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Abstract:
Which computational intractability assumptions are inherent to cryptography? We present a broad framework
to pose and investigate this question.

We first aim to understand the “cryptographic complexity” of various tasks, independent of any computational
assumptions. In our framework the cryptographic tasks are modeled as multi-party computation functionalities.
We consider a universally composable secure protocol for one task given access to another task as the most
natural complexity reduction between the two tasks. Some of these cryptographic complexity reductions are
unconditional, others are unconditionally impossible, but the vast majority appear to depend on computational
assumptions; it is this relationship with computational assumptions that we study.

In our detailed investigation of large classes of 2-party functionalities, we find that every reduction we are able
to classify turns out to be unconditionally true or false, or else equivalent to the existence of one-way functions
(OWF) or of semi-honest (equivalently, standalone-secure) oblivious transfer protocols (sh-OT). This leads us
to conjecture that there are only a small finite number of distinct computational assumptions that are inherent
among the infinite number of different cryptographic reductions in our framework.

If indeed only a few computational intractability assumptions manifest in this framework, we propose that they
are of an extraordinarily fundamental nature, since the framework contains a large variety of cryptographic
tasks, and was formulated without regard to any of the prevalent computational intractability assumptions.

Keywords: cryptographic complexity; computational complexity; intractability assumptions; secure multi-
party computation

1 Introduction

Are the intractability assumptions employed in
modern cryptography a historical accident? Histor-
ically, computational intractability assumptions are
often developed along with cryptographic schemes to
give security assurances to those schemes. To better
understand the role of intractability in cryptography,
and to place the theory in a firmer footing, specific in-
tractability assumptions are abstracted into “general
assumptions” that attempt to capture fundamental
cryptographic properties. A few of these assumptions
— most notably the existence of one-way functions
— have turned out to be truly fundamental, in that
they are necessary and sufficient for the possibility of
many basic cryptographic tasks [20].

Our work continues along this line, trying to iden-
tify intractability assumptions that are intrinsic to
cryptographic tasks. But rather than considering only

a few familiar tasks, we propose a framework that in-
corporates all the different multi-party computation
functionalities, which embody various ways in which
controlled access to information manifests.1 Our work
has two motivations: first, to understand the crypto-
graphic content of the various functionalities them-
selves, and second, to understand — and potentially
discover — fundamental intractability assumptions
intrinsic to cryptographic tasks.
Complexity of Multiparty Computation Func-
tionalities.

The seminal work of Goldreich, Micali and Wigder-
son [16] on secure multi-party computation (MPC)
introduced an idealization of cryptographic tasks in

1Indeed, cryptography could be defined as the study of con-
trolling access to information: here access control should be
understood as involving a possibly complex combination of al-
lowing only certain information to be learned, and allowing
information to be influenced only in certain ways.
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terms of a trusted party, or an ideal functionality. An
ideal functionality is an arbitrary program (possibly
stateful, possibly randomized), to be executed pri-
vately by an external entity that can be trusted by all
parties. This provides an extremely versatile language
for capturing a great variety of kinds of controlled ac-
cess to information, by simply defining various behav-
iors for the trusted entity — i.e., various functional-
ities. Further, this idealization of the cryptographic
task is orthogonal to computational complexity con-
siderations (instead, the security definition simply de-
mands that a protocol be indistinguishable from this
idealization). The later, more refined treatments, like
Canetti’s Universal Composition framework [7] follow
the same pattern.

To study the cryptographic content of these tasks,
then, is to study the complexity of these ideal func-
tionalities. Here, it is not the computational complex-
ity of the ideal functionalities (time or space required
by the ideal functionality) that is of interest. Rather,
we will be interested in various qualitatively different
types of functionalities. To develop a formal notion
of complexity, we apply reductions that capture the
relevant cryptographic aspects. The natural notion
of reduction among functionalities (without involving
any computational complexity aspects) is the follow-
ing. A functionality F is said to reduce to G (denoted
by F � G), if there exists a protocol that securely re-
alizes F using access to G. Here, the stricter the defi-
nition of secure realization used, the tighter the notion
of reduction will be.2 We shall use the strong security
definition of the Universal Composition framework [7],
against active (malicious) adversaries, but in a static
(non-adaptive) corruption model. We write F �ppt G
to specify that security need to hold only in a proba-
bilistic polynomial time setting.

Seeking New Worlds in Impagliazzo’s Multi-
verse.

Impagliazzo [19] considered various complexity sce-
narios in terms of intractability and the cryptographic
landscape in each of these worlds. In our current
work, we study the cryptographic landscape given by
the relative complexities of multiparty functionalities
as described above.

The first of Impagliazzo’s worlds (called Algorith-
mica) corresponds to the scenario P = NP. For our
purposes we shall consider a slightly different formu-
lation: we define a world called Informatica where

2Studying the landscape of functionalities using a strict re-
duction can be compared to zooming into a map to distinguish
between different elements in the map; but if one zooms in too
close – uses too strict a reduction – then virtually each element
appears isolated.

P = PSPACE.3 Prior work [34] has drawn a fairly de-
tailed map of the landscape of 2-party functionalities
in Informatica, delineating various complexity classes
and showing that many functionalities do not uncon-
ditionally reduce to others. Further [33] shows that
moving on to Minicrypt, a few of the relative distinc-
tions among functionalities disappear, and more im-
portantly, in Cryptomania (for our purposes, a world
in which semi-honest Oblivious Transfer protocols ex-
ist) all the distinctions among functionalities disap-
pear, except for ones that must remain uncondition-
ally [9, 36].

But these worlds in Impagliazzo’s multiverse may
not be the only cryptographically interesting ones.
In particular, one can imagine an intermediate
world “strictly” between Minicrypt and Cryptoma-
nia, where the map of complexity classes of function-
alities may look different from that in either world.
To discover or rule out such worlds, we need a formal
framework for the space of relevant computational as-
sumptions.

A Framework for Assumptions. For any pair of
(finite memory) functionalities F and G, we consider
the existence of a reduction F �ppt G as a complexity
assumption itself. Importantly, this convention de-
fines a (potentially infinite) space of assumptions, in-
dependent of specific constructions, but directly based
on cryptographic goals or functionalities. By system-
atically exploring this space of assumptions we hope
to uncover not only new interesting assumptions that
could be “black-box separated” from currently used
ones, but also identify interesting cryptographic prop-
erties that give rise to them.

For some pairs of functionalities (F ,G), the “as-
sumption” F �ppt G is unconditionally true, with the
security of the reduction holding even in the statisti-
cal setting (denoted by F �stat G). Further, some of
these assumptions are unconditionally false, no mat-
ter what computational assumption is made, due to
the strong demands of the UC security definition; the
pairs (F ,G) for which this happens have an explicit
characterization [9, 36]. But most of the assumptions
of the form F �ppt G are unresolved, and these are
the subject of our study.

In initiating this exploration, we pose several ques-
tions.

3In cryptographic language, this is a world where the ad-
versaries may be considered to have unbounded computational
resources. In this world, the only kind of security possible for
efficient protocols is information theoretic security. Hence the
name Informatica.

267



H. K. MAJI, M. PRABHAKARAN AND M. ROSULEK

1) Maximal and Minimal Assumptions.
The first question is whether there is a “maximal”

or “minimal” one among these (unresolved) assump-
tions. That is, among these assumptions, is there:
• (a maximal assumption) an assumption F∗ �ppt
G∗ such that it implies F �ppt G for all such pairs
(F ,G)?
• (a minimal assumption) an assumption F̂ �ppt Ĝ

such that (F �ppt G ∧ F ��stat G) =⇒ F̂ �ppt
Ĝ?

The first of these questions was recently answered
in [33], where it was shown that indeed such pairs
do exist. Interestingly, the maximal assumptions in
this framework are exactly equivalent to the famil-
iar assumption that there exists a stand-alone se-
cure oblivious-transfer protocol (sh-OT assumption).
In other words, the sh-OT assumption is a maxi-
mal assumption in our framework; there are no addi-
tional cryptographic worlds beyond Cryptomania in
our framework.

However, the question of the minimal assumption
remains open. We conjecture that a minimal assump-
tion exists and that it in fact corresponds the exis-
tence of one-way functions. Some of the results be-
low represent support for this conjecture. In particu-
lar we show that for several interesting pairs (F ,G),
F �ppt G is indeed exactly equivalent to the existence
of one-way functions (OWF).

2) Intermediate Assumptions.
Assuming OWF assumption is indeed the mini-

mal assumption of the form F �ppt G, one can
ask if there are “intermediate” assumptions between
OWF assumption and sh-OT assumption. Here, by an
assumption being intermediate, we mean that there
exists a black-box separation in the sense of [15, 21],
that separates it from both OWF assumption and
sh-OT assumption.

Indeed, [15] shows that the existence of a secret
communication protocol is an intermediate assump-
tion. It is easy to see that their result extends to
the UC secure reduction of a secret communication
functionality to a public communication functionality.
In our framework we find it convenient to work with
functionalities which do not communicate with the
adversary when all the parties are honest (called reg-
ular functionalities in [36]). So this particular reduc-
tion appears only when we consider multi-party func-
tionalities with three or more parties. For the case
of 2-party (finite-memory, regular) functionalities, we
conjecture that all assumptions of the form F �ppt G
are in fact equivalent to either OWF assumption or
sh-OT assumption (or are unconditionally true or
false). This conjecture is supported by all the results

derived in this work.
Moving to 3-party functionalities already provides

us one such intermediate assumption. But our un-
derstanding of multi-party functionalities with 3 or
more parties is very limited. (Note that our map
in Figure 1 is only for 2-party functionalities.) We
consider it highly likely that several other intermedi-
ate assumptions can be discovered in our framework
among functionalities with more than two parties.

Our Results.
Our main results can be interpreted as evidence

that the worlds Minicrypt and Cryptomania (the lat-
ter appropriately interpreted) are indeed very special.
We classify a substantial number of reductions F � G
(for 2-party functionalities F and G) and find that,
surprisingly, every one that we are able to classify is
exactly equivalent to either the existence of one-way
functions, or the existence of a semi-honest protocol
for oblivious transfer. Put another way, if we defined
worlds in Impagliazzo’s multiverse corresponding to
the various complexity classes among 2-party func-
tionalities changing their boundaries, then we seem
to obtain only two worlds (in addition to Informat-
ica), namely Minicrypt and Cryptomania.

The new technical results here are of the form that
various reductions of the form F �ppt G imply ei-
ther sh-OT assumption or OWF assumption. This is
complemented by our recent results [33] showing that
either sh-OT assumption or OWF assumption imply
F �ppt G for all functionalities F and G in our frame-
work. Together, these results establish the equivalence
between assumptions of the form F �ppt G and either
sh-OT assumption or OWF assumption.

Our results can be summarized as follows, and
should be considered as support for our main con-
jectures:
• Simultaneity can be extended only in

Cryptomania. Some 2-party functionalities, like
evaluating a boolean xor, provide no information hid-
ing, but only enforce simultaneity or input indepen-
dence.4 Such a functionality can be used to securely
realize another functionality with “less” simultaneity
and no information hiding even in Informatica, using a
simple protocol. But we show that such a functional-
ity can be used to securely realize another functional-
ity with “more” simultaneity, or another functionality
that hides information, only in Cryptomania (i.e., if
and only if there exists a semi-honest OT protocol).
As a concrete example, it is possible to securely eval-
uate a boolean xor on strings of two bits given ideal

4Here simultaneity only refers to the input independence —
Alice should not be able to choose her input based on Bob’s
input, and vice versa — and not to any notion of fairness.
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access to a single-bit xor functionality if and only if
there is a semi-honest OT protocol (or equivalently, if
and only if a single-bit xor functionality can be used
to realize every other functionality). Here, the “if”
clauses follow from [33].
• Other reductions possible in Minicrypt.

Many interesting functionalities can be securely real-
ized against passive adversaries in Informatica. We
call them “passive trivial” functionalities. Among
such functionalities, those which perform some in-
formation hiding (thus excluding the functionalities
like xor considered above) can be used to realize
any other passive trivial functionality in Minicrypt.
(This follows from results in [33].) We show that
many of those reductions are in fact equivalent to the
OWF assumption.

A more detailed overview of our results and conjec-
tures is presented in Section 3.

Related Works.
Until recently, most work in secure multi-party

computation focused on the extremes of complexity;
namely, classifying the functionalities that are triv-
ially realizable (using only a communication channel)
and those which are complete. Such classifications
have been found for a wide variety of security models
(i.e., reduction strengths) and subclasses of function-
alities [4, 6, 9–11, 16, 22, 23, 25, 26, 29, 31, 36].

Beimel et al. [5] address a similar question as here,
relating cryptographic complexity of MPC functional-
ities and computational complexity assumptions. But
they consider computational complexity assumptions
only of the form that a functionality is standalone-
trivial. Restricted to a special class of SFE function-
alities, they show that there is only one such assump-
tion (other than being unconditionally true), namely
the sh-OT assumption.

Recently [34] demonstrated infinitely many dis-
tinct, intermediate levels of cryptographic complex-
ity under computationally unbounded UC secu-
rity reductions (or, in our current lexicon, reduc-
tions in Informatica). On the contrary, assuming
sh-OT assumption, the state of affairs is totally dif-
ferent — [33] show that in this setting, every (de-
terministic, finite) functionality is either trivial or
complete. In independent work, [14] show that un-
der sh-OT assumption, the “common random string”
functionality (or in our framework of finite functional-
ities, the coin-tossing functionality Fcoin) is complete.

Impagliazzo and Luby [20] showed that several im-
portant cryptographic primitives are equivalent to the
OWF assumption. Following the approach there, we
also rely on the fact that a weaker primitive called dis-
tributionally one-way functions yield OWFs. In [12],

Damgård and Groth showed that if Fcom �ppt Fcoin
then the sh-OT assumption holds. This is subsumed
by our results regarding exchange-like functionalities
(Theorem 1), but in fact contains one of the ideas that
is used in (the simpler of) our constructions.

In considering the existence of OWF, key-agreement
and sh-OT as distinct computational assumptions, we
rely on the black-box separation results from [15, 21].
We refer to such separations in our conjectures, which
predict more such distinct computational assumptions
coming out of our framework. However, for the for-
mal statement of our results (which merely show that
various reductions are equivalent to one of these as-
sumptions), such a separation is not essential.

2 Technical Preliminaries
We write [k] to denote the set {1, . . . , k}. We say

that a function µ : ℕ→ ℝ is negligible if it approaches
zero faster than any inverse polynomial. That is, if for
all c > 0, µ(n) < n−c for sufficiently large n. We say
that a quantity ν is noticeable if ν(n) = Ω(n−c) for
some constant c > 0. We say that a probability p is
overwhelming if 1− p(n) is negligible.

2.1 Security Model
We use security in the Universal Composition (UC)

framework of Canetti [7]. The framework follows
the paradigm introduced by Goldreich, Micali and
Wigderson [16] of defining security by comparing a
real world (in which the parties execute a protocol)
to an ideal world (in which the task is carried out
by a trusted functionality). We assume the reader
has a slight familiarity with the UC framework, and
now present an overview of the conventions we use in
this paper, emphasizing that very few specifics of the
model are critical for our results.

We write F � G if there is a protocol that securely
realizes F in the “G-hybrid model;” see [7] for a formal
definition. Informally, a protocol is secure if for every
adversary attacking the protocol (in the real world),
there is a simulator interacting with F (in the ideal
world) that achieves an indistinguishable effect in all
contexts (environments). In the G-hybrid model, the
parties in the protocol can interact with any number
of (asynchronous) copies of G, and can access G in
any “role”. The parties are also given free access to a
communication channel.

We consider only efficient protocols, but make a no-
tational distinction between unconditionally (statisti-
cally) secure protocols (denoted by �stat) and proto-
cols whose security may depend on a computational
assumption (denoted by �ppt). As is standard, we
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require security against active (i.e., malicious) adver-
saries. All results in this work are restricted to static
corruption (where the adversary has to corrupt any
parties before the protocol begins).

2.2 Functionalities
Although the UC framework allows a functionality

to be an arbitrary interactive program, we consider in
this work only finite functionalities — namely, func-
tionalities that have finite memory and use finite in-
put and output alphabets. (See Section 6 for a brief
discussion.)

Many of our results do apply to arbitrary reactive
functionalities, which take input and give output re-
peatedly throughout several rounds of interaction (see
Appendix B for formal definitions of this class of func-
tionalities). However, for clarity most of our results
in the main body are stated for the class of symmetric
SFE functionalities, defined below:

Definition 1. A functionality is a secure function
evaluation (SFE) functionality if it waits for inputs
x ∈ X from Alice and y ∈ Y from Bob (for some finite
sets X and Y ) and then sends fA(x, y) to Alice and
fB(x, y) to Bob. If either party is corrupt, the output
for that party is delivered first; then if the adversary
allows, the output to the other party is also delivered.

We say that the functionality is symmetric SFE
(SSFE) if fA = fB.

SSFE functionalities, starting with the original Mil-
lionaire’s Problem proposed by Yao [41], are perhaps
the most well-studied class of two-party functionali-
ties. We can completely specify an SSFE by giving
its function table, a matrix whose (i, j) entry contains
fA(i, j) = fB(i, j). Each row corresponds to a possi-
ble input for Alice, and each column corresponds to
a possible input for Bob. For instance, the boolean
xor functionality may be written as 0 1

1 0 .
Note that if neither party is corrupt, the functional-

ity does not interact with the adversary. (Such func-
tionalities were called regular functionalities in [36].)

Definition 2. We say that two SFE functionalities
are isomorphic if one can be obtained from the other
by repeatedly adding/removing redundant inputs, per-
muting a party’s inputs, relabeling a party’s outputs
for one of its inputs, and reversing the roles of Alice
and Bob.

By redundant input, we mean (in the case of Alice)
an input x such that fB(x, ·) = fB(x′, ·) for some x′,
and (x′, fA(x′, y)) uniquely determines fA(x, y) for all
y.

Several specific functionalities play important roles
in our results:

Fot: Standard 1-out-of-2 oblivious transfer (OT)
functionality. Alice has inputs x0, x1 ∈ {0, 1}
and Bob has input b ∈ {0, 1}. Alice receives no
output, and Bob receives output xb.

Fcom: Standard bit-commitment functionality. Alice
gives input (commit, x), where x ∈ {0, 1}, and
Bob receives output committed. Later, when
Alice sends input reveal, Bob receives input
(reveal, x), where x was the input given in Al-
ice’s first commit command.

Fcoin: Standard coin-tossing functionality. After re-
ceiving input from both parties, samples a ran-
dom coin r ← {0, 1} and gives it to both parties.

Fcc: A simple “cut-and-choose” functionality. It is an
SSFE functionality defined as 0 2

1 2 . In Fcc, Alice
provides a bit, and Bob can choose whether or
not to learn it. The output also reveals Bob’s
choice to Alice. Fcc is the simplest non-trivial
functionality that hides some information about
the inputs.

F i×jexch: An exchange function: the SSFE functionality
in which Alice gives input x ∈ [i], Bob gives input
y ∈ [j], and both parties learn (x, y). The crypto-
graphic non-triviality of an exchange function is
that it enforces inputs to be chosen independently
(though we make no requirement for fairness in
learning the output). The special case F2×2

exch is
isomorphic to the boolean-xor SSFE functional-
ity.

2.3 Intractability Assumptions
We consider two important computational in-

tractability assumptions in this work:

sh-OT assumption: There exists a protocol for Fot
secure against semi-honest, PPT adversaries. It is
possible to express this assumption using the defini-
tion of UC security restricted to semi-honest adver-
saries (in both the real and the ideal executions).
However, we point out that the traditional (stan-
dalone) security definition is equivalent to the UC
security definition, since the simulation required by
semi-honest security does not, and need not, extract
the inputs of the corrupt players; it simply uses the
input given by the environment.

The sh-OT assumption is known to imply the exis-
tence of one-way functions [17, 20]. As such, a pro-
tocol for OT secure against semi-honest adversaries
implies such a protocol secure against malicious (stan-
dalone) adversaries, using the compiler of [16].

OWF assumption: This is the standard assumption
that one-way functions exist. In [20], it is shown that
the OWF assumption is implied by the much weaker
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complete

(unclassified)

passive trivial

exchange-like

exchange
-free

standalone
trivial

UC trivial
Figure 1: A map of various cryptographic complexity
classes (of 2-party SSFE functionalities)

assumption that distributionally one-way functions
exist. Thus if OWFs do not exist, then no function is
distributionally one-way: for every efficient function
f and polynomial p, there is an efficient algorithm
that on input y samples close to uniformly (within
1/p statistical difference) from the set f−1(y).

2.4 Cryptographic Complexity Landscape
Overview

In this section we provide some useful classifications
of functionalities, many of which are natural “com-
plexity classes” in our complexity-theoretic view of
MPC functionalities. A visual overview is also given
in Figure 1. For each class, we describe its relevance
to our framework and give an overview of some of its
important known properties.

The classes listed below, except the first two, are
natural in our framework in the sense that they are
“downward closed” with respect to �stat. That is,
if G is a functionality in a class and F �stat G then
F also falls in the same class. (The first one is “up-
ward closed.”) Additionally, all of these classes can be
defined in terms of the �stat reduction, which is the
most restrictive reduction in our framework.

Complete Functionalities. These are SSFE func-
tionalities that are unconditionally “complete.” That
is, for all G in this class, and all functionalities F ,
F �stat G. Based on the completeness of the obliv-
ious transfer functionality [23] (which remains true
with respect to the UC-secure reduction �stat as well
[22, 24]), Kilian [25] gave a complete combinatorial
characterization for these functionalities, as the eval-
uation of functions that contain a 2 × 2 minor of

the form a b
b b , where a �= b. Later, Kraschewski and

Müller-Quade [29] extended Kilian’s characterization
to the stronger �stat reduction.

Unclassified Functionalities. Among incomplete
SSFE functionalities, we leave a set of functionalities
as “unclassified.” These are functionalities which are
neither complete, nor passive-trivial (see next class).
We know that this class is not empty: the “spiral”

SSFE functionality
1 1 2
4 0 2
4 3 3

is known to fall into this
category [4, 27, 31]. These functions do have a com-
binatorial characterization in terms of minors that
immediately follows from the combinatorial charac-
terizations of complete functionalities and passive-
trivial functionalities (below) [4, 31]. However, we
call these functionalities unclassified as very little is
known about their cryptographic properties, or differ-
ent sub-classes within the class.

Passive-Trivial Functionalities. These are func-
tionalities securely realizable against a passive (a.k.a.,
honest-but-curious, or semi-honest) adversary in a
computationally unbounded environment. For SSFE
functionalities, such functions have an explicit combi-
natorial characterization, namely that they are eval-
uations of what are called “decomposable” functions:

Definition 3 (Decomposable [4, 31]). An SSFE func-
tionality F : X×Y → Z is row decomposable if there
exists a partition X = X1 ∪ · · · ∪Xk (Xi �= ∅), k ≥ 2,
such that the following hold for all i ≤ k:
• for all y ∈ Y , x ∈ Xi, x′ ∈ (X \ Xi), we have
F(x, y) �= F(x′y); and
• F ∣∣

Xi×Y is either a constant function or column
decomposable, where F∣∣

Xi×Y denotes the restric-
tion of F to the domain Xi × Y .

We define being column decomposable symmetrically
with respect to X and Y . We say that F is simply de-
composable if it is either constant, row decomposable,
or column decomposable.

Kushilevitz [31] and Beaver [4] independently
proved that an SSFE functionality is decomposable
if and only if it has a perfectly secure protocol. Later,
this characterization was extended to the more nat-
ural case where the protocol is allowed to be only
statistically secure [30, 34].

If F is decomposable, then a canonical protocol for
F is a deterministic protocol defined inductively as
follows [31]:
• If F is a constant function, both parties output

the output value of F , without interaction.
• If F is row decomposable as X = X1 ∪ · · · ∪Xk,

then party 1 announces the unique i such that its
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input x ∈ Xi. Then both parties run a canonical
protocol for F ∣∣

Xi×Y .
• If F is column decomposable as Y = Y1∪· · ·∪Yk,

then party 2 announces the unique i such that its
input y ∈ Yi. Then both parties run a canonical
protocol for F ∣∣

X×Yi .
It is a simple exercise to see that a canonical protocol
is a perfectly secure protocol for F against passive
adversaries.

An important example in this class (though not an
SFE functionality) is the commitment functionality
Fcom. Interestingly, this class has a natural alternate
definition in terms of the �stat reduction. If F is an
SFE functionality, then F is passive-trivial if and only
if F �stat Fcom [34].

Exchange-Like Functionalities. We introduce an
important sub-class of passive-trivial functionalities
called exchange-like functionalities. A simple way to
define this class is the functionalities F such that
F �stat F i×iexch for some i. Intuitively, these are
the functionalities that can be realized using simul-
taneity alone (recall that the only cryptographic non-
triviality of an exchange function F i×iexch is in its inde-
pendence of inputs).

Among SSFE functionalities, exchange-like func-
tionalities are exactly those that are isomorphic to
F i×jexch for some integers i and j. For reactive func-
tionalities, a similar complete characterization can be
made, and we do so in Appendix B.

Exchange-Free Functionalities. In contrast to
exchange-like functionalities, we can define the class
of exchange-free functionalities as those which con-
tain no simultaneity. More formally, G is in this class
if and only if F2×2

exch ��stat G. All standalone-trivial
functionalities (see the next class) are of this kind.
But there are other functionalities too: for instance,
1 1 2
3 4 3 (not standalone-trivial) and

1 1 2
4 0 2
4 3 3

(an unclassi-
fied functionality) can be shown to be exchange-free.

A useful combinatorial property of exchange-free
functionalities is the following: Every exchange-free
and passive-trivial functionality has a unique (up to
simple renaming of the steps) decomposition (Defini-
tion 3) [34]. However, being uniquely decomposable
does not necessarily mean that the SFE is exchange-

free — consider the SSFE function
1 1 2
5 0 2
4 3 3

.

Standalone-Trivial Functionalities. These are
functionalities securely realizable against computa-
tionally unbounded adversaries in a stand-alone (i.e.,
isolated) environment. SSFE functionalities in this
class were combinatorially characterized in [30, 34] as

a strict subclass of the passive-trivial functionalities.
Since F2×2

exch is not in this class, every functionality
in this class is exchange-free. The Fcc functionality
defined earlier is an important example in this class,
and is in fact the simplest non-trivial one.

Trivial Functionalities. These are the functionali-
ties UC-securely realizable against a general adversary
in a computationally unbounded environment, using
protocols which only rely on (private) communication
channels.5 In the case of SSFE functionalities, these
are the functionalities that have a decomposition of
depth 1, or equivalently, the functionalities that are
isomorphic to F1×k

exch for some k [9, 36]. A secure pro-
tocol for a trivial SSFE is a simple one in which one
party simply sends a function of its input to the other
party.

Characterizations of triviality are also known for
the case of reactive functionalities [33, 36]. A deter-
ministic, finite functionality is trivial if and only if it
is both exchange-like and exchange-free. (This char-
acterization is not true for randomized functionalities:
Fcoin is both exchange-like and exchange-free).

3 Intractability Framework and Our
Results

Recall that our interest is in “intractability assump-
tions” of the form F �ppt G, where F and G are arbi-
trary deterministic finite functionalities. Among two-
party functionalities, all the reductions we are able to
definitively classify fall into one of four kinds (others
which are only partially classified are also consistent
with these four categories):

1. Reductions that are unconditionally true.
2. Reductions equivalent to the OWF assumption.
3. Reductions equivalent to the sh-OT assumption.
4. Reductions that are unconditionally false.
If F is non-trivial and G is trivial (as defined in Sec-

tion 2.4), then F �ppt G is unconditionally false, no
matter what computational complexity results may
hold. (This is a consequence of the unconditional im-
possibility results in [9, 36].)

Recent results in a companion paper [33] show that
all other assumptions (i.e., those that are not known
to be unconditionally false) of the form F �ppt G
are implied by the sh-OT assumption. Thus the re-
maining question is to determine which “standard”
intractability assumption is necessary for F �ppt G.
Note that the space of functionalities we consider is
infinite, and a priori one might expect a large number

5Recall that in our model functionalities — including com-
munication channels — interact only with the parties. A chan-
nel with an eavesdropper is modeled as a 3-party functionality.
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of, if not infinitely many, “distinct” assumptions (dis-
tinct in the sense of [21]). Indeed, such a phenomenon
is not without precedence: in [15] for instance, an in-
finite hierarchy of complexity assumptions related to
cryptographic protocols is derived. However, the as-
sumptions in such an infinite hierarchy tend to have
quantitative differences, and may not relate to con-
ceptual differences. Indeed, the hierarchy of assump-
tions in [15] is based on the number of rounds in a
protocol that is assumed to exist. On the other hand,
the above assumptions (the OWF assumption and the
sh-OT assumption) are conceptually different. Indeed,
our framework formalizes a way to avoid such quan-
titative distinctions (since our notion of reduction ig-
nores such differences).

In the following conjectures we refer to two assump-
tions being distinct. As mentioned above, this can be
formalized as in [15, 21], by considering oracles given
which one assumption holds but not the other. Since
none of our results need this concept of distinct as-
sumptions, we do not present the formalization here,
but instead refer the readers to [15, 21].

Conjecture 1 (Quantization of Computational As-
sumptions.). For every m, there are only finitely
many distinct assumptions of the form F �ppt G,
where F and G are finite m-party functionalities func-
tionalities.

We believe that there are several such new assump-
tions to be discovered. But we conjecture that we
need to look beyond the more familiar case of deter-
ministic 2-party functionalities to discover them. For
instance, assumptions appear in our framework for 3-
party functionalities that we believe do not appear for
2-party functionalities (see below), and we anticipate
that more assumptions exist corresponding to compli-
cated security requirements among many parties.

Conjecture 2. Assumptions of the form F �ppt G,
where F and G are deterministic finite two-party func-
tionalities fall into one of the four classes listed above.

We present significant progress towards affirming
the above conjecture. Note that we are looking to
prove that assumptions F �ppt G are equivalent to
the OWF assumption or the sh-OT assumption, un-
less they can be shown to be unconditionally true or
false. One part of showing the equivalence is to show
that the OWF assumption or the sh-OT assumption is
sufficient for such a reduction, presumably by giving
explicit protocols. This was carried out in [33]:

Proposition 1 (Based on results in [33].). The as-
sumption F �ppt G is:

• unconditionally true (i.e., F �stat G) if G is com-
plete or if F is trivial;
• unconditionally false, if G is trivial and F is non-

trivial;
• equivalent to the sh-OT assumption if G is com-

plete and F is passive-trivial;
• implied by the sh-OT assumption if G is non-

trivial;
• implied by the OWF assumption if G is not

exchange-like and F is passive-trivial.

In this work, the focus is on showing the converse,
that either the OWF assumption or sh-OT assumption
is necessary for F �ppt G.

Reductions equivalent to the
sh-OT assumption

We show a large class of functionalities to be equiv-
alent to the sh-OT assumption:

Theorem 1. Let G be a non-trivial exchange-like
functionality. Then for all F , either F �stat G or
F �ppt G is equivalent to the sh-OT assumption.

Further, we characterize precisely when F �stat
G, when G is exchange-like. Recall that the non-
triviality of exchange-like functionalities is due solely
to their simultaneity (independence) of inputs. If F is
exchange-like and has a higher “bandwidth” of simul-
taneity (i.e., its dimensions are larger than G’s), or if
F is not exchange-like (i.e., it performs some hiding
of the parties’ inputs), then F ��stat G. Intuitively,
simultaneity cannot be amplified or used for informa-
tion hiding, except in Cryptomania.

Theorem 1 extends to the case of reactive exchange-
like functionalities as well. Analysis of arbitrary re-
active functionalities was introduced in [33], and we
build on the analysis there, to characterize exchange-
like reactive functionalities.

Reductions equivalent to the
OWF assumption

Given Proposition 1 and Theorem 1, Conjecture 2
would be settled for the class of passive-trivial func-
tionalities if the following conjecture is true:

Conjecture 3. For any two functionalities F and
G, either F �stat G, or F �ppt G implies the
OWF assumption.

That is, we would like to prove that the
OWF assumption is indeed minimal for conditional re-
ductions. While this may sound obvious, proving such
a conjecture turns out to be difficult. Essentially, as-
suming that the OWF assumption does not hold, one
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must show attacks on any protocol purportedly car-
rying out such a reduction. We obtain the following
results, to partially confirm the above conjecture.

Theorem 2. For every non-exchange-like, passive-
trivial SFE functionality G, there are infinitely many
standalone-trivial SFE functionalities F such that
F �ppt G is equivalent to the OWF assumption.

Theorem 3. Let F and G be passive-trivial but not
UC-trivial. If F is not standalone-trivial and G is
standalone-trivial, then F �ppt G is equivalent to the
OWF assumption.

3.1 Beyond 2-Party Functionalities
The class of two-party functionalities that we con-

sidered is quite rich, but still omits some very im-
portant and familiar kinds of cryptographic tasks.
In particular, the classical task of secret communi-
cation, is modeled as a functionality with three par-
ties, Alice, Bob and Eve, and is not captured by any
of the two-party functionalities.6 Let us denote the
3-party private channel functionality (in which the
third party learns only that the channel was invoked,
when the first party sends a message to the second
party) by Fpvt. In contrast, let Fpub be the a 3-
party public-channel functionality, in which the mes-
sage from the first party is received by both the other
parties (though if the first party is corrupt, it is al-
lowed to send different messages to the two others).
The assumption in question is Fpvt �ppt Fpub.

A key-agreement protocol, as considered in [15, 21],
yields such a reduction. This assumption, corre-
sponding to secrecy against third-party eavesdrop-
pers, seems to be of a different flavor than any as-
sumption arising out of cryptographic complexity of
2-party functionalities (wherein there is no external
adversary).

Conjecture 4. For any pair of two-party functional-
ities F ,G, the assumption F �ppt G can be black-
box separated (à la [15, 21]) from the assumption
Fpvt �ppt Fpub.

A first step to studying the assumptions arising of
3-party functionalities would be to understand various
cryptographic complexity classes (based on statistical
reductions). However, even the class of trivial SFE
functions is not well-understood in this case. [37, Ap-
pendix. B] includes a few “trivial” 3-party functionali-
ties, which are securely realizable using protocols that

6Recall that our functionalities do not communicate with the
adversary when all parties are honest. This convention requires
modeling corrupt parties explicitly, in the protocol and in the
functionality. Hence secret communication corresponds to a
3-party functionality.

involve more than a single message (as with protocols
for trivial 2-party functionalities).

Given the variety of cryptographic functionalities
that exist in the 3-party scenario, we conjecture that
there is at least one “undiscovered assumption” cor-
responding to a reduction among 3-party functionali-
ties.

Conjecture 5. There exist 3-party functionalities F ,
G, such that the assumption F �ppt G can be black-
box separated (a la [15, 21]) from OWF assumption,
sh-OT assumption and Fpvt �ppt Fpub.

4 Reductions Equivalent to the sh-OT
Assumption

In this section we introduce a natural subclass of
SFE functionalities and completely characterize �ppt
reductions involving this class. In Appendix B we
greatly generalize the definition and results to reac-
tive functionalities which need not give identical out-
put to Alice and Bob; however, the results for SFE
functionalities capture the major intuitions.

4.1 Exchange-Like Functionalities
Definition 4. Let F be an SFE functionality. We
say that F is exchange-like if F = F i×jexch for some
i, j.

The cryptographic non-triviality of an exchange-
like functionality is in its independence of inputs.
Exchange-like functionalities ultimately hide nothing
about the parties’ inputs, but enforce that the two
parties’ inputs are chosen independently.

Lemma 1 ([33]). If F is not exchange-like, then ei-
ther Fot �stat F or Fcc �stat F .

Proof sketch. The proof is a simple combinatorial
characterization, and we sketch the main ideas here.
Kraschewski and Müller-Quade [29] show (strength-
ening a result of Kilian [25]) that if F contains a
2 × 2 minor of the form a b

b b , where a �= b (called
a generalized-or minor, then Fot �stat F . Other-
wise, if F contains no generalized-or minor, but con-
tains a minor of the form a b

c b or a cb b , where a, b, c
are distinct (called a generalized-cc minor), then it
is straight-forward to see that the protocol in which
both parties simply restrict their inputs to that 2× 2
minor of F is an unconditionally UC-secure protocol
for Fcc (see [33]). Note that in general, restricting
inputs to a minor of an SFE is not a secure protocol,
since malicious parties may send different inputs to
F .

274



CRYPTOGRAPHIC COMPLEXITY CLASSES AND COMPUTATIONAL INTRACTABILITY ASSUMPTIONS

Thus, if Fot ��stat F and Fcc ��stat F , then F can-
not have any generalized-cc or generalized-or minors.
Every 2 × 2 minor of F must have be of one of the
forms a ab b , a ba b , or a bc d , where a, b, c, d are all dis-
tinct. It is easy to see that F is therefore an exchange
function (possibly with duplicate inputs).

4.2 Reductions Involving Exchange-Like
Functionalities

Our main classification involving exchange-like
functionalities is the following:

Theorem 1 (restated). If G is exchange-like and
non-trivial, then either F �stat G, or F �ppt G is
equivalent to the sh-OT assumption.

Proof. From [33], we have that G is �ppt-complete
under the sh-OT assumption, since it is non-trivial.
Thus F �ppt G under the sh-OT assumption.

For the other direction, we break the proof into two
parts, depending on the status of F . These are carried
out in the following two lemmas.

Lemma 2. If F is not exchange-like, and G is
exchange-like and non-trivial, then F �ppt G implies
the sh-OT assumption.

Proof. Given that F �ppt G, we directly construct a
passive secure protocol for Fot. From Lemma 1, we
have that either Fot �stat F or Fcc �stat F . Thus
either Fot �ppt G or Fcc �ppt G by the universal
composition theorem.

In the first case, Fot has the property that any UC-
secure protocol for Fot (even in a hybrid world) is also
itself a semi-honest-secure protocol [36]. G also has
a semi-honest-secure protocol (namely, its canonical
protocol since it is decomposable). Composing these
two protocols yields a semi-honest (plain) protocol for
Fot and we are done.

In the other case, suppose π is the secure proto-
col for Fcc in the G-hybrid world. Recall that Fcc

has a function table 0 2
1 2 , which we interpret as Alice

sending a bit (top row or bottom row), Bob choos-
ing whether or not to receive it (left column or right
column), and Alice learning Bob’s choice (whether or
not the output was 2). We directly use π to construct
a semi-honest Fot protocol as follows, with Alice act-
ing as the OT sender (with inputs x0, x1) and Bob
the receiver (with input b):
• The parties instantiate two parallel instances of
π, with Alice acting as the sender in both. Since
there is no access to an external G, Bob will sim-
ulate Alice’s interface with instances of G— that
is, Alice will send her G-inputs directly to Bob,

and he will give simulated responses on behalf of
these simulated instances of G. Alice uses x0 and
x1 as her respective inputs to the two instances
of protocol π, and runs the protocol honestly.
• In protocol instance (1 − b), Bob carries out the

simulation of G-instances and the π protocol com-
pletely honestly. He runs the π protocol on the
input that does not reveal Alice’s input (i.e., he
chooses the “right column” input to Fcc).
• In protocol instance b, Bob honestly runs the

UC simulator for π, treating Alice as the adver-
sary (including simulating Alice’s interface with
G-instances). At some point, the simulator ex-
tracts Alice’s bit xb which would normally be sent
to Fcc. Bob continues running the simulator as
if Fcc responded with output 2. When the inter-
action completes, Bob outputs xb.

By the UC security of π, Alice’s view is computation-
ally independent of b (i.e., she cannot distinguish an
interaction with π’s simulator from an interaction in
which the receiver and G are honest). By the sound-
ness of the simulator, we also see that Bob correctly
learns xb; we must argue that he has no advantage
guessing x1−b. If all G-instances were external to the
(1− b) interaction (instead of Bob simulating them),
then the security of π would imply that Bob has no ad-
vantage in guessing x1−b, since the protocol’s output
is 2. Being an exchange function, however, G has the
property that Bob always learns all of Alice’s inputs
anyway. Thus Alice can send her G-inputs directly to
Bob, without any affect on the security of the pro-
tocol. This is exactly what happens in the (1 − b)
interaction.

We note that the technique of running two proto-
col instances, one honestly and the other using the
simulator, to obtain a semi-honest OT protocol was
also used by Damgård and Groth [12], though in the
context of a protocol for Fcom instead of Fcc, and con-
sidering a common random string instead of an arbi-
trary exchange-like G. This theme also occurs in our
constructions of semi-honest OT protocols through-
out this section, although we greatly generalize the
technique and the corresponding analysis.

For the case where F is also exchange-like, it
is no longer true that F �ppt G is equivalent to
sh-OT assumption for all F and G. For some F and G,
it can be easily seen that F �stat G. We completely
characterize when each case holds.

Theorem 4. Let F and G be exchange-like, so with-
out loss of generality, F = F i×jexch and G = F i′×j′exch .
Then if i ≤ i′ and j ≤ j′, or if i ≤ j′ and j ≤ i′,
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then F �stat G. Otherwise, F �ppt G is implies the
sh-OT assumption.

Put differently, if an i × j rectangle can fit in-
side an i′ × j′ rectangle (in either of its two axis-
aligned orientations), then F i×jexch �stat F i

′×j′
exch ; oth-

erwise, F i×jexch �ppt F i
′×j′

exch is equivalent to the
sh-OT assumption. Since i and j represent the “band-
width” (in the two directions) of an exchange-like
functionality, a simple way to interpret this theorem
is that increasing the bandwidth of an exchange-like
functionality is equivalent to the sh-OT assumption,
while decreasing the bandwidth is cryptographically
trivial.

Main Ideas.
The protocol that demonstrates F �stat G is ele-

mentary. To perform an i× j exchange using G, sim-
ply send inputs directly to G (with Alice and Bob ex-
changed if necessary). Each party aborts if the other
party provided an input to the i′× j′ exchange which
was out of bounds for an i× j exchange. The security
of this protocol is straight-forward.

We first sketch the main ideas behind proving the
other direction As an illustrative, example suppose
that F = F i×iexch and G = F (i−1)×(i−1)

exch , and that we
have a protocol π demonstrating F �ppt G. The role
of the simulator for π is to first extract the input of
a corrupt party, send it to F in the ideal world, and
then continues to simulate π consistently given the
output from F .

Again for the benefit of this simplified overview,
suppose that the simulator for a passively corrupt Al-
ice always extracts during round rA.7 Since the sim-
ulator does not contact G throughout the first rA − 1
rounds of the simulation, Alice’s view is independent
of Bob’s input during these rounds. If Bob’s input
is random (uniform in [i]), then after round rA, Alice
still cannot guess Bob’s input with probability greater
than ζ = (i − 1)/i, since there are only i − 1 possi-
ble responses from the simulated G that the simulator
can give to complete the simulation of round rA. By
the soundness of the simulation, an honest Alice can-
not predict Bob’s input with probability greater than
ζ + negl(k) after rA rounds of an honest interaction
with Bob. Similarly, if the simulator for a passively
corrupt Bob always extracts during round rB , then an
honest Bob cannot predict Alice’s random input with

7If a round begins with a call to the external functionality G,
then the round concludes when the parties receive their output
from this external functionality. Extracting during round r
means that the simulator extracts after seeing the adversary’s
input to the external functionality, and before delivering the
corresponding output.

probability greater than ζ + negl(k) after rB rounds
of an honest interaction with Alice.

By symmetry, suppose that rA ≤ rB . Then we can
obtain a semi-honest protocol for a weak variant of
OT as follows. As in the proof of Lemma 2, the parties
run two instances of π, with Alice providing random
inputs to both instances. In one instance Bob runs
the simulator, and in the other instance Bob runs the
protocol and simulates G honestly. Both instances are
truncated after rA rounds. Using the same reasoning
as before, Alice cannot distinguish which interaction
was honest and which used the simulator; Bob learns
one of Alice’s inputs since the simulator extracts in
round rA, but cannot predict Alice’s other input with
probability better than (i− 1)/i, since rA ≤ rB . This
slight uncertainty can be easily amplified to obtain
a full-fledged protocol for oblivious transfer (see Ap-
pendix C for information on amplifying weak OT pro-
tocols).

The main proof is more involved in several ways.
First, rA and rB need not be fixed rounds, but may
be random variables. In this case, the parties must
essentially guess min{rA, rB}. Still, we can obtain a
weak OT protocol in which Bob has noticeable un-
certainty about one of Alice’s inputs, and which is
therefore amenable to amplification. Second, the case
where the dimensions of F and G are incomparable
requires a much more careful analysis.
Weak Oblivious Transfer & Amplification.

As mentioned above, we will construct a protocol
for a weak variant of OT which can then be amplified
into full-fledged OT protocol. Similar to the definition
of (p, q)-OT used in [13], we define the following weak
OT security:

Definition 5 (q-weak-OT). A q-weak-OT is a pro-
tocol between a sender and receiver that satisfies the
following conditions:
• The sender has inputs (x0, x1) ∈ ℤ

2
N . The re-

ceiver has input b ∈ {0, 1} and correctly receives
output xb with overwhelming probability.
• A passively corrupt sender has only negligible ad-

vantage in guessing the bit b.
• No passively corrupt receiver can guess x1−b with

probability noticeably greater than q, when the
sender’s inputs are random.

Thus, 1
N -weak-OT corresponds to the standard def-

inition of OT, when the sender’s input domain is
ℤN . Note that this definition considers only sim-
ple indistinguishability-based security properties of
(weak) OT protocols, while the formal definition of
the sh-OT assumption demands an efficiently simulat-
able OT protocol for semi-honest adversaries. How-
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ever, if an OT protocol is 1/N -weak as above, then
it is an efficient and sound simulation to simulate the
honest protocol with any input for the honest party
that is consistent with the required output. Thus this
indistinguishability-based definition is equivalent to
the more succinct simulation-based definition.

In Appendix C, we show that any (1 − 1
poly)-weak

OT protocol can be amplified into a full-fledged OT
protocol.
The Construction

As an introduction to how we deal with a simulator
that may extract in an unpredictable round, we show
the following simpler result:

Lemma 3. Let Fcoin be the ideal coin-tossing func-
tionality. Then F2×2

exch � Fcoin is equivalent to the
sh-OT assumption.

Proof. Let π be a secure protocol for F2×2
exch in the

Fcoin-hybrid model. We will transform π to obtain
a protocol for Fot secure against semi-honest adver-
saries.

Let sB be the random variable denoting the round
in which the simulator extracts from a passively cor-
rupt Alice and sends her input to F2×2

exch. Suppose
Bob’s input is chosen at random. Then fix any passive
adversarial strategy for Alice which outputs a guess
of Bob’s input at each step of the protocol, and define
tA as the random variable denoting the round when
this guess is correct with probability at least ζ = 3/4
(where the probability is over the randomness inde-
pendent of Alice’s view), when interacting with the
simulator. By the soundness of the simulation, Al-
ice’s view is completely independent of Bob’s input
through the first sB rounds. Thus tA ≥ sB + 1, and
in particular, E[tA] ≥ E[sB] + 1.

Now consider running this passive adversarial strat-
egy for Alice against an honest Bob in the actual pro-
tocol execution, instead of against the simulator. We
define uA to be the random variable denoting the first
round in which Alice’s guess of Bob’s random input is
correct with probability at least ζ. By the security of
π, the two interactions must be indistinguishable to
this Alice strategy, thus |E[uA] − E[tA]| < ε/ζ = ε′,
where ε is the negligible simulation error of the pro-
tocol. Thus E[uA] ≥ E[sB] + 1− ε′.

Similarly we can define uB and sA with the roles of
Alice and Bob reversed, and conclude that E[uB] ≥
E[sA] + 1 − ε′. Then, either E[uA] ≥ E[sA] + 1 − ε′,
or E[uB] ≥ E[sB] + 1 − ε′; otherwise we would get
that E[uA] < E[sA] + 1− ε′ ≤ E[uB] < E[sB] + 1− ε′,
contradicting a previous conclusion.

By symmetry, we assume that E[uB] ≥ E[sB ]+1−
ε′. In other words, in an interaction with an honest

Protocol for a weak variant of Fot. Alice has ran-
domly chosen inputs x0, x1 ∈ {0, 1}, and Bob has
input b ∈ {0, 1}. Protocol π is given as a UC-secure
protocol for F2×2

exch in the Fcoin-hybrid model.
1. Alice honestly runs two instances of the pro-

tocol π with Bob, using inputs x0 and x1, re-
spectively.

2. Bob picks a random r ∈ [r(κ)], where r(κ) is
a polynomial bound on the number of rounds
in π and κ is the global security parameter.

3. In the bth instance of π, Bob runs the sim-
ulator for π against Alice (including simulat-
ing her interface with instances of Fcoin), and
halts the interaction after the rth round of π.

4. In the (1−b) instance of π, Bob runs the π pro-
tocol honestly with Alice on a fixed input (say,
0), and also honestly simulates all instances of
Fcoin for Alice. Bob halts the interaction after
the rth round of π.

5. If the simulator has extracted xb, then Bob
outputs it. Otherwise, he asks Alice for
(x0, x1), and she sends it to him.

Figure 2: Weak oblivious transfer protocol, assuming
F2×2

exch �ppt Fcoin.

Alice, the simulator will, on average, extract Alice’s
input earlier than any passive Bob could guess Alice’s
input with probability at least ζ.

Now consider the protocol given in Figure 2. First,
since Alice cannot distinguish a simulated instance of
π from an honest execution of π, Alice has no advan-
tage in predicting Bob’s bit b. Thus the protocol gives
complete privacy for Bob.

A passively corrupt Bob in this weak-OT protocol
can guess Alice’s input x1−b correctly with probability
at most

Pr[sB ≤ r < uB]ζ + (1− Pr[sB ≤ r < uB])
= 1− (1− ζ) Pr[sB ≤ r < uB]
≤ 1− (1− ζ)E[uB − sB]/r(κ)
≤ 1− (1− ζ)(1 − ε′)/r(κ)

by the definition of uB. Or, in other words, Bob’s
guess must be incorrect with probability at least (1−
ζ)(1− ε′)/r(κ), which is an inverse polynomial in the
security parameter. In Appendix C, we show how
a weak Fot protocol with this security property can
be amplified to give a full-fledged (semi-honest) Fot
protocol.

We now prove Theorem 4 for the following special
case:

277



H. K. MAJI, M. PRABHAKARAN AND M. ROSULEK

Lemma 4. Let i ≥ 3. Then F i×iexch �ppt F (i−1)×(i−1)
exch

implies the sh-OT assumption.

This special case illustrates most of the non-trivial
ideas used to show Theorem 4, although slightly more
involved arguments are required for exchange func-
tions of arbitrary sizes. The full details of all the
cases are given in Appendix A.

Proof. The main difference between this proof and the
one of Lemma 3 is that we must now consider informa-
tion about the parties’ inputs that can be exchanged
via access to ideal functionality F (i−1)×(i−1)

exch .
Note that in the proof of the Lemma 3, we would

obtain a suitable weak OT protocol (i.e., amenable to
amplification) even if ζ is defined to be any constant
(in fact, even if ζ is at most 1 − 1

poly in the security
parameter).

As before, we let sB be the round during which
the simulator extracts from a passively corrupt Al-
ice. Clearly Alice’s view is independent of Bob’s in-
put throughout the first sB − 1 rounds of interac-
tion. If sB is not a round in which the parties ac-
cess F (i−1)×(i−1)

exch , then Alice’s view is independent of
Bob’s input through sB rounds as well. Otherwise, if
sB is a round in which Alice sends an input to her
interface of F (i−1)×(i−1)

exch , then the simulator can send
the extracted input to F i×iexch, receive the output (i.e.,
Bob’s input), and then complete the round by simu-
lating the response of the simulated F (i−1)×(i−1)

exch func-
tionality to Alice. This response from F (i−1)×(i−1)

exch is
an element of [i−1] and is the only part of Alice’s view
that can depend on Bob’s input. Thus, Alice can-
not guess Bob’s input with probability greater than
(i− 1)/i after sB rounds (see Lemma 6).

If we define ζ to be any constant greater than (i−
1)/i, and define tB as the first point at which Alice
can guess Bob’s input with probability at least ζ, then
we have tB ≥ sA + 1. Similarly, we can reverse the
roles of Alice and Bob and obtain tA ≥ sB + 1. The
rest of the proof is identical to that of Lemma 3, with
a different (but still constant) value of ζ.

4.3 Extension to Reactive Functionalities
In Appendix B, we extend all of the results in this

section to a large class of reactive functionalities —
namely, those functionalities which can be modeled
as a finite state machine. We note that this class of
functionalities also includes those which do not give
identical outputs to the two parties.

New techniques for understanding and using arbi-
trary reactive functionalities for cryptographic pur-
poses were introduced in [33]. Our definition and
analysis of exchange-like reactive functionalities here

closely follows many of the same approaches as [33].
For completeness, we include all of the relevant details
in Appendix B.

Intuitively, a reactive functionality is exchange-like
if it never hides information. Note that there are two
fundamentally different ways in which a reactive func-
tionality can hide information: it can hide information
in a single round of interaction (as a non-exchange-
like SFE hides information), or it can hide informa-
tion in its internal memory. Formalizing this sec-
ond requirement is somewhat involved, and requires
an automata-theoretic analysis of reactive functional-
ities.

If a reactive functionality is exchange-like, then we
show that it is equivalent (under �stat reductions)
to a “bundle” of exchange functions of different sizes.
Such a bundle is simply a functionality in which one
party publicly selects one of the component exchange
functions and then the two parties evaluate it. As
such, Theorem 4, our result about amplifying the
“bandwidth” of an exchange-like functionality, carries
over naturally to the case of reactive functionalities.

For the other case, when F is non-exchange-like
and G is exchange-like, we first observe that F can
fail to be exchange-like for only two reasons. If F
hides information in a single round, then F can easily
be used to obtain a non-exchange-like SFE function
and so the proof of Lemma 2 goes through essentially
unaltered. On the other hand, if F hides information
between rounds, we show that this hiding can be ex-
ploited to show Fcom �stat F . Intuitively, Fcom is the
canonical example of a functionality that hides infor-
mation between rounds (between the commit phase
and reveal phase). Then, by using a similar technique
as in the proof of Lemma 2, we can easily construct a
semi-honest protocol for OT. The parties run two in-
stances of the commit phase of the protocol for Fcom.
The receiver plays honestly in one instance, and uses
the simulator to extract in the other instance. In fact,
this is essentially the semi-honest OT protocol from
Damgård and Groth [12], except that we consider it in
the context of an arbitrary exchange-like ideal func-
tionality, instead of a common random string.

Thus, Theorem 1 applies for all deterministic, finite,
reactive functionalities.

5 Reductions Equivalent to the OWF
Assumption

Our results in this section build on the technique in
[34] that was used to derive the following separation
in cryptographic complexity.

Lemma 5 ([34]). Let F and G be SSFE functional-
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ities. If F has unique decomposition depth n and G
has decomposition depth m < n, then F ��stat G.

In [34], Lemma 5 is proven by attacking any pur-
ported protocol π for F in the G-hybrid world.

First, they show (for plain protocols, not in any hy-
brid world) that for every adversary A that attacks
the canonical protocol for F , there is a corresponding
adversaryA′ that attacks π, achieving the same effect
in all environments. (Indeed, any functionality whose
decomposition depth is at least 2 has a simple attack
against its canonical protocol that violates security
in the UC sense.) Intuitively, the protocol π must
reveal information in the same order as the canon-
ical protocol. More formally, at every point during
the canonical protocol (say, a partial transcript t),
there is a corresponding “frontier” in π — a maximal
set of partial transcripts of π. If two inputs both in-
duce transcript t in the canonical protocol (recall that
it is a deterministic protocol), then they also induce
statistically indistinguishable distributions on partial
transcripts at the frontier. But if the two inputs do
not both induce transcript t in the canonical protocol,
then at the frontier they induce distributions on par-
tial transcripts that have statistical distance almost
1. Then the adversary A′ runs the protocol π hon-
estly, except for occasionally “swapping” its effective
input at one of these frontiers. The properties of the
frontiers assure that such a swap will only negligibly
affect the outcome of the interaction.

Next, to attack a protocol π in the G-hybrid world,
they imagine a plain protocol π̂ which is π composed
with the canonical protocol for G. The plain pro-
tocol π̂ has frontiers for each step of the canonical
protocol (equivalently, step of the decomposition). In
our setting, there are more frontiers in π̂ than there
are rounds in the canonical protocol for G, so not all
the frontiers can be contained entirely within the G-
subprotocols. Thus an adversary attacking π can be-
have honestly in all interactions with the ideal G, and
still encounter a frontier at which to “swap” its effec-
tive input (i.e., outside of the G-subprotocols in π̂).
Indeed, there is an attack against F in which an ad-
versary need only encounter one such frontier, so the
protocol π is not secure.

Leveraging one-way functions.
While these frontier-based attacks from [34] are for-

mulated for computationally unbounded adversaries,
we show below that they can in fact be carried out
under the assumption that one-way functions do not
exist. In other words, that if a reduction exists be-
tween particular functions, then the OWF assumption
is true.

These frontier-based attacks require unbounded
computation because computing the frontier involves
computing global statistical properties about the pro-
tocol — namely, the probability that the protocol as-
signs to various partial transcripts on different inputs.
The attacks are otherwise efficient, so given access to
an oracle that can compute these probabilities, the
attack can be easily effected. In fact, these quanti-
ties need not be computed exactly for the attacks to
violate security. Thus we will describe how to com-
pute the appropriate quantities given that OWFs do
not exist. We use the guarantee of no distribution-
ally one-way functions (Section 2.3; [20]). We define
a function related to the given protocol, and use the
ability to approximately sample its preimage distri-
bution to obtain a good estimate of the desired prob-
abilities.

Theorem 2 (restated). For every non-exchange-
like, passive-trivial SFE functionality G, there are
infinitely many standalone-trivial SFE functionali-
ties F such that F �ppt G is equivalent to the
OWF assumption.

Proof. First, if G is non-exchange-like, then
Fcom �ppt G under the OWF assumption, by the pro-
tocol construction in [33]. Then, F �stat Fcom since
F is passive-trivial [34]. The non-trivial direction is
to show that F �ppt G implies OWF assumption for
infinitely many such F .

Let k be the round complexity of a semi-honest pro-
tocol for G, since G is passive-trivial. Then let F be
any standalone-trivial functionality whose decompo-
sition depth is strictly greater than k. In the complete
characterization of standalone-triviality [34], there are
SFE functionalities with arbitrarily high decomposi-
tion depth, so there are infinite number of such F
satisfying this condition.

Now F and G satisfy the conditions of Lemma 5, so
it suffices to show that the frontier-based attack from
[34] can be carried out under the assumption that
(distributionally) one-way functions do not exist. As
described above, the attack against a protocol π for
F in the G-hybrid model is based on frontiers in the
protocol. For a partial transcript u and inputs x for
Alice and y for Bob, the probability that the protocol
generates u as the prefix of its transcript can be ex-
pressed as α(u, x)β(u, y), where each of the two terms
depends on only one party’s input (see, for example,
[4]).

The frontiers used in the attack are then all defined
in terms of the following quantity:

η(u, x0, x1) =
α(u, x0)− α(u, x1)
α(u, x0) + α(u, x1)
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or the symmetric quantity with respect to the roles
of Alice & Bob. Intuitively, η(u, x0, x1) measures how
correlated the transcript u is to Alice’s input being x0
versus x1. In fact, the entire frontier-based attack can
be carried out in polynomial time given an oracle that
answers questions of the form “Is η(u, x0, x1) ≥ 1 −
ν(k)?”, where ν is a certain negligible function in the
security parameter. If instead the oracle can answer
questions of this form where ν(k) = 1/kc for a chosen
constant c, then the adversary’s attack may fail with
at most an extra 1/poly factor. All the attacks from
[34] demonstrate that the real and ideal worlds can be
distinguished with constant bias, so they can indeed
tolerate this additional 1/poly slack factor. Thus it
suffices to show how to implement such an oracle.

We compute η(u, x0, x1) as follows: First, consider
the function f(x, rA, y, rB, i) = (τ, x), where τ is the
first i bits of the transcript produced by the proto-
col when executed honestly on inputs (x, y), where
rA and rB are the random tapes of Alice and Bob,
respectively. We use the guarantee of no distribu-
tionally one-way functions to sample from f−1(u, x0)
and f−1(u, x1). If both preimages are empty, then
the protocol never generates u as a partial transcript
on inputs x0 or x1. If only one is empty, then
η(u, x0, x1) = 1.

Otherwise, assume u is indeed a possible partial
transcript for both x0 and x1 (i.e., the protocol assigns
positive probability to u when Alice has inputs x0 or
x1). Our previous sampling of f−1 has yielded an
input y∗ such that u is a possible partial transcript
when executing π on inputs (x0, y

∗). Thus u is also
a possible partial transcript on inputs (x1, y

∗). Now
define:

g(x, rA, y, rB, i) =

{
(τ, y) if x ∈ {x0, x1}
⊥ otherwise

We now sample n times from g−1(u, y∗). Let ni be the
number of times the sampled preimage included xi as
the first component. Then (n0−n1)/n is an estimate
of η(u, x0, x1). By setting n to be a sufficiently large
polynomial in the security parameter, we can ensure
that the estimate is within an additive factor 1/kc of
the actual value, with high probability.

Theorem 3 (restated). Let F and G be passive-
trivial but not UC-trivial. If F is not standalone-
trivial and G is standalone-trivial, then F �ppt G is
equivalent to the OWF assumption.

Proof. The fact that F �ppt G under the
OWF assumption is by the same argument as in the
previous proof.

For the other direction, suppose π is a secure pro-
tocol for F in the G-hybrid world. Standalone se-
cure protocols for SFE functionalities are closed un-
der composition. Thus we have a standalone-secure
protocol π′ for F without any trusted party.

Being passive-trivial,F is surely decomposable, and
we consider two cases. When F is uniquely decom-
posable, then [34] showed that in the unbounded set-
ting, for every adversary A attacking the canoni-
cal protocol, there is an adversary A′ attacking π′
such that no environment can distinguish between
the two interactions. When F is uniquely decom-
posable but not standalone-trivial, there is a simple
attack against the canonical protocol for F that vi-
olates standalone security with constant probability.
Thus translating this attack into an efficient (assum-
ing that OWF assumption is false) attack on π′ using
the techniques described in the previous proof, we see
that π′ is not standalone-secure; a contradiction.

On the other hand, if F is not uniquely decom-
posable, then Fxor �stat F via a simple protocol.
As such, by composing several protocols, we obtain
a standalone-secure protocol π for Fxor. Consider an
interaction using π in which the honest party chooses
an input at random. In [32], a frontier-based attack on
Fxor is described (for unbounded adversaries), which
we outline below. We show here that the attack can
be carried out assuming that the OWF assumption is
false, to bias the honest party’s output towards 0 by
a noticeable amount:

At each partial transcript u, compute an estimate
of |η(u, 0, 1)| (which measures the transcript’s bias to-
wards Alice’s input 0 or 1, defined in the previous
proof) At the beginning of the protocol, the value of
this function is 0, and at the end of the protocol, it
is 1 with overwhelming probability since the protocol
results in Bob correctly learning Alice’s input.

Similarly, define η′(u, 0, 1) as a transcript’s bias
towards Bob’s input. By symmetry, with proba-
bility at least 1/2, the partial transcript achieves
|η(u, 0, 1)| > 1/2 before it achieves |η′(u, 0, 1)| > 1/2.
Thus an attack for Bob is to discover via the sampling
procedure described above the first point at which
|η(u, 0, 1)| > 1/2 but |η′(u, 0, 1)| ≤ 1/2. At that point,
Bob switches his input to match Alice’s, in order to
bias the output towards 0. Bob reaches such a point
with probability at least 1/2, Since |η′(u, 0, 1)| ≤ 1/2,
the correctness of the protocol implies that Bob’s out-
put will be 0 with overwhelming probability. Thus
this attack successfully biases the output towards 0
with bias 1/4 minus some inverse polynomial in the
security parameter.
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6 Expanding the Framework
The framework that we have presented is quite

general thanks to the general nature of functionali-
ties. However, there are several dimensions in which
this framework can be extended, leading to possibly
further computational complexity assumptions to ap-
pear. We mention a few such extensions below.

Using Infinite Domain/Memory Functionali-
ties.

In this paper, we have confined ourselves to “fi-
nite” functionalities (which are finite state machines
with finite input/output alphabets). One could in-
stead consider the more general class, with infinite
alphabets and/or infinite state space. On the posi-
tive side, this allows modeling “object-oriented” cryp-
tography which involves such concepts as encryp-
tion and signatures (as opposed to “service-oriented”
cryptography which is more natural in the setting of
multi-party computation). Note that currently, the
sh-OT assumption and the assumption that a key-
agreement protocol exists, do not specify the number
of rounds of these protocols. Indeed a 2-round key-
agreement protocol is a public-key encryption scheme
and a 2-round sh-OT protocol is a computational ver-
sion of the so-called dual-mode encryption scheme.8

On the other hand, this considerably complicates
things: for instance, Proposition 1 does not hold any
more. [33] points out an (infinite domain) function-
ality G such that G is not trivial, but say Fot �ppt G
does not hold under the sh-OT assumption. It is likely
that several intermediate assumptions, like in the hi-
erarchy of assumptions presented in [15] will manifest
in this framework. A similar complication was en-
countered in [18]. We leave it is an interesting chal-
lenge to extend the framework to include infinite func-
tionalities, but without sacrificing the economy and
conceptual clarity of the set of complexity assump-
tions produced by the framework.

Using Alternate Reductions.
If we use a different notion of reduction in place of
�ppt, the assumption F �ppt G will change its mean-
ing. While it is not clear if any reasonable notion of
reduction will give a larger set of assumptions when all
pairs (F ,G) are considered, it certainly is true that for

8Here, a dual-mode encryption scheme is a public-key en-
cryption scheme, in which there is an alternate mode to gen-
erate a public-key (which remains indistinguishable from a key
generated in the normal mode) such that the semantic security
of the encryption is retained even given the randomness used
in key generation. Dual mode encryption introduced in [28, 35]
is stronger in that the alternate mode is required to result in
a public-key such that a ciphertext produced using that key is
statistically independent of the message.

specific pairs (F ,G) the assumption becomes differ-
ent. The variants one could consider weaker notions
of security like security against passive (semi-honest)
or standalone adversaries, or stronger notions of secu-
rity like simultaneous security against passive and ac-
tive adversaries, or against adaptive adversaries. One
could also consider tighter non-standard reduction no-
tions derived by imposing constraints on the protocols
carrying out the reductions, like constant round com-
plexity, for instance. Another example is to restrict
to protocols which use a given functionality in only
one direction (with say, Alice and Bob in the protocol
playing fixed roles, say sender and receiver respec-
tively, when interacting with the given functionality).

It will indeed be interesting if a computational com-
plexity assumption manifests when using some other
(meaningful) notions of reduction, but not the one we
use.

More Functionalities.
In this work, we restricted ourselves to a large, but

restricted class of functionalities. In particular, our
functionalities are not “fair”: they allow the adver-
sary to learn the output and then decide whether to
deliver the output or not, to the other party. Another
class we considered only briefly is that of randomized
functionalities. These classes of functionalities are un-
derstood only in bits and pieces. A systematic study
of their cryptographic complexities remains an open
problem.

Special Pairs.
Finally, we mention that when considering some

of the above extensions, it might be interesting to
consider (only) special pairs of functionalities, where
the reduction may have extra meaning. For instance,
when restricting protocols to use a given 2-party func-
tionality F in only one direction, it is particularly in-
teresting to consider reducing the functionality F−1

which reverses the roles of its parties. Another in-
teresting question is of “parallel repetition” which
considers reducing F t, a synchronous repetition of t
copies of F , to the functionality F (wherein the pro-
tocol is allowed to use multiple asynchronous copies
of F). For instance, F tcoin reduces to Fcoin uncondi-
tionally, but by Theorem 1 we know that a parallel
repetition of F2,2

exch reduces to F2,2
exch if and only if the

sh-OT assumption holds.
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A Complete Proof of Theorem 1
We first establish a convenient technical lemma:

Lemma 6. For each j ∈ [i], let Dj be a probability
distribution over the elements {m1, . . . ,mi−1}. Now
consider the following experiment: Choose j ∈ [i] uni-
formly at random, and then output a sample according
to Dj.

The probability of correctly predicting j given only
the output of this procedure is at most (i− 1)/i.

Proof. Let pu,v be the probability of sampling mes-
sage mv when using Du. So, we have:

i−1∑
v=1
pu,v = 1 for all u ∈ [i]

Let qv,u be the probability of outputting u after
seeing message v. So, we have:

i∑
u=1
qv,u = 1 for all v ∈ [i− 1]

The probability of being correct is:

ζ =
∑i
u=1
∑i−1
v=1 pu,vqv,u
i

This is maximized if qv,u = αupu,v. Therefore, ζ ≤∑
i

u=1
αv
∑
i−1
v=1
p2
u,v

i ≤
∑
i−1
u=1
αu

i = i−1
i

Finally we prove our general result.

Lemma 7. Let i, j, i′, j′ be such that (i > i′ or j >
j′) and (i > j′ or j > i′). Then F i×jexch �ppt F i

′×j′
exch

implies the sh-OT assumption.

Proof. The proof is very similar to that of Lemma 4
Note that in the proofs of Lemma 4 and Lemma 3,
we would obtain a suitable weak OT protocol (i.e.,
amenable to amplification) even if ζ is 1− 1

poly in the
security parameter, and one of {E[tB − sB], E[tA −
sA]} is at least 1

poly in the security parameter.

Case 1: (max{i, j} > max{i′, j′}): Suppose by sym-
metry that i ≥ j and i > i′ ≥ j′, and that Bob feeds
input from [i] into the ideal functionality. We define
ζ to be any constant greater than i−1

i , and define sB
and tA as earlier. Similar to the argument in , we get
that tA ≥ sB+1 (because i−1 ≥ i′ ≥ j′). It is always
the case that tB ≥ sA. So, we get the condition that
tA ≥ sB + 1 and tB ≥ sA.

In general we can say that:

(tA ≥ sB and tB ≥ sA + 1), or
(tB ≥ sA and tA ≥ sB + 1)

These conditions imply that:

E[uA] ≥ E[sA] +
(

1
2
− ε′
)

, or

E[uB] ≥ E[sB] +
(

1
2
− ε′
)

Observe that in our weak OT construction, all we
needed was that one of {E[uA−sA], E[uB−sB]} is at
least 1

poly in the security parameter. So the construc-
tion in Lemma 4 yields a suitable weak-OT protocol.

Case 2: (min{i′, j′} < i, j ≤ max{i′, j′}): Observe
that even if for some polynomial λ(·) we have:(
E[tA] ≥ E[sB] and E[tB ] ≥ E[sA] + 1

λ(κ)

)
, or(

E[tB ] ≥ E[sA] and E[tA] ≥ E[sB] + 1
λ(κ)

)
we can use the approach mentioned above to get the
weak OT protocol. So, we only need to consider the
remaining case, when E[tB] ∈

[
E[sA], E[sA] + 1

λ(κ)

)
and E[tA] ∈

[
E[sB], E[sB ] + 1

λ(κ)

)
, where λ(·) is a

suitably chosen large polynomial.
In this case, we will prove that:
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1. One of {Pr(tB ≥ sB + 1),Pr(tA ≥ sA + 1)} is at
least 1

5
2. Both |Pr(uA = r) − Pr(tA = r)| and
|Pr(uB = r)− Pr(tB = r)| are at most 1

ρ(κ)
for any polynomial ρ

These will imply that we obtain a suitable weak-OT
protocol in this case as well.

Now, we show that the above mentioned properties
hold. If E[tB ] ∈

[
E[sA], E[sA] + 1

λ(κ)

)
and E[tA] ∈[

E[sB ], E[sB] + 1
λ(κ)

)
, then with probability ≥ 1 −

2
λ(κ)n , where n is the maximum number of rounds in
the protocol, we will have the event that tB = sA and
tA = sB. Consider the set of rounds S where tA = sB
is possible. Similarly define T to be the set of rounds
where tB = sA is possible. Without loss of generality,
we can assume that Alice uses i′ side of F i′×j′exch only
in even rounds and the j′ side of the F i′×j′exch only in
odd rounds. So, we conclude that the sets S and T
are disjoint.

Let xS(r) be the probability of the event tA =
sB ≤ r. Similarly define xT (r) as the probability of
the event tB = sA ≤ r. At the extremes, xS(0) =
xT (0) = 0 and xS(n) = xT (n) = 1 − 2

λ(κ)n . So
look at the smallest r such that max{xS(r), xT (r)} ≥
1
2

(
1− 2

λ(κ)n

)
. Observe that at any given round r

only xS(r) or xT (r) changes. By symmetry, assume
that xS(r) reaches the threshold first. Then since
yS(r) could not have changed at this round, we get
that yS(r) ≤ 1

2

(
1− 2

λ(κ)n

)
. Then for sufficiently

large values of κ, we see that with probability at least(
1
2
− 1
λ(κ)n

)2
≥ 1

4
− 2
λ(κ)n

≥ 1
5
,

the event sB ≤ tB − 1 is true.
Now, all we need to show is that Pr(uB = r) and

Pr(tB = r) are within 1/poly(κ). We pick a suit-
able polynomial ρ. We run an honest execution of
the protocol against a simulator for Alice. We can
estimate Pr(tB = r) within 1

ρ additive error in poly-
nomial time. Similarly, we run an honest execution
of the protocol against honest Alice. We can estimate
Pr(uB = r) within 1

ρ additive error in polynomial
time.

If |Pr(tB = r) − Pr(uB = r)| > 3
ρ , then we can

create a polynomial time distinguisher which distin-
guishes between the real and ideal world. So, for every
round r, |Pr(tB = r)− Pr(uB = r)| ≤ 3

ρ .
Given the guarantee that, for all r,
|Pr(tB = r) − Pr(uB = r)| ≤ 3

ρ and Pr(sB ≤
tB − 1) ≥ 1

5 , the construction given earlier gives us a
weak OT.

B Reactive Exchange-Like Function-
alities

In this section we extend the results of Section 4 to
a large class of reactive functionalities. Namely, the
following:

Definition 6. A deterministic finite functionality
(DFF) is a functionality with a finite set of internal
states Q, whose behavior is as follows:

1. Set the internal state q to the distinguished start
state q0 ∈ Q.

2. Wait for inputs x ∈ X from Alice and y ∈ Y from
Bob, where X,Y are finite input sets.

3. If δ(q, x, y) is defined, then send “delayed out-
puts” fA(q, x, y) to Alice and fB(q, x, y) to Bob,
where δ, fA, fB are deterministic functions.

4. Set q ← δ(q, x, y) and repeat from step 2.

To reason about the behavior of reactive function-
alities, we follow [33, 39] and develop a way of saying
that one input x “achieves the same effect” as another
input x′, in the context of a reactive functionality. In-
tuitively, this happens when every behavior that can
be induced by sending x at a certain point can also be
induced by sending x′ instead, and thereafter appro-
priately translating subsequent inputs and outputs.
We can define this formally in terms of the UC secu-
rity definition:

Definition 7 (Dominating Inputs). Let F be a DFF,
and let x, x′ ∈ X be inputs for Alice. We say that
x dominates x′ in the first round of F , and write
x ≥A x′, if there is a secure protocol for F in the
F-hybrid setting, where the protocol for Bob is to run
the dummy protocol (as Bob), and the protocol for Al-
ice has the property that whenever the environment
provides input x′ for Alice in the first round, the pro-
tocol instead sends x to the functionality in the first
round.

We define domination for Bob inputs analogously,
with the roles of Alice and Bob reversed. Note that
the definition requires that any behavior of F that is
possible when Alice uses x′ as her first input can also
be induced in an online fashion by using x as her first
input (and subsequently translating inputs/outputs
according to some strategy). Domination is reflexive
and transitive.

Definition 8 (Exchange States). Let F be a DFF,
and let q be one of its states. We define F [q] as the
functionality obtained by modifying F so that its start
state is q.

We say that q is an exchange state if:
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• The input/output behavior of F at state q —
(fA(q, ·, ·), fB(q, ·, ·)) — is (isomorphic to) an ex-
change function; and
• For all Alice inputs x, x′ ∈ X such that
fB(q, x, ·) ≡ fB(q, x′, ·), there exists an Alice in-
put x∗ ∈ X such that x∗ ≥A x and x∗ ≥A x′ in
F [q]; and
• For all Bob inputs y, y′ ∈ Y such that
fA(q, ·, y) ≡ fA(q, ·, y′), there exists a Bob input
y∗ ∈ Y such that y∗ ≥B y and y∗ ≥B y′ in F [q].

Suppose q is an exchange state. Then we can de-
fine x q∼ x′ if fB(q, x, ·) ≡ fB(q, x′, ·). The relation q∼
induces equivalence classes over X . When q is an ex-
change state, then within each such equivalence class,
there exists at least one input x∗ which dominates all
other members of its class. For each equivalence class,
we arbitrarily pick a single such input x∗ and call it a
master input for state q. Similarly we define master
inputs for Bob by exchanging the roles of Alice and
Bob.

Definition 9. Let F be a DFF, We say that a tran-
sition is safe if it leaves an exchange state q on inputs
(x, y), where x and y are both master inputs for state
q.

B.1 Exchange-Like Definition
Our generalization of exchange-like functionalities

is in terms of these automata-theoretic properties.

Definition 10 (Exchange-like). We say that a DFF
F is exchange-like if no non-exchange state in F is
reachable via a sequence of safe transitions from F ’s
start state.

We justify the use of the term “exchange-like” in
the following lemma. Namely, exchange-like function-
alities are equivalent to a collection of several (non-
reactive) exchange functions.

Lemma 8. Let 〈F1, . . . ,Fn〉 be a DFF which in the
first round accepts input k ∈ [n] from Alice, outputs k
to Bob, and then simulates Fk.

If a DFF G is exchange-like, then G is
equivalent (under �stat reductions) to some
〈F i1×j1exch , . . . ,F in×jnexch 〉.
Proof sketch. Given G, we first define a related func-
tionality R(G) which is simply G with all non-safe
transitions deleted. Then using an argument almost
identical to [33], we have that G � R(G) � G (see the
following lemmas). Intuitively, for these functional-
ities, the parties can be made to use only “master”
inputs without loss of generality.

Now for each reachable state q in R(G), its in-
put/output function at that state is an iq × jq ex-
change function. Let F = 〈F iq×jqexch | q ∈ Q〉; then the
protocol for R(G) using access to F is for both parties
to do the following: Maintain the current state q, and
in each round, instantiate a new instance of F and en-
sure that Alice sends input q to F (Bob aborts other-
wise). Then use F again to perform the input/output
function of G. The output of F uniquely determines
both party’s inputs, and thus the next value of G’s
internal state q, so we repeat.

To show that F � R(G), for each reachable state
q in R(G), let (x1, y1), . . . , (xn, yn) be a sequence of
inputs that leaves R(G) in state q. The protocol for
F is to have Alice first send her input q to Bob. Then
both parties send the corresponding input sequence to
R(G) to place it in state q. Either party can determine
from its view whether the other party has input the
correct sequence. If this is not the case, then the
parties abort. Otherwise, they send their next round
inputs to R(G) directly and use the output as their
own output (after normalizing the inputs/outputs to
[iq]× [jq]).

To complete the proof sketched above, we now
describe the construction of a “normalized” version
R(F) of an exchange-like functionality F . We first
define an intermediate functionality:

Definition 11. We define r(F) to be the functional-
ity which runs F , except that in the first round only,
it allows only safe transitions to be taken (i.e., tran-
sitions on master inputs only). r(F) can be written
as a copy of F plus a new start state. The new start
state of r(F) duplicates all the safe transitions of F ’s
start state.

Observation 5. If a safe transition was just taken
in F , then Alice (resp. Bob) can uniquely determine
Bob’s (resp. Alice’s) input in the previous round and
the current state of F , given only the previous state of
F and Alice’s (resp. Bob’s) input and output in the
previous round.

Proof. We will show that Alice has no uncertainty
about which master input Bob used, thus no uncer-
tainty about the resulting state of F . If a safe tran-
sition was just taken from q, then q was an exchange
state and its associated SFE (fA(q, ·, ·), fB(q, ·, ·)) is
isomorphic to an exchange function. Note that our
definition of dominating inputs subsumes the defini-
tion of redundant inputs in the context of function
isomorphism.

Thus if y, y′ are distinct master inputs for Bob, then
fA(q, ·, y) �≡ fA(q, ·, y′). As such, for any master input
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x for Alice, fA(q, x, y) �= fA(q, x, y′). Alice has no
uncertainty about which master input Bob used. This
argument is symmetric for Bob as well.

Lemma 9. If the start state of F is an exchange
state, then r(F) � F � r(F). Furthermore, if q is
reachable from the start state of F via a safe transi-
tion, then F [q] � F .

Proof. The protocol for r(F) � F is the dummy pro-
tocol, since r(F) implements simply a subset of the
behavior of F . Simulation is trivial unless in the first
round, the corrupt party (say, Alice) sends an input
x to F which is not a master input for q0. The sim-
ulator must send the corresponding master input x∗
(from the q0∼ equivalence class of x) in the ideal world,
and then it uses the translation protocol guaranteed
by the definition of x∗ ≥A x to provide a consistent
view to Alice and induce correct outputs for Bob.

Similarly, the protocol for F � r(F) is simply the
dual of the above protocol. On input x in the first
round, Alice sends x∗ to r(F), where x∗ is the master
input from the q0∼-equivalence class of x. Thereafter,
Alice runs the protocol guaranteed by the fact that
x∗ ≥A x. Bob’s protocol is analogous. Simulation is
a trivial dummy simulation, since any valid sequence
of inputs to r(F) in the real world also produces the
same outcome in the F -ideal world (r(F) implements
a subset of the behavior of F).

Note that in r(F), the added start state has no in-
coming transitions; thus (r(F))[q] = F [q] if q is a state
in F . So to show F [q] � F , it suffices to show that
(r(F))[q] � r(F). Suppose q is reachable in F from
the start state via safe transition on master inputs
x∗, y∗. The protocol for F [q] is for Alice and Bob to
send x∗ and y∗ to r(F), respectively, as a “preamble”.
Each party can determine with certainty, given their
input and output in this preamble, whether r(F) is in
state q (since only safe transitions can be taken from
the start state of r(F)). If the functionality is not in
q, then the parties abort. Otherwise, the functionality
is r(F) in state q as desired, so the parties thereafter
run the dummy protocol. Simulation is trivial – the
simulator aborts if the corrupt party does not send its
specified input (x∗ or y∗) in the preamble; otherwise
it runs a dummy simulation.

The claim used in the proof of Lemma 8 is the fol-
lowing:

Lemma 10. Let R(F) be F with all non-safe transi-
tions removed. Then F � R(F) � F .

Proof. First we show that F � R(F). We prove a
stronger claim; namely that if q is safely reachable

(i.e., reachable from the start state by a sequence of
safe transitions) in F , then F [q] � (R(F))[q]. To
prove this stronger claim, we construct a family of
protocols π̂q, for every such q.

First, let πq denote the protocol guaranteed by
F [q] � r(F [q]) (Lemma 9). Then the protocol π̂q
is as follows:

1. Run πq to interact with the functionality.
2. After the first round, we will have sent an input

to the functionality and received an output. As-
suming that the functionality was (R(F))[q], use
the first round’s input/output to determine the
next state q′ (Observation 5)

3. Continue running πq, but hereafter, instead of
letting it interact directly with the functionality,
we recursively instantiate π̂q′ . We let our πq in-
stance interface with π̂q′ , which we let interact
directly with the functionality.

The protocol is recursive, and after k rounds, must
maintain a stack depth of size k. We prove by induc-
tion on k that π̂q is a secure protocol for F [q] using
(R(F))[q], against environments that run the protocol
for k ≥ 0 steps. The claim is trivially true for k = 0.

Note that simulation is trivial if either party is cor-
rupt. Such an adversary is running the protocol in-
teracting with (R(F))[q], which is a subset of the
functionality F [q]. Thus the simulator is a dummy
simulator. It suffices to show that the output of the
protocol is correct (indistinguishable from the ideal
interaction) when both parties are honest.

In the first round, both parties are running πq, in-
teracting with (R(F))[q]. Although πq is designed to
interact with r(F [q]), the behavior of both these func-
tionalities is identical in the first round (including the
next-state function). Thus the first round of outputs
is correct, by the security of πq. For the same rea-
son, step 2 of π̂q correctly identifies the next state q′
of (R(F))[q]. Clearly (R(F))[q][q′] = (R(F))[q′], so
after step 1 of the protocol, the functionality is iden-
tical to a fresh instantiation of (R(F))[q′]. At the
same time, we also instantiate a fresh instance of π̂q′
to interact with this functionality. By the inductive
hypothesis, hereafter πq is interacting with an inter-
face that is indistinguishable from an ideal interac-
tion with F [q′]. However, an external functionality
which behaves like R(F)[q] in the first round, then
after transitioning to state q′ behaves like F [q′], is
simply the functionality r(F [q]). In other words, the
entire protocol π̂q is indistinguishable from running
πq on r(F [q]). By definition of πq, this is indistin-
guishable from an ideal interaction with F [q] itself.

The protocol for R(F) � F is the dual of the
above protocol. The protocol is the dummy proto-
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col, and the simulator recursively uses the protocols
πq as above.

B.2 Main Classification
We now prove the main result regarding exchange-

like functionalities, that is:

Theorem 6. Let F and G be DFFs. If G is exchange-
like and non trivial, then either F �stat G, or F � G
is equivalent to the SHOT assumption.

We split the proof into two parts, depending on
whether F itself is also exchange-like.
When F is exchange-like

For the case where both F and G are exchange-like,
we prove a simple combinatorial characterization for
when F � G, which generalizes our result for SFE
functionalities. Namely, F �stat G if and only if every
exchange contained in F can “fit inside” an exchange
contained in G. Otherwise, the existence of a secure
protocol is equivalent to the sh-OT assumption. More
formally:

Lemma 11. Let S and T be finite subsets of ℤ2. Say
that S ≤ T if for every (i, j) ∈ S, there exists (i′, j′) ∈
T such that i ≤ i′ ∧ j ≤ j′ or i ≤ j′ ∧ j ≤ i′.

Let F = 〈F i×jexch | (i, j) ∈ S〉 and G = 〈F i×jexch |
(i, j) ∈ T 〉. Then if S ≤ T , then F �stat G,
and if S �≤ T , then F � G is equivalent to the
sh-OT assumption.

The proof is a straight-forward generalization of our
characterization for SFE. Since every exchange-like
DFF is equivalent to such a collection of exchanges,
this establishes the main result for DFFs as well.
When F is not exchange-like.

We describe how any non-exchange-like functional-
ity can be used to unconditionally realize Fcom. The
argument here is reproduced directly from [33, 39]
with minimal modification (corresponding to our def-
inition of exchange states which is a relaxation of the
definition of “simple states” there).

In [33, 39], the following property about dominating
inputs is given:

Lemma 12 ([33, 39]). Let F be a DFF. Then there
is an environment Z0 with the following properties:
• Z0 sends a constant number of inputs to F ,
• Z0 chooses inputs for both parties at random,
• Z0 always outputs 1 when interacting with two

parties running the dummy protocol on an in-
stance of F ,
• For every x, x′ ∈ X, if x �≥A x′, then Z0 has a

constant probability of outputting 0 when inter-
acting with an Alice protocol that sends x instead
of x′ in the first round.

Using this fact, we obtain the following claim, used
in the proof of main theorem:

Lemma 13. If a non-exchange state in F is reachable
via a sequence of safe transitions from F ’s start state,
then either Fcom � F or Fot � F or Fcc � F .

Proof. Without loss of generality (by Lemma 9) we
assume that the start state of F is a non-exchange
state.

First, suppose the start state q0 of F is a non-
exchange state because its input/output behavior in
the first round is not an exchange function. Then in
the F -hybrid setting we can easily securely realize the
SFE functionality G = (fA(q0, ·, ·), fB(q0, ·, ·)), by the
simple dummy protocol. Even though F may keep
in its memory arbitrary information about the first-
round inputs, the information can never be accessed
since honest parties never send inputs to F after its
first round, and F waits for inputs from both parties
before giving any output. Thus G � F . By Lemma 1,
we have that either Fot � F or Fcc � F in this case.

Otherwise, assume that the input/output behavior
in the first round is an exchange function SFE, and
that q0 is a non-exchange state for one of the other
reasons in the definition of exchange states. The two
cases are symmetric, and we present the case where
Alice can commit to Bob. Suppose there are Alice in-
puts x∗0, x∗1 ∈ X such that fB(q0, x∗0, ·) ≡ fB(q0, x∗1, ·),
but for all x ∈ X , either x �≥A x∗0 or x �≥A x∗1. In-
tuitively, this means that F binds Alice to her choice
between inputs x∗0 and x∗1 — there are behaviors of
F possible when her first input is x∗b , which are not
possible when her first input is x∗1−b. We formalize
this intuition by using the first input round of F to
let Alice commit a bit to Bob.

Recall the “universal” environment Z0 from
Lemma 12, and suppose it runs for m rounds and
has a distinguishing probability p > 0. Our protocol
for Fcom is to instantiate N = 2�log1−p 0.5�κ = Θ(κ)
independent instances of F , where κ is the security
parameter. We will write Fi to refer to the ith in-
stance of F . The protocol is as follows:

1. (Commit phase, on Alice input (commit, b),
where b ∈ {0, 1}) Alice sends x∗b to each Fi. For
each i, Bob sends a random yi1 ∈ Y to Fi and
waits for output fB(q0, yi1, x∗0) = fB(q0, yi1, x∗1).
If he receives a different input, he aborts. Other-
wise, he outputs committed.

2. (Reveal phase, on Alice input reveal) Alice
sends b to Bob. For each i, Alice sends her in-
put/output view of Fi to Bob (x∗b and the first-
round response from Fi). If any of these reported
views involve Alice sending something other than
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x∗b to Fi, then Bob aborts. Otherwise, Bob sets
xi1 = x∗b for all i.

3. For j = 2 to m:
(a) Bob sends Alice a randomly chosen xij ∈ X .

Alice sends xij to Fi.
(b) Bob sends a randomly chosen input yij ∈ Y

to Fi.
(c) For each i, Alice reports to Bob her output

from Fi in this round.
4. If for any i, Alice’s reported view or Bob’s

outputs from Fi does not match the (deter-
ministic) behavior of F on input sequence
(xi1, yi1), (xi2, yi2), . . ., then Bob aborts. Other-
wise, he outputs (reveal, b).

When Bob is corrupt, the simulation is to do the
following for each i: When Bob sends yi1 to F
in the commit phase, simulate Fi’s response as
fB(q0, x∗0, yi1) = fB(q0, x∗1, yi1). In the reveal phase,
to open to a bit b, simulate that Alice sent Bob
x∗b and the view that is consistent with that input:
fA(q0, x∗b , yi1). Maintain the corresponding state qi of
Fi after seeing inputs (x∗b , yi1). Then when Bob sends
xij to Alice and yij to Fi, simulate that Fi gave the
correct output to Bob and that Alice reported back
the correct output from Fi that is consistent with F
receiving inputs xij , yij in state qi. Each time, also
update the state qi according to those inputs. It is
clear that the simulation is perfect.

When Alice is corrupt, the simulation is as follows:
The simulator faithfully simulates each instance of F
and the behavior of an honest Bob. If at any point,
the simulated Bob aborts, then the simulation aborts.
Suppose Alice sends x̃i1 to each Fi in the commit
phase, and that the simulation has not aborted at
the end of the commit phase. If the majority of x̃i1
values satisfy x̃i1 ≥A x∗0, then the simulator sends
(commit, 0) to Fcom; otherwise it sends (commit, 1).
Note that by the properties of F , each x̃i1 cannot
dominate both x∗0 and x∗1. Let b be the bit that the
simulator sent to Fcom.

If the simulated Bob ever outputs (reveal, b), then
the simulator sends reveal to Fcom. The simulation
is perfect except for the case where the simulated Bob
outputs (reveal, 1 − b) (in this case, the real world
interaction ends with Bob outputting (reveal, 1−b),
while the ideal world interaction aborts). We show
that this event happens with negligible probability,
and thus our overall simulation is statistically sound.

Suppose Alice sends b′ = 1 − b at the beginning of
the reveal phase. Say that an instance Fi is bad if
x̃i1 �≥A x∗1−b. Note that at least half of the instances
of Fi are bad. When an instance Fi is bad, Z0 can dis-
tinguish with probability at least p between the cases

of F receiving first input x̃i1 and x∗1−b from Alice.
However, in each instance of Fi, Bob is sending ran-
dom inputs to Alice (who sent x̃i1 as the first input to
Fi), sending random inputs himself to Fi, obtaining
his own output and Alice’s reported output from Fi
in an on-line fashion, and comparing the result to the
known behavior of F (when x∗1−b is the first input of
Alice). This is exactly what Z0 does in the defini-
tion of x̃i1 ≥A x∗1−b, so Bob will detect an error with
probability p in each bad instance. In the real world,
Bob would accept in this reveal phase with probabil-
ity at most (1 − p)−N/2 ≤ 2−κ, which is negligible as
desired.

Lemma 14. If G is exchange-like and non-trivial,
and F is not exchange-like, then F � G is equivalent
to the sh-OT assumption.

Proof. From [33], we have that G is �-complete given
the sh-OT assumption, and thus F � G. The
main challenge is proving that F � G implies the
sh-OT assumption.

Since F is not exchange-like, then either Fot � F ,
Fcc � F , or Fcom � F . Thus, by the universal com-
position theorem we assume that we have a secure
protocol for either Fcc, Fot, or Fcom using G. The
cases involving Fcc and Fot have been addressed al-
ready in the proof of the characterization for non-
reactive exchange-like functionalities.

Thus we describe the case where Fcom � G via pro-
tocol π. It is similar to the proof of the case involving
Fcc for non-reactive functionalities. Without loss of
generality, we assume that G is simply a collection of
exchange functions, as in Lemma 8. The semi-honest
protocol for Fot is as follows, with Alice the sender
(having inputs x0, x1) and Bob the receiver (having
input b):
• The parties instantiate two parallel instances of
π, with Alice acting as the sender. Since there
is no access to an external G, Bob will simulate
Alice’s interface with instances of G— that is, Al-
ice will send her G inputs directly to Bob, and he
will give simulated responses from instances of G.
Alice commits to bit x0 in the first instance, and
x1 in the second instance. Alice honestly runs π
and halts after the commitment phase finishes.
• In protocol instance (1 − b), Bob carries out the

simulation of G-instances and the π protocol com-
pletely honestly.
• In protocol instance b, Bob honestly runs the UC

simulator for π, treating Alice as the adversary
(including simulating Alice’s interface with G-
instances). At the end of the commitment phase,
the simulator extracts Alice’s bit xb, which Bob
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outputs.
By the UC security of π, Alice’s view is computation-
ally independent of b (i.e., she cannot distinguish an
interaction with π’s simulator from an interaction in
which the receiver and G are honest). Bob correctly
learns xb, and we must argue that he has no advan-
tage guessing x1−b. If all G-instances were external to
the (1−b) interaction as ideal functionalities, then the
security of π would imply that Bob has no advantage
in guessing x1−b after the commitment phase. Being
a collection of exchange functions, G has the property
that Bob always learns all of Alice’s inputs. Thus
Alice can send her G-inputs directly to Bob, without
loss of generality. This is exactly what happens in the
(1− b) interaction.

C Oblivious Transfer Amplification
We first establish the following convenient technical

lemma:
Lemma 15 (Noisy Channel Bounds). Consider a
noisy channel C, which either forwards an input ele-
ment x ∈ ℤN unchanged with probability q, or replaces
it with a uniformly chosen element from ℤN \ {x}.

Suppose a string s = s1 . . . sk ∈ ℤ
k
N is passed

through C, and t = t1 . . . tk is the result. Then the
probability that

∑k
i=1 ti =

∑k
i=1 si is at most

1
N

+ exp
(
− 1
N
− (1− q)k

(N − 1)

)
.

Proof. Without loss of generality, suppose that∑k
i=1 si = 0. Consider the following polynomial:

f(x) =
(
q + 1− q
N − 1

x+ . . . 1− q
N − 1

xN−1
)k

Observe that the probability that
∑k
i=1 ti = 0 is given

by the following expression:∑
λ∈ℤ

[xλN ]f(x) =
∑n−1
i=0 f(ωi)
N

,

where 1, ω, . . . , ωN−1 are distinct roots of zN = 1. We
can evaluate the expression in the following manner:

1
N

N−1∑
i=0
f(ωi) = 1

N

N−1∑
i=0

⎡⎣Nq − 1
N − 1

+ 1− q
N − 1

N−1∑
j=0
ωij

⎤⎦k

= 1
N

+
(N − 1)

(
Nq−1
N−1

)k
N

= 1
N

+
(

1− 1
N

)(
1− 1− q
N − 1

)k
≤ 1
N

+ exp
(
− 1
N
− (1− q)k

(N − 1)

)

We can amplify a q-weak-OT using an algorithm
taken from [13].

Definition 12 (R-Reduce). R-Reduce(k,W) is de-
fined as the following protocol, where W is a weak-
OT.

1. Let (x0, x1) ∈ ℤ
2
N be the input of the sender; and

b ∈ {0, 1} be the input of the receiver.
2. The sender generates random (x0i, x1i) ∈ ℤ

2
N , for

i ∈ [k]. Let r0 =
∑k
i=1 x0i and r1 =

∑k
i=1 x1i.

The sender sends z0 = x0 + r0 and z1 = x1 + r1
to the receiver

3. Both parties execute W, k times with input
(x0i, x1i) ∈ ℤ

2
N for the sender and input b for

the receiver.
4. The receiver outputs xb = zb − (

∑k
i=1 xb,i).

Lemma 16. If W is a q-weak-OT, then R-
Reduce(k,W) is a ( 1

N + ν(q, k))-weak-OT, where:

ν(q, k) ≤ exp
(
− 1
N
− (1− q)k

(N − 1)

)
Proof. We consider the probability that the receiver
can successfully guess x1−b. Let s = s1 . . . sk ∈ ℤ

k
N

be chosen uniformly at random.Suppose we are given
a string t1 . . . tk ∈ ℤ

k
N which has the property that

ti = si with probability q. Observe that if ti is wrong,
it adds an error si − ti which is uniformly random
over ℤN . So, in general with probability q it either
adds 0 error; or adds a random error from the set
ℤN \{0} with probability (1−q)/(N−1). Then, using
Lemma 15, the probability that

∑k
i=1 si =

∑k
i=1 ti is

at most:

1
N

+ exp
(
− 1
N
− (1− q)k

(N − 1)

)
Thus, if q ≤ 1 − 1

poly(κ) , then R-Reduce(κ/(1 −
q),W) is a full-fledged 1-out-of-2 OT protocol.
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