
its noisy version simply by rounding.

2.2 Leftover Hash Lemma
Informally, the leftover hash lemma [18] states that

any universal hash function acts as a randomness ex-
tractor. We will use a variant of this statement ap-
plied to a particular universal hash function, i.e, ma-
trix multiplication over ℤq. In particular:
Lemma 1. Let D be a distribution over ℤ

n
q with min-

entropy k. For any ε > 0 and � ≤ (k − 2 log(1/ε) −
O(1))/ log q, the joint distribution of (C,C · s) where
C← ℤ

�×n
q is uniformly random and s ∈ ℤ

n
q is drawn

from the distribution D is ε-close to the uniform dis-
tribution over ℤ

�×n
q × ℤ

�
q.

2.3 Goldreich-Levin Theorem over ℤq

We also need a “computational version” of the left-
over hash lemma, which is essentially a Goldreich-
Levin type theorem over ℤq. The original Goldreich-
Levin theorem proves that for every uninvertible func-
tion h, 〈c, s〉 (mod 2) is pseudorandom, given h(s)
and c for a uniformly random c ∈ ℤ

n
2 . Dodis et al. [11]

(following the work of Goldreich, Rubinfeld and Su-
dan [15]) show the following variant of the Goldreich-
Levin theorem over a large field ℤq.
Lemma 2. Let q be prime, and let H be any poly-
nomial size subset of ℤq. Let f : Hn → {0, 1}∗ be
any (possibly randomized) function. Let C ← ℤ

�×n
q

be uniformly random and s be drawn from the distri-
bution D over Hn.

If there is a PPT algorithm A that distinguishes
between (C,Cs) and the uniform distribution over
the range given h(s), then there is a PPT algo-
rithm B that inverts h(s) with probability roughly
1/(q� · poly(n, 1/ε)).

In other words, if h is (roughly) 1/q2�-hard to invert
(by polynomial-time algorithms), then (C,C · s) is
pseudorandom given h(s).
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3 LWE with Weak Secrets
In this section, we show that if the modulus q is

some super-polynomial function of n, then the LWE
assumption with weak binary secrets (i.e., when the
secret s is distributed according to an arbitrary dis-
tribution over {0, 1}n with sufficient min-entropy)
follows from the standard LWE assumption. More
specifically, let s ∈ {0, 1}n be any random variable
with min-entropy k, and let q = q(n) ∈ 2ω(logn) be
any super-polynomial function in n. Then, we show
that for every m = poly(n),

(A,As + x) ≈c (A,u),

where A ∈R ℤ
m×n
q , x ← Ψmβ and u ← ℤ

m
q . We show

this statement under the (standard) LWE assumption
with the following parameters: The secret size is � ≜
k−ω(logn)

log q , the number of examples remains m, and
the standard deviation of the noise is any γ such that
γ/β = negl(n). An example of a parameter setting
that achieves the latter is β = q/poly(n) and γ =
poly(n).

Theorem 4. Let n, q ≥ 1 be integers, let D be any
distribution over {0, 1}n having min-entropy at least
k, and let α, β > 0 be such that α/β = negl(n). Then
for any � ≤ k−ω(logn)

log q , there is a PPT reduction from
DLWE�,q,α to DLWEn,q,β(D).

Remark 1. When converting the non-standard ver-
sion of the LWE assumption to the standard LWE
assumption we lose in two dimensions. The first is
that the secret size becomes � ≜ k−ω(logn)

log q rather than
n. This loss seems to be inevitable since in the non-
standard assumption, although the secret s was in
{0, 1}n, it had only k bits of entropy, so when convert-
ing this assumption to the standard LWE assumption
is seems like we cannot hope to get a secret key with
more than k bits of entropy, which results with the
key size being at most k/ log q. We remark that the
dimension � can be increased to O(k−ω(logn)) (thus
making the underlying LWE assumption weaker) by
consider secrets s over ℤnq (rather than binary secrets).
This modification makes the proof of the theorem a
bit more cumbersome, and hence we choose not to
present it.

Another dimension in which we lose is in the er-
ror distribution. The standard deviation of the error
distribution becomes γ which is negligibly small com-
pared to the original standard deviation β. This loss
which does not seem to be inherent, and seems to be
a byproduct of our proof, induces the restriction on q
to be super-polynomial in n.

Remark 2. The analogous statement for the search
version of LWE follows immediately from Theorem 4
and the search to decision reduction for LWE. How-
ever, doing so naively involves relying on the assump-
tion that LWE�,m,q,γ is hard (for the parameters �,m, q
and γ as above) for algorithms that run in superpoly-
nomial time. The superpolynomial factor in the run-
ning time can be removed by using the more involved
search to decision reduction of Peikert [23] that uses
a modulus q of a special form.

3.1 Proof of Theorem 4
In the proof of Theorem 4 we rely on the following

lemma, which was proven in [11].

Lemma 3. Let β > 0 and q ∈ ℤ.
1. Let y ← Ψβ. Then with overwhelming probabil-

ity, |y| ≤ βq · √n.
2. Let y ∈ ℤ be arbitrary. The statistical distance

between the distributions Ψβ and Ψβ + y is at
most |y|/(βq).

Proof. Fix any q,m, k, �, β, γ as in the statement the-
orem. We define the distribution Dγ , as follows: Let
B← ℤ

m×�
q and C← ℤ

�×n
q be uniformly random and

Z ← Ψm×nγ . Output the matrix A′ = BC + Z. The
following claim about the distribution Dγ is then im-
mediate:

Claim 1. Under the LWE�,m,q,γ Assumption, A′
is computationally indistinguishable from uniform in
ℤ
m×n
q .

Claim 1 implies that it suffices to prove that

(A′,A′s + x) ≈c (A′,u).

Note that

A′s + x = (BC + Z)s + x = BCs + Zs + x.

Thus, it suffices to prove that

(BC + Z,BCs + Zs + x) ≈c (BC + Z,u).

We prove the stronger statement that

(B,C,Z,BCs + Zs + x) ≈c (B,C,Z,u). (1)

The first item of Lemma 3 implies that with over-
whelming probability each entry of Z is of size at
most γq · √n. This implies that, with overwhelm-
ing probability (over Z), for every s ∈ {0, 1}n each
coordinate of Zs is of size at most γq · n. Let x′ be
a random variable distributed according to (Ψβ)m.
Then, the second item of Lemma 3 implies that for
every i ∈ [m] the statistical distance between (Z, s,x′i)
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and (Z, s, (Zs)i + xi) is at most γq·nβq . Using the
fact that γ/β = negl(n), we conclude that (Z, s,x′i)
and (Z, s, (Zs)i + xi) are statistically close, and thus
that (Z, s,x′) and (Z, s,Zs+x) are statistically close.
Therefore, it suffices to prove that

(B,C,Z,BCs + x′) ≈c (B,C,Z,u).

where x′ is drawn from Ψmβ .
The fact that Z is efficiently sampleable implies

that it suffices to prove that

(B,C,BCs + x′) ≈c (B,C,u).

A standard application of leftover hash lemma [18]
using the fact that the min-entropy of s is at least
� log q + ω(logn) implies that

(C,Cs) ≈s (C,u)

Thus, the LWE�,m,q,β Assumption (which follows
from the LWE�,m,q,γ Assumption), immediately im-
plies that

(B,C,BCs + x) ≈ (B,C,u),

as desired.

The same technique used to prove Theorem 4, with
the exception of using the Goldreich Levin theorem
over ℤq (i.e, Lemma 2) instead of the leftover hash
lemma shows that the LWE assumption holds even
given auxiliary input h(s), where h is any uninvert-
ible function (See below). In essence, the proof of
the auxiliary input theorem below proceeds by us-
ing Lemma 2 to extract from the “computational en-
tropy” in the secret (as opposed to using the left-
over hash lemma to extract from the “information-
theoretic entropy”).

Theorem 5. Let k ≥ log q, and let H be the class of
all functions h : {0, 1}n → {0, 1}∗ that are 2−k hard
to invert, i.e, given h(s), no PPT algorithm can find
s with probability better than 2−k.

For any super-polynomial q = q(n), any m =
poly(n), any β, γ ∈ (0, q) such that γ/β = negl(n)

(A,As + x, h(s)) ≈c (A,u, h(s))

where A ← ℤ
m×n
q , s ← ℤ

n
q and u ← ℤ

m
q are uni-

formly random and x ← Ψmβ . assuming the (stan-
dard) DLWE�,m,q,γ assumption, where � ≜ k−ω(logn)

log q .

4 Symmetric-Key Encryption Scheme
In this section we present a symmetric-key encryp-

tion scheme that is secure even if the secret key
is distributed according to an arbitrary distribution
with sufficient min-entropy, assuming the standard
LWE assumption holds (for some setting of param-
eters). More precisely, if the secret key s ∈ {0, 1}n
is distributed according to some distribution D min-
entropy k then the assumption we rely on is that
there exists a super-polynomial function q = q(n) and
a parameter β = q/poly(n) for which DLWEk,q,β(D)
holds. According to Theorem 4, this assumption fol-
lows from the (standard) assumption LWE�,q,γ , where
� ≜ k−ω(logn)

log q and γ is any function that satisfies
γ/q = negl(n).

4.1 The Scheme
We next describe our encryption scheme 𝔼 =

(G,E,D), which is very similar to schemes that ap-
peared in previous work [4, 12].
• Parameters. Let q = q(n) be any super-

polynomial function, let β = q/poly(n), and let
m = poly(n).
• Key generation algorithm G. On input 1n,
G(1n) outputs a uniformly random secret key
s← {0, 1}n.
• Encryption algorithm E. On input a secret

key s and a message w ∈ {0, 1}m,

Es(w) = (A,As + x + q
2

w)

where A ∈R ℤ
m×n
q and x← (Ψβ)m.

• Decryption algorithm D. on input a secret
key s and a ciphertext (A,y), the decryption al-
gorithm computes y −As and it deciphers each
coordinate i ∈ [m] separately, as follows: If the
i’th coordinate of y − As is close to q/2, i.e.,
is between 3q

8 and 5q
8 , then it deciphers the i’th

coordinate of the message to 1. If the i’th coor-
dinate of y −As is far from q/2, i.e., is smaller
than q

8 or larger than 7q
8 , then it deciphers the

i’th coordinate of the message to 0. Otherwise,
it outputs ⊥.

Remark. We note that, as opposed to most known
leakage resilient schemes, the parameters of this
scheme do not depend on any amount of leakage
(or min-entropy) that the scheme can tolerate.
Nevertheless, using Theorem 4, we are able to prove
that this scheme is secure w.r.t. weak keys, and in
particular is leakage resilient. We emphasize the
change in the order of quantifiers: Rather than
proving that for every leakage parameter there exists
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a scheme that is secure w.r.t. such leakage, we show
that there exists a scheme that is secure w.r.t. any
leakage parameter, under a standard assumption,
whose parameters depend on the leakage parameter.
We note that the only other encryption scheme
that is known to have this property is based on a
non-standard version of the DDH assumption, which
says that the DDH assumption holds even if one of
its secrets is chosen from an arbitrary distribution
with sufficient min-entropy [7, 9].

We first prove the correctness of our scheme.

Claim 2. There exists a negligible function µ such
that for every n and every w ∈ {0, 1}m,

Pr[Ds(Es(w)) = w] = 1− µ(n)
Proof. Fix any n and any message w ∈ {0, 1}m.

Pr[(Ds(Es(w))) = w] =
Pr[∀i ∈ [m], (Ds(Es(w)))i = wi] =

Pr[∀i ∈ [m], (Ds(A,As + x + q
2

w))i = wi] =

Pr
[
∀i ∈ [m], xi ∈

(
− q

8
,
q

8

)]
≥

1−mPr
[
xi ∈
(
q

8
,

7q
8

)]
=

1− negl(n).

We next argue the security of this scheme.

Definition 2. We say that a symmetric encryption
scheme is CPA secure w.r.t. k(n)-weak keys, if for
any distribution {Dn}n∈ℕ with min-entropy k(n), the
scheme is CPA secure even if the secret key is chosen
according to the distribution Dn.
Theorem 6. For any k = k(n), the encryption
scheme 𝔼 = (G,E,D) is CPA secure with k(n)-
weak keys, under the (standard) DLWE�,q,γ assump-
tion, where � = k−ω(logn)

log q and where γ satisfies γ/q =
negl(n).

In order to prove Theorem 6, we use the follow-
ing notation: For any distribution D = {Dn}n∈ℕ we
denote by GD the key generation algorithm that sam-
ples the secret key s according to the distribution D.
Namely, GD(1n) outputs s← Dn.

Theorem 4 implies that in order to prove Theo-
rem 6 it suffices to prove the following lemma, which
states that if the secret key is samples according to
some distribution D, rather than sampled uniformly,
then the scheme is secure under the (non-standard)
DLWEn,q,β(D) assumption.

Lemma 4. Let D = {Dn}n∈ℕ be an arbitrary distri-
bution with min-entropy k = k(n). Then, the encryp-
tion scheme 𝔼D = (GD, E,D) is CPA secure under
the DLWEn,q,β(D) assumption.

4.2 Proof of Lemma 4
Let D = {Dn}n∈ℕ be an arbitrary distribution with

min-entropy k = k(n). We will prove that no PPT
adversary can distinguish between the case that it is
given access to a valid encryption oracle and the case
that it is given access to an oracle that simply outputs
random strings. Suppose for the sake of contradiction
that there exists a PPT adversary A that succeeds in
distinguishing between the two oracles with probabil-
ity ε, where ε is not a negligible function. We will
show that this implies that there exists a polynomial
t = poly(n) and a PPT algorithm B such that

|Pr[B(A,As + x) = 1]− Pr[B(A,u) = 1]| ≥ ε(n) (2)

where A ∈R ℤ
t×n
q , s ← Dn and x ← (Ψβ)t. This

will contradict the DLWEn,q,β(D) assumption. Al-
gorithm B simply emulates A’s oracle. Every time
that A asks for an encryption of some message w, the
algorithm B takes m fresh rows of his input, denoted
by (A,y) and feeds A the ciphertext (A,y + q

2 w).
We choose t so that t/m is larger than the number of
oracle queries that A makes. Note that if the input of
B is an LWE instance then B perfectly simulates the
encryption oracle. On the other hand, if the input of
B is random, then B perfectly simulates the random
oracle. Thus, Equation (2) indeed holds.

Using Theorem 5 and a proof along similar lines as
above, this scheme can also be shown to be secure
against uninvertible auxiliary inputs.

5 Point Function Obfuscation with
Multibit Output

In this section we consider the task of obfuscating
the class of point functions with multibit output (or
multi-bit point functions (MBPF) for short),

I = {I(k,m) | k,m ∈ {0, 1}∗},

where each I(k,m) : {0, 1}∗ ∪ {⊥} → {0, 1}∗ ∪ ⊥ is
defined by

I(k,m)(x) =
{
m if x = k
⊥ otherwise

Namely, I(k,m) outputs the message m given a correct
key k, and ⊥ otherwise.

We show that our encryption scheme implies a
(weak) obfuscator for the class of multi-bit point
functions. To this end, we use a recent result of

238



ROBUSTNESS OF THE LEARNING WITH ERRORS ASSUMPTION

Canetti et. al. [9] that shows a tight connection be-
tween encryption schemes with weak keys and a weak
form of obfuscation of multi-bit point functions. The
obfuscation definition they consider is a distributional
one: Rather than requiring the obfuscation to be se-
cure w.r.t. every function in the class, as defined in the
seminal work of [5], security is required only when the
functions are distributed according to a distribution
with sufficient min-entropy.

Definition 3 (Obfuscation of Point Functions with
Multi-bit Output [9]). A multi-bit point function
(MBPF) obfuscator is a PPT algorithm O which takes
as input values (k,m) describing a function I(k,m) ∈ I
and outputs a circuit C.
Correctness: For all I(k,m) ∈ I with |k| = n, |m| =
poly(n), all x ∈ {0, 1}n,

Pr[C(x) �= I(k,m)(x) | C ← O(I(k,m))] ≤ negl(n)

where the probability is taken over the randomness of
the obfuscator algorithm.
Polynomial Slowdown: For any k,m, the size of
the circuit C = O(I(k,m)) is polynomial in |k|+ |m|.
Entropic Security: We say that the obfuscator has
α(n)-entropic security if for any PPT adversary
A with 1 bit output and any polynomial �(·), there
exists a PPT simulator S such that for every distri-
bution {Xn}n∈ℕ, where Xn takes values in {0, 1}n
and H∞(Xn) ≥ α(n), and for every message m ∈
{0, 1}�(n),∣∣Pr

[A(O(I(k,m))) = 1
]

−Pr
[
SI(k,m)(·) (1n) = 1

]∣∣∣ ≤ negl(n)

where the probability is taken over the randomness of
k ← Xn, the randomness of the obfuscator O and the
randomness of A,S.

Applying the work of [9] to our encryption scheme,
gives us the stronger notion of self-composable obfus-
cation, defined below.

Definition 4 (Composability [9]). A multi-bit point
function obfuscator O with α(n)-entropic security is
said to be self-composable if for any PPT adversary
A with 1 bit output and any polynomial �(·), there
exists a PPT simulator S such that for every dis-
tribution {Xn}n∈ℕ with Xn taking values in {0, 1}n
and H∞(Xn) ≥ α(n), and for every m1, . . . ,mt ∈
{0, 1}�(n),

|Pr[A(O(I(k,m1)), . . . ,O(I(k,mt))) = 1]−
Pr[SI(k,m1)(·),...,I(k,mt)(·)(1n) = 1]| ≤ negl(n)

where the probabilities are over k ← Xn and over the
randomness of A,S,O.

Keeping Definitions 3 and 4 in mind, we can finally
state our result.

Theorem 7. There exists an obfuscator for the class
of point functions with multibit output which is self-
composable α(n)-entropic secure under the DLWE�,q,γ
assumption, where q = q(n) is super-polynomial, � =
α(n)−ω(logn)

log q and γ/q is negligible in n.

As was mentioned above, the proof of this theorem
follows from the tight connection between encryptions
scheme that are secure w.r.t. weak keys, and multibit
point function obfuscation. To state this connection
formally, we need the following definition.

Definition 5 (Wrong-Key Detection [9, 12]). We
say that an encryption scheme 𝔼 = (G,E,D) sat-
isfies the wrong-key detection property if for all k �=
k′ ∈ {0, 1}n, and every message m ∈ {0, 1}poly(n),
Pr[Dk′(Ek(m)) �= ⊥] ≤ negl(n).

Lemma 5. [9] Let 𝔼 = (G,E,D) be an encryp-
tion scheme with CPA security for α(n)-weak keys
and having the wrong-key detection property. We de-
fine the obfuscator O which, on input I(k,m), com-
putes a ciphertext c = Ek(m) and outputs the cir-
cuit Cc(·) (with hard-coded ciphertext c) defined by
Cc(x) = Dx(c). Then, O is a self-composable multi-
bit point function obfuscator with α(n)-entropic secu-
rity.

The proof of Theorem 7 follows immediately from
Lemma 5, Theorem 6, and the following claim.

Claim 3. The encryption scheme 𝔼 = (G,E,D), de-
fined in Section 4, has the wrong-key detection prop-
erty.

5.1 Proof of Claim 3
Let s, s′ ∈ {0, 1}n be any two distinct secret keys,

and let w ∈ {0, 1}m be any message.

Pr[Ds′(Es(w)) �= ⊥] =

Pr
[
A(s− s′) + x ∈

(−q
8
,
q

8

)m]

where A ∈R ℤ
m×n
q and x ← (Ψβ)m. The fact that

s �= s′ implies that the vector A(s − s′) is uniformly
distributed in ℤ

m
q , and thus the vector A(s− s′) + x

is uniformly distributed in ℤ
m
q . This implies that

Pr
[
A(s− s′) + x ∈

(
− q

8
,
q

8

)m]
≤
(

1
4

)m

= negl(n)

as desired.
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