
Innovations in Computer Science 2010

On the Construction of One-Way Functions from Average Case
Hardness

Noam Livne
Weizmann Institute of Science, Rehovot, Israel

noam.livne@weizmann.ac.il

Abstract: In this paper we study the possibility of proving the existence of one-way functions based on
average case hardness. It is well-known that if there exists a polynomial-time sampler that outputs instance-
solution pairs such that the distribution on the instances is hard on average, then one-way functions exist. We
study the possibility of constructing such a sampler based on the assumption that there exists a sampler that
outputs only instances, where the distribution on the instances is hard on the average. Namely, we study the
possibility of "modifying" an ordinary sampler S that outputs (only) hard instances of some search problem R,
to a sampler that outputs instance-solution pairs of the same search problem R. We show that under some
restriction, not every sampler can be so modified. That is, we show that if some hard problem with certain
properties exists (which, in particular is implied by the existence of one-way permutations), then for every
polynomial λ, there exists a search problem R and a polynomial-time sampler S such that (1) R is hard under
the distribution induced by S, and (2) there is no sampler S∗ with randomness complexity bounded by λ, that
outputs instance-solution pairs of R, where the distribution on the instances of S∗ is closely related to that of S
(i.e., dominates it). A possible interpretation of our result is that a generic approach for transforming samplers
of instances to samplers of instance-solution pairs cannot succeed.

Keywords: One-Way Function; Average-Case Hardness

1 Introduction
The existence of one-way functions is a necessary

condition for nearly all cryptographic applications,
and is sufficient for a large portion of them. Since es-
tablishing the existence of one-way functions does not
seem reachable these days, as it implies that P �= NP ,
a line of papers studied the possibility of proving the
existence of one-way functions based on the assump-
tion that P �= NP ([3],[4],[2],[1]). These works pre-
sented limitations on possible reductions of the secu-
rity of one-way functions to NP-hardness. Specifi-
cally, these works show that, under certain assump-
tions, certain reductions of this type do not exist.

The starting point of this paper is the observation
that the transformations studied by these papers are
actually supposed to overcome two gaps at once: (1)
the gap between average-case hardness and worst-case
hardness; and (2) the gap between one-way functions
and average-case hardness, where "average case hard-
ness" refers to a search problem R and a sampler S
such that the search problem R is hard on average un-
der the distribution induced by S. Since the problem
of basing average-case hardness on worst-case hard-
ness is hard by itself, it is inviting to study the seem-
ingly more modest task of basing one-way functions
on average-case hardness.

The assumption that average case hardness exists
(as defined above), implies the existence of objects
(namely, R and S as above) one can hope to base
a construction of a one-way function upon (while to
the best of our understanding, the assumption that
P �= NP does not seem to imply such objects). In-
deed, this paper concentrates on the question of con-
structing a one-way function from average case hard-
ness, rather than on proving the security of one-way
functions based on average case hardness. Our result
gives limitations on a certain approach to achieve this
construction. Informally, our result implies that (un-
der some restriction), this approach cannot work for
any R and S as above.

1.1 Main Result
Before describing our result, let us describe the ap-

proach we refer to above. How can one base the con-
struction of a one-way function on the existence of
average case hardness? As aforesaid, the assumption
implies a search problem R and a polynomial-time
sampler S where the search problem R is hard under
the distribution induced by S. A natural way to go
is to use the following known fact, stated informally
(for more details see [5], Section 7.1.1.):

Observation 1.1 If there exists a search problem

301

N. LIVNE

R and a polynomial-time sampler S∗ that outputs
instance-solution pairs of R, such that the distribution
of S∗ restricted to the instances is hard on average,
then one-way functions exist.

Using this fact, one can try to construct a new sam-
pler S∗, that "behaves" similarly to S, but instead
of outputting only instances, S∗ outputs instance-
solution pairs (under R). That is, the distribution
induced by S∗, when restricted to the instances only,
is similar to the distribution of S. Thus, the sampler
S∗ "inherits" its hardness from S. In fact, in order for
S∗ to inherit the hardness of S, it is sufficient that
the (restricted) distribution of S∗ dominates that of
S (see Section 2 for definitions). Upon constructing
such S∗, one can use Observation 1.1 to construct the
one-way function. Thus, this approach of basing one-
way functions on average case hardness calls for the
following challenge:
Desired Construction:
Given a search problem R and a polynomial-time sam-
pler S, where R is hard under the distribution induced
by S, construct a polynomial-time sampler S∗ that
outputs instance-solution pairs of R, such that the dis-
tribution of S∗ restricted to the instances, dominates
the distribution of S.

Informally, our main result is that for any fixed
polynomial bounding the randomness complexity of
S∗, the Desired Construction cannot always exist.
That is, under plausible assumptions (which in partic-
ular are implied by the existence of one-way permu-
tations), for any polynomial λ there exists a search
problem R and a polynomial time sampler S such
that R is hard under S, but where a sampler S∗ as in
the Desired Construction with randomness complex-
ity bounded by λ, does not exist.

We note, that the search problem R we construct
is polynomially bounded (i.e., the lengths of the so-
lutions are polynomially bounded in the lengths of
the instances), but not polynomial time verifiable.
Rather, it can be verified in arbitrarily small super-
polynomial time. This still leaves open the possibility
that for any R and S, where R is polynomial time ver-
ifiable, the Desired Construction exists (even for some
universal polynomial randomness complexity of S∗).
However, we note that in order for the Desired Con-
struction to yield a one-way function, there is no need
thatR be polynomial time verifiable. Thus, one might
hope that the construction exists also when R is not
polynomial time verifiable. While we cannot eliminate
this possibility, we can give arbitrarily strong polyno-
mial lower bounds on the randomness complexity of
S∗ that achieves this construction. (For a discussion
on this issue see Section 4.2.)

We also note that placing no restrictions on R and
S, the result is trivial (even without fixing the ran-
domness complexity of S∗):
• If the lengths of the solutions in R is not poly-

nomially bounded in the lengths of the instances,
then trivially no such S∗ exists simply because it
cannot write the solutions in polynomial time.
• If the lengths of the solutions in R is polyno-

mially bounded in the lengths of the instances,
but R is super-exponentially (worst-case) hard,
then again no such S∗ exists: take S to be an
"onto sampler" (i.e., a sampler that outputs any
instance with positive probability). Then the as-
sumption that a sampler S∗ as above exists im-
plies that R can be solved in the worst case in
exponential time, in contradiction: Given some
instance x, one can find an instance-solution pair
where the instance is x, by performing an ex-
haustive search on the randomness for S∗ until
it outputs an appropriate pair (notice that S∗
outputs for every x a pair where the instance is
x, since the distribution on the instances in S∗
should dominate S).

While for the first case above such R and S can be
constructed (simply by padding) from the basic as-
sumption that hardness on average exists (as defined
above), the second case seems to require a stronger
assumption regarding the hardness on average.

1.2 Technique
In the following we explain informally the idea of

our proof. Suppose, as a mental experiment, that for
some R and S there does exist S∗ as in the Desired
Construction. Then, although R is hard under S, us-
ing S∗ one can sample random instance-solution pairs
of R. Intuitively, given a specific instance one can-
not find a solution, but one can always easily find a
random instance together with a solution. Moreover,
one can obtain instance-solution pairs that relate to
arbitrary coin-vectors for S∗ at his choice. In light of
these observations, the basic idea in our proof is the
following. Given some R′, S′, we construct R and S
such that:
• If R′ is hard under S′ then R is hard under S

(that is, the pair (R,S) "inherit" the hardness of
the pair (R′, S′)). This is achieved by "embed-
ding" R′ in R and S′ in S. That is, any instance
of R′ is embedded in some instance of R, and
any solution for an instance x of R "embeds" a
solution for the instance of R′ that is embedded
in x. Moreover, roughly speaking, S imposes the
distribution of S′ on the embedded instances of
R′.

302

ON THE CONSTRUCTION OF ONE-WAY FUNCTIONS FROM AVERAGE CASE HARDNESS

• If an S∗ exists for (R,S) then, if (x, y) ∈ R, the
solution y helps finding pairs (x̂, ŷ) for x̂’s that
are "close" to x. That is, for any x̂ that is a
neighbour of x under some (Hamming-like) met-
ric, the solution y contains a coin-vector for S∗
that yield an instance-solution pair of the form
(x̂, ŷ). Thus, on input a specific instance x for
which one wants to find a solution, through re-
peated invocations of S∗, one can start from an
arbitrary instance-solution pair, and go through a
sequence of pairs, where the instance in each pair
is closer to x than the preceding one by one unit
under the aforementioned metric, until reaching
x. By choosing an appropriate coin-vector for S∗
from the solution in each pair, one can indeed
have the instance in the next pair closer to x.

Thus, the assumption that S∗ exists for (R,S), yields
that it is easy to find an instance-solution pair with
respect to R, for any specific instance. It follows that
R is easy in the worst case. Now, since R "embeds"
R′, it follows that R′ is also easy in the worst case, in
contradiction.

It should be noted, however, that in order for this
idea to work, some technicalities need to be dealt
with, and these yield some restrictions on R′ and S′
(but, as aforementioned, in particular, the assump-
tion that one-way permutations exist yields R′ and
S′ as required for our proof).

2 Preliminaries
Standard Notation and Conventions For 1 ≤ i ≤
� we define e�i ≜ 0i−110�−i. Given a TM M we de-
note by 〈M〉 the code of M . We say that a function
f is noticeable if there exists a positive polynomial q
such that for large enough n’s, f(n) ≥ 1/q(n). Given
a string x we denote by |x| the length of x. We use
interchangeably the terms search problem and rela-
tion. Given a search problem R we say that x is
a YES-instance of R if x has a solution under R,
that is, if there exists y such that (x, y) ∈ R. We
say that a search problem is total if all strings are
YES-instances of that problem. We say that a search
problem is polynomially bounded if there exists some
polynomial q such that for every y which is a solution
for x, it holds that |y| ≤ q(|x|). When defining strings
in the form (·), (·, ·) etc., we implicitly assume some 1-
1, onto, efficient, efficiently invertible encoding1 from⋃
n∈ℕ (Σ∗)n to Σ∗. We will use the term support in

relation to an ensemble of random variables to de-
1For simplicity we assume |(x, y)| = |x| + |y|. While this

is not the case, it will make the presentation clearer. Clearly,
this technicality can be handled, without any essential change
in the statements and proofs.

note the sequence of supports of the variables in the
ensemble.

In our proof we would like to enumerate all sam-
plers. However, since any reasonable definition of a
sampler assumes some structural properties (for ex-
ample, to the least the requirement that it always
halt), it is not clear how one can enumerate all sam-
plers. Instead, we enumerate a superset of the set of
samplers, which we call potential samplers, which are
basically just probabilistic TM’s.

Definition 2.1 (Potential Sampler) A potential
sampler is a TM with 2 input tapes. The input to the
first tape is simply called "input", and the input to
the second tape is called "randomness".

We implicitly assume some enumeration on all such
machines. We explain how we interpret a potential
sampler. The run of a potential sampler on some in-
put, when not stating explicitly the randomness, is
defined as a random variable (ranging over all strings
plus a special "not halting" symbol), which is the re-
sult of running the machine on a random infinite vec-
tor of coins (equivalently, one can think of the machine
as flipping coins on the fly). We define the output of
a potential sampler given some input and some ex-
plicit randomness as the output on that input and
randomness, and for sake of completeness, we define
the output in the case the sampler requires more coins
than the explicit randomness, as the failure symbol ⊥.

Definition 2.2 (Sampler) A sampler is a potential
sampler that on input 1n, with probability 1 halts and
outputs a string of length n.

We explain how we interpret a sampler. Typically
we will run a sampler on inputs of the form 1n (which
will be referred to as "input"). In such a case, for a
sampler S, the term S(1n) will be a random variable
with values from Σn. Thus, any sampler S defines
an ensemble of random variables {S(1n)}n∈ℕ. When
needed, we will relate explicitly to the randomness as
(a second) input to the sampler.

We note, that our rigorous definition of a sampler
is for sake of formality of the proof, and is arbitrary.
To the best of our knowledge, if there exists a sam-
pler under any "reasonable" definition that generates
hard instances of R, then there exists a sampler under
our definition that generates hard instances of R (see
definition of hardness below).

Definition 2.3 (Onto Sampler) A sampler is an
onto sampler if it outputs every string with positive
probability. Formally, a sampler is an onto sampler
if its support is {{0, 1}n}n∈ℕ.

303

N. LIVNE

Definition 2.4 (Randomness Complexity of a
Potential Sampler) We say that the function f is
the randomness complexity of some potential sampler,
if on input 1n, the maximal number of coins it uses is
f(n).

We also define the following transformation, that
transforms any machine M that output pairs of
strings, to a machine M̃ such that on any input and
randomness for which M outputs a pair, M̃ outputs
only the first element in the pair:
Unpairing Transformation:
On input 〈M〉 (a code of a potential sampler), the
transformation outputs the code of the following po-
tential sampler M̃ :
On input x and randomness r, the machine M̃ runs
M on x with randomness r, if it halts it checks if
the output is a pair, and if it is, it deletes the second
element in the pair.

It is easy to see that the transformation is efficiently
computable and that the running time of M̃ is linearly
related to that of M . From now on, given a potential
sampler M , we denote by M̃ the potential sampler
who’s code is the result of applying the transformation
on 〈M〉.
Definition 2.5 (Pairs-Sampler) A pairs-sampler
is a potential sampler M that on every input and ran-
domness outputs a pair, and where M̃ is a sampler
according to Definition 2.2 (that is, on input 1n, with
probability 1 M halts and outputs a pair where the
first element is of length n).

Throughout the paper we consider search problems
that are not total, along with samplers that may not
output only YES-instances (for these search prob-
lems). The following definition relates to this setting.
It states that in the aforementioned setting, a poten-
tial solver A fails on a search problem R under the
sampler S if when running A on random instances
output by S, the event that a YES-instance is output
and A does not respond with a correct solution, is
noticeable. (Trivially, it implies that S must output
YES-instances with noticeable probability.) We then
say that R is hard under S if every potential prob-
abilistic polynomial time solver A fails on R under
S.

Definition 2.6 (Failure of a Solver, Hardness of
a Search Problem Under a Sampler) For an al-
gorithm A, a search problem R and a sampler S we
say that A fails on R under S if:

Pr
x←S(1n)

[(x,A(x)) �∈ R ∧ ∃y(x, y) ∈ R]

is noticeable (where the probability is taken both over
the randomness of S, and the randomness of A).

We say that R is hard under S if every probabilistic
polynomial time algorithm fails on R under S.

We note that one can alternatively define the failure
of a solver, instead of failing with noticeable probabil-
ity (on the aforementioned distribution), as not fail-
ing with negligible probability. The difference is that
now we only require that the solver fail infinitely of-
ten, and not on every n. Our main result is true also
under that definition, and the changes in the proof
are minor.

Definition 2.7 (Domination) Given two ensem-
bles of random variables {Xn}n∈ℕ and {X ′n}n∈ℕ, we
say that {Xn} dominates {X ′n} if there exists a posi-
tive polynomial q such that for any n and any x ∈ X ′n,
Pr[Xn = x] ≥ (1/q(n)) Pr[X ′n = x].

As aforementioned, every sampler induces an en-
semble of random variables. For brevity, sometimes
we will say that a sampler S dominates a sampler S′
to mean that the ensemble induced by S dominates
that of S′.

The following facts, which will be used through the
paper, are straightforward:

Fact 2.8 If a sampler S dominates a sampler S′ and
S′ is an onto sampler then so is S.

Fact 2.9 Let {Xn}n∈ℕ be an ensemble that domi-
nates the ensemble {X ′n}n∈ℕ and let {Sn}n∈ℕ be a
sequence of sets. Suppose Pr[X ′n ∈ Sn] is noticeable.
Then Pr[Xn ∈ Sn] is noticeable.

3 Main Result
Theorem 3.1 Suppose that there exists a polynomi-
ally bounded total search problem R′ that is hard un-
der some polynomial time onto sampler. Then, for
any super-polynomial, time-constructible function τ ,
and every polynomial λ(n) ≥ n, there exists a search
problem R and a polynomial time sampler S such that:
• R is hard under S.
• There is no polynomial time pairs-sampler S∗

with randomness complexity bounded by λ, such
that the first elements in the pairs output by S∗
are distributed in a distribution that dominates
{S(1n)}n∈ℕ, and the second element in every pair
is a solution for the first element with respect to
R if such a solution exists, and any string other-
wise.
• The relation R is polynomially bounded, and can

be verified in time τ(n) using one oracle call to a
verifier for R′.

304

ON THE CONSTRUCTION OF ONE-WAY FUNCTIONS FROM AVERAGE CASE HARDNESS

We note that the resulted search problem R is not
total, and that the sampler S does not output only
YES-instances. Nevertheless, the existence of a pairs-
sampler S∗ as (asserted not to exist) in the theorem
for such R and S implies the existence of one-way
functions.
Proof: Let R′ be a search problem that is hard
under the polynomial time sampler S′, from the hy-
pothesis. Let τ be some super polynomial time-
constructible function (for sake of concreteness one
can think of τ(n) = nlog∗(n)). Let τ ′ be a (smaller) su-
per polynomial time-constructible function to be de-
fined later. Let λ be a polynomial. We define S and
R as follows:
Definition of R:
((〈M〉, x), (w, r1 , . . . , r|x|)) ∈ R if and only if the fol-
lowing conditions hold:
• (x,w) ∈ R′
• For all 1 ≤ i ≤ |x| it holds that |ri| ≤ λ(|〈M〉| +
|x|).
• For all 1 ≤ i ≤ |x|, on input 1|〈M〉|+|x| and

randomness ri, the potential sampler M̃ outputs
(〈M〉, x⊕ e|x|i) in at most τ ′(|〈M〉|+ |x|) steps.

In the following we describe the main ideas be-
hind the definitions (disregarding issues of running
time and randomness complexity, which will be dealt
later). Suppose that M is some potential sampler
(we will eventually consider M = S∗). Then, if
(w, r1, . . . , r|x|) is a solution for (〈M〉, x), then the
ri’s, when used as randomness for M (with the ap-
propriate input length), output an instance-solution
pair where in the instance, the first element (the ma-
chine code) is again the code of the same machine M ,
and the second element in the instance is x with the
i-th bit flipped. Thus, using the appropriate ri from
the solution as randomness for M , one can basically
"flip any bit of x at his choice" without changing the
(code of) the machine in the instance. Now, suppose
the machine M is guaranteed to always output legal
pairs with respect to R, when the instance in the pair
is a YES-instance. Then, if the new instance (with the
"flipped" bit) is a YES-instance, the new pair output
by M is again a legal pair. It follows, that if all in-
volved instances are YES-instances, then by repeated
invocations of M (each time using the appropriate ri
from the last solution), one can sequentially flip bit
after bit, and arrive at any desired x′. We then note
that if (w, r1, . . . , r|x|) is a solution for (〈M〉, x) under
R, then w is a solution for x under R′. Thus, once
arriving at such x′ (i.e., once having M output a pair
((〈M〉, x′), (w, r1, . . . , r|x|)), indeed w is a solution for
x′ under R′. It follows that R′ can be efficiently solved
(in the worst case), in contradiction to the hardness

of R′ under S′.
The following definition of S, together with the hy-

potheses of the theorem, guarantee that if a sampler
S∗ exists, the idea outlined above works. It also guar-
antees that R is hard under S, as required. We elab-
orate. Since we would like to diagonalize against all
possible S∗’s, roughly speaking, we let S output (the
code of) any machine (in the left part of the instance)
with noticeable probability (see Claim 3.2). This im-
plies (by the hypothesis of the theorem) that any po-
tential S∗ must also output (the code of) any machine
with noticeable probability (as it is required to dom-
inate S). If follows that one can efficiently (i.e., in
expected polynomial time), find randomness for S∗
that yield any desired machine. In particular, one
can efficiently find randomness for S∗ that will make
it output its own code (and again, this is true for any
possible S∗). Since S∗ is assumed to output only le-
gal pairs with respect to R when these exist, the pro-
cess described above can then be performed, provided
that legal solutions always exist. We will show that
Since S̃∗ must be an onto-sampler (since S is an onto
sampler and S̃∗ dominates it), and since R′ is total,
throughout the process described above solutions in-
deed will always exist. Moreover, since the right side
of the instances output by S are distributed similar
to S′, it follows that R together with S "inherit" the
hardness of R′ under S′.
Definition of S:
On input 1n:

1. Choose i uniformly from [0, n].
2. Choose a potential sampler 〈M〉 uniformly from
{0, 1}i.

3. Run S′ on 1n−i (supplying it with random coins
from the randomness tape of S itself) and denote
the output by x.

4. Output (〈M〉, x).
We now formalize the ideas described above. We

will use the following simple fact, that states that ev-
ery potential sampler is output by S with noticeable
probability:

Fact 3.2 For every fixed potential sampler M0, the
probability that S(1n) = (〈M0〉, ·) is noticeable.

Proof: By our definition, on input 1�+|〈M0〉| the
sampler S outputs a tuple (〈M〉, ·) where |〈M〉| =
|〈M0〉| with probability 1/(�+ |〈M0〉|+1). Given that
this event occurs, the probability that 〈M〉 = 〈M0〉 is
fixed (namely, it is 2−|〈M0〉|). Thus, S outputs a tuple
of the form (〈M0〉, ·) with noticeable probability.

In the following we show that R and S are as re-
quired. Since R′ is polynomially bounded, and λ is

305

N. LIVNE

a fixed polynomial, it is straightforward that R too
is polynomially bounded. It is easy to see that for
some polynomial q (i.e., which depends on the model
of computation) the relation R can be verified in time
q(τ ′(n)) using one oracle call to a verifier for R′. Set-
ting τ ′ = q−1(τ) we have that the relation R can be
verified in time τ(n) using one oracle call to a ver-
ifier for R′. Since τ is super polynomial and time-
constructible, it follows that q−1(τ) is also super poly-
nomial and time-constructible.

We show that R is hard under S. We first explain
informally the idea of the proof. Let S0 be some poly-
nomial time onto sampler with randomness complex-
ity bounded by λ. By Fact 3.2 any such S0 is chosen
by S with noticeable probability. As we will show,
since R′ is total, and since τ ′ is super-polynomial, for
long enough x’s, any instance of the form (〈S0〉, x) is a
YES-instance of R (and thus a solver should succeed
on it). The second element in the pair, x, is chosen
by S (independently from the first) according to the
distribution of S′. It follows that conditioned on some
noticeable event:
• The distribution on the x’s is identical to the dis-

tribution of S′.
• The instances are always YES-instances.

Now, if a solver B does not fail on R under S (ac-
cording to Definition 2.6), it does not fail on R under
S conditioned on this event. This follows from (1)
the fact that when this event occurs the instance is a
YES-instance (2) the event is noticeable. Thus, fail-
ure on R under the distribution of S conditioned on
this event implies failure on R under S (with no con-
ditioning). Moreover, according to the definition of R,
a solution for the instance (〈S0〉, x) under R contains
a solution for the instance x under R′. From all the
above it follows that if B solves R under S, it implic-
itly solves in particular R′ under S′. Thus the solver
B can be used to solve R′ under S′, in contradiction.

We elaborate. Let S0 be some polynomial time onto
sampler with randomness complexity bounded by λ
(for example, the sampler that on input 1n outputs
the first n coins from the randomness tape, which has
randomness complexity bounded by λ since λ(n) ≥
n). Let pS̃0

be a polynomial bounding the running
time of S̃0. By Fact 3.2, S outputs a tuple of the
form (〈S0〉, x) with noticeable probability. Let n0 be
such that for any n ≥ n0 it holds that τ ′(n+ |〈S0〉|) ≥
pS̃0

(n + |〈S0〉|) (clearly such number exists as τ ′ is
super-polynomial).

Claim 3.3 Any instance of the form (〈S0〉, x) where
|x| ≥ n0, is a YES-instance of R.

Proof: The claim follows from the following facts:

• Every x has a w such that (x,w) ∈ R′, as R′ is
total.
• S0 is an onto sampler, thus there are r1, . . . , r|x|

such that for all 1 ≤ i ≤ |x|, on input 1|〈S0〉|+|x|

and randomness ri, the sampler S̃0 outputs
(〈S0〉, x⊕ e|x|i).
• Since the randomness complexity of S0 is

bounded by λ, it follows that for all 1 ≤ i ≤ |x|,
the randomness ri can be taken such that |ri| ≤
λ(|〈S0〉|+ |x|).
• Since |x| ≥ n0 it follows that pS̃0

(|x| + |〈S0〉|) ≤
τ ′(|x| + |〈S0〉|), thus S0 halts on the ri’s in at
most τ ′(|〈S0〉|+ |x|) steps as required.

Now, suppose to the contrary there exists an algo-
rithm B that succeeds on R under S. That is,

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) �∈ R∧

∃y((〈M〉, x), y) ∈ R]

is not noticeable. Then (for n ≥ |〈S0〉|):

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) �∈ R∧

∃y((〈M〉, x), y) ∈ R|〈M〉 = 〈S0〉]

is also not noticeable, as we condition on a noticeable
event (by Fact 3.2). Moreover, for large enough n’s

Pr
(〈M〉,x)←S(1n)

[((〈M〉, x), B((〈M〉, x))) �∈ R

∧ ∃y((〈M〉, x), y) ∈ R|〈M〉 = 〈S0〉]
= Pr

(〈M〉,x)←S(1n)
[((〈M〉, x), B((〈M〉, x))) �∈ R|

〈M〉 = 〈S0〉],

as for large enough n’s, when 〈M〉 = 〈S0〉 there is
always a solution (by Claim 3.3). Since S chooses the
second element (independent of the first) according to
the distribution of S′, it follows that for large enough
n’s, the last term equals

Pr
x←S′(1n−|〈S0〉|)

[((〈S0〉, x), B((〈S0〉, x))) �∈ R].

Let B1 denote the algorithm that behaves similar to
B but outputs only the first element (out of the pair)
output by B. Then the last term, which by the above
is not noticeable, upper bounds

Pr
x←S′(1n−|〈S0〉|)

[(x,B1((〈S0〉, x))) �∈ R′],

since if B succeeds on the instance (〈S0〉, x) then the
first element output by B is a solution for x under R′.

306

ON THE CONSTRUCTION OF ONE-WAY FUNCTIONS FROM AVERAGE CASE HARDNESS

Finally, trivially

Pr
x←S′(1n−|〈S0〉|)

[(x,B1((〈S0〉, x))) �∈ R′]

≥ Pr
x←S′(1n−|〈S0〉|)

[(x,B1((〈S0〉, x))) �∈ R′ ∧

∃w(x,w) ∈ R′]

(in fact equality holds here as R′ is total), and we
conclude that the algorithm B1((〈S0〉, ·)) does not fail
with noticeable probability on R′ under S′, in contra-
diction to the hardness of R′ under S′. We conclude
that R is hard under S.

We now prove the main claim, i.e., that there does
not exist a sampler S∗ as above. Assume towards
contradiction that a sampler S∗ as above does ex-
ist. Then, we use (the code of) S∗ to construct an
algorithm A that succeeds (i.e., does not fail with no-
ticeable probability) on R′ under S′, in contradiction
to the assumed hardness of R′ under S′. In fact, A
will solve R′ in the worst case, in expected polyno-
mial time. We note, that this part of the proof only
uses the fact that S∗ is an onto sampler (which follows
from the fact that the sampler S we construct is an
onto sampler). Following is the definition of A. (See
elucidating remarks below.)
Definition of A:
Let pS̃∗ be a polynomial bounding the running time
of S̃∗. Let n0 be such that for any n ≥ n0 it holds
that τ ′(n) ≥ pS̃∗(n) (clearly such number exists as τ ′
is super-polynomial).

On input x of length n (an instance of R′):
1. If n + |〈S∗〉| < n0 output the answer out of a

pre-computed (fixed) table.
2. Invoke S∗(1n+|〈S∗〉|) (supplying it with random

coins). Denote the output by ((〈M〉, x(0)), y).
3. If 〈M〉 �= 〈S∗〉 go back to 2. Else, If 〈M〉 = 〈S∗〉,

proceed (note that in that case |x(0)| = |x| = n).
4. Parse y to (w(0), r

(0)
1 , . . . , r

(0)
n) (the fact that y

can be so parsed will be proven later).
5. Let i1, . . . , ih be the locations of the bits that are

different between x and x(0).
For j = 1 to h:

Use r(j−1)
ij

as randomness for S∗(1n+|〈S∗〉|) to
obtain output ((〈M〉, x(j)), (w(j), r

(j)
1 , . . . , r

(j)
n))

(Again, the fact that the second element in
the output of S∗ can be so parsed will be proven
later. Also, we will show that it must hold that
〈M〉 = 〈S∗〉 and x(j) = x(j−1) ⊕ enij .)

6. Output w(h).

Before proving the correctness and the running
time of the algorithm, let us explain informally its
idea. In Lines 2 and 3 the algorithm invokes S∗

(with appropriate input-length) until it outputs an
instance-solution pair where the instance is of the
form (〈S∗〉, x(0)) (where, due to the choice of the
input-length, the length of x(0) is |x|). As we will
show, this part takes expected polynomial time. The
idea is that once such an instance is output, the
string y that accompanies it is a solution with re-
spect to R (since the instance is a YES-instance and
S∗ is assumed to output solutions when they exist).
Moreover, this solution relates to the machine S∗ it-
self. That is, y is of the form (w(0), r

(0)
1 , . . . , r

(0)
n),

where the r(0)
i ’s can be used as randomness for S∗

to "flip" the i-th bit of x(0), and obtain a new
pair ((〈S∗〉, x(1)), (w(1), r

(1)
1 , . . . , r

(1)
n)), where x(1) is

Hamming-closer to x by one bit. Then, the same idea
is repeated in the loop in Line 5. At each step j the
algorithm chooses the j-th bit that is different be-
tween x(0) and x, and using the appropriate random-
ness from the previous solution (i.e., r(j−1)

ij
) "flips"

it to become Hamming-closer to x by one bit. Af-
ter reaching x (that is, after having S∗ output a pair
where the instance is (〈S∗〉, x)), in Line 6, the algo-
rithm outputs w(h), which, by the definition of R, and
since S∗ always outputs legal solutions with respect
to R when these exist, is a solution for x under R′.

We proceed to a formal proof.

Claim 3.4 The algorithm A runs in expected polyno-
mial time.

Proof: We first show that the algorithm reaches
Line 4 in expected polynomial time. By Fact 3.2
the probability of the event that on input 1n+|〈S∗〉|

the sampler S outputs (〈S∗〉, x(0)) (for some x(0) with
|x(0)| = n) is noticeable in n.

Since by assumption S̃∗ dominates S, it follows that
the event that on input 1n+|〈S∗〉| the sampler S∗ out-
puts (〈S∗〉, x(0)) (for some x(0) with |x(0)| = n = |x|)
is also noticeable in n. It follows that the algorithm
reaches Line 4 in expected polynomial time. It is easy
to see (considering that the running time of S∗ is poly-
nomial) that Lines 5,6 run in (strict) polynomial time.
The claim follows.

We now prove the correctness of the algorithm.
That is, we show that the output of the algorithm
A on input x is always a solution for x under R′.

Claim 3.5 If the algorithm A reaches Line 4, then y
is a valid solution for (〈M〉, x(0)) under R.

Proof: We show that when the algorithm reaches
Line 4, (〈M〉, x(0)) is a YES-instance, and therefore y
is a valid solution for (〈M〉, x(0)) (as by assumption

307

N. LIVNE

the second element in every pair output by S∗ is a
solution for the first element with respect to R if such
exists).

The proof resembles the proof of Claim 3.3. Note
that if the algorithm reaches Line 4 then 〈M〉 = 〈S∗〉.
We then note that:
• x(0) has a w such that (x(0), w) ∈ R′, as R′ is

total.
• S̃∗ is an onto sampler since S is an onto sam-

pler, and S̃∗ dominates S. Thus, there are
r

(0)
1 , . . . , r

(0)
|x| such that for all 1 ≤ i ≤ |x|, on

input 1|〈S∗〉|+n and randomness r(0)
i , the sampler

S̃∗ outputs (〈S∗〉, x⊕ e|x|i).
• Since the randomness complexity of S∗ is as-

sumed to be bounded by λ, it follows that for
all 1 ≤ i ≤ |x|, the randomness r(0)

i can be taken
such that |r(0)

i | ≤ λ(|〈S∗〉|+ n).
• If A reaches Line 4 then n+ |〈S∗〉| ≥ n0 (because

of Line 1), thus τ ′(n+ |〈S∗〉|) ≥ pS̃∗(n+ |〈S∗〉|).
Thus S̃∗ halts on the r(0)

i ’s in at most τ ′(|〈S∗〉|+
n) steps as required.

The claim follows.

Finally, we show that the algorithm outputs the
correct output. First we note:

Claim 3.6 The second element in the output of S∗
in each step j in the loop in Line 5 is a valid solution
for (〈M〉, x(j)) with respect to R.

The proof is identical to the proof of Claim 3.5.

Claim 3.7 For every j, at the end of step j in the
loop in Line 5 the Hamming distance between x(j) and
x is h− j.
Proof: By Claims 3.5 and 3.6, and since by as-
sumption the second element in every pair output by
S∗ is a solution for the first element with respect to
R if such exists, it follows that throughout the al-
gorithm, "all r(j)i ’s are correct" (formally, for every
0 ≤ j ≤ h and every 1 ≤ i ≤ n, any r(j)i is such that
S∗(1n+|〈S∗〉|) with randomness r(j)i outputs a pair of
the form ((〈S∗〉, x(j) ⊕ eni), ·)). Since in step j the al-
gorithm A chooses to run S∗ on r(j−1)

ij
, where ij is the

j-th bit that is different between x(0) and x, it follows
that x(j+1) is Hamming-closer to x than x(j) by one
bit. The claim follows.

It follows that x(h) = x. Since (w(h), r
(h)
1 , . . . , r

(h)
n)

is a solution for (〈M〉, x(h)) under R (again, by Claim
3.6), by the definition of R it follows that w(h) is a
solution for x(h) = x under R′. The theorem follows.

4 Conclusion
4.1 On Our Assumptions

We have shown that if there exists a polynomially
bounded total search problem that is hard under some
polynomial time onto sampler, then there exist effi-
ciently samplable distributions that are hard on av-
erage, but that cannot be transformed into one-way
functions (in the manner we described).

We note that the hypothesis of the theorem is im-
plied by the existence of one-way permutations, is fur-
ther implied by the weaker assumption of the exis-
tence of onto one-way functions (where by "onto" we
mean that the function’s image is Σ∗), and is even
weaker than the latter. Thus, our assumptions are
plausible. In fact, one does not even have to assume
that S′ is an onto sampler. If S′ is a sampler with the
property that size of its image is noticeable, it can be
made onto by standard (straightforward) techniques
without harming the hardness of any search problem
under this sampler.

It might seem contradictory at first sight that we
mention that our hypothesis is implied by an assump-
tion that in fact yields the existence of one-way func-
tions. But, our result is essentially about approaches
to construct one-way functions, and not about their
existence. Thus, a way to interpret the result, is that
if onto one-way functions exist, then a certain way to
prove the existence of one-way functions cannot work
(although one-way functions in fact do exist under
this assumption).

4.2 On Restricting the Randomness Com-
plexity of S∗

To the best of our knowledge, it is unknown if re-
stricting the randomness of the pairs-sampler S∗ is
with loss of generality. It is fairly easy to see that
if the answer to the following (open, to the best of
our knowledge) question is affirmative, then restrict-
ing the randomness of the pairs-sampler S∗ is without
loss of generality.

Open Question 4.1 There exists a (universal) poly-
nomial q such that for every pairs-sampler S∗ such
that S̃∗ is an onto sampler, there exists a pairs-
sampler S∗∗ such that S̃∗∗ is an onto sampler and
such that:
• For every n, it holds that support(S∗∗(1n)) ⊆

support(S∗(1n)).
• The sampler S̃∗∗ dominates S̃∗.
• The randomness complexity of S∗∗ is bounded by
q.

308

ON THE CONSTRUCTION OF ONE-WAY FUNCTIONS FROM AVERAGE CASE HARDNESS

4.3 Possible Interpretations of Our Result
First we note that the conclusion of our theorem can

be presented in a different way: For any polynomials q
and λ there exists a polynomial time verifiable search
problem R and a polynomial time sampler S such that
R is hard under S, but where any sampler S∗ as in
the Desired Construction must run in time exceeding
q and use randomness exceeding λ. It is easy to mod-
ify the proof accordingly (basically, one just has to
change the function τ in the definition of R, to q).

A possible interpretation of our result is as an indi-
cation for the generality of the classes for which one
can achieve the Desired Construction. Following the
discussion in the Introduction, the most generic man-
ner to achieve the Desired Construction is to achieve
it for any R and S where R is hard under S, and where
R is polynomially bounded and exponential time ver-
ifiable. Under the restriction on the randomness com-
plexity of S∗, we eliminate the possibility to achieve
this generic construction.

We note, however, that our result does not imply
that any "generic" approach to achieve the Desired
Construction cannot succeed (where by "generic" we
mean a transformation that works for a wide class of
pairs (R,S)). The two main reasons for this state-
ment (besides the loss of generality implied by the
restriction on the randomness complexity of S∗) are:
• The search problem we construct is not polyno-

mial time verifiable (but is "nearly polynomial
time verifiable"). This still leaves open the possi-
bility that any polynomial time verifiable search
problem that is hard on average under some ef-
ficient sampler can be transformed to a one-way
function (via the Desired Construction we refer
to).
• We require that the desired S∗ relates strictly

to R and S. A slightly different approach could
be to first transform R and S to some R1 and
S1, and then construct S∗ for R1 and S1. Our
result does not eliminate the possibility that this
approach can work for a wide class of pairs (R,S).

Acknowledgments
I would like to deeply thank Oded Goldreich for

many helpful discussions, for the help in the presen-
tation of this paper, and for encouraging me to work
in this area.

References
[1] A. Akavia, O. Goldreich, S. Goldwasser, and

D. Moshkovitz. On basing one-way functions on np-

hardness. In J. M. Kleinberg, editor, STOC, pages
701–710. ACM, 2006.

[2] A. Bogdanov and L. Trevisan. On worst-case to
average-case reductions for np problems. SIAM J.
Comput., 36(4):1119–1159, 2006.

[3] G. Brassard. Relativized cryptography. In FOCS,
pages 383–391. IEEE, 1979.

[4] J. Feigenbaum and L. Fortnow. Random-self-
reducibility of complete sets. SIAM J. Comput.,
22(5):994–1005, 1993.

[5] O. Goldreich. Computational Complexity: A Concep-
tual Perspective. Cambridge University Press, 2008.

309

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

