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Abstract: We introduce the notion of a stable instance for a discrete optimization problem, and argue that
in many practical situations only sufficiently stable instances are of interest. The question then arises whether
stable instances of NP–hard problems are easier to solve. In particular, whether there exist algorithms that
solve correctly and in polynomial time all sufficiently stable instances of some NP–hard problem. The paper
focuses on the Max–Cut problem, for which we show that this is indeed the case.
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1 Introduction
Computational complexity theory as we know it to-

day is concerned mostly with worst-case analysis of
computational problems. For example, we say that a
problem is NP-hard if the existence of an algorithm
that correctly decides every instance of the problem
implies that SAT can be decided in a polynomially
equivalent time complexity. However, the study of
decision and optimization problems is motivated not
merely by theoretical considerations. Much of our in-
terest in such problems arises because they formalize
certain real-world tasks. From this perspective, we
are not interested in all problem instances, but only
in those which can actually occur in reality.

This is often the case with clustering problems,
which are ubiquitous in most fields of engineering,
experimental and applied science. Any concrete for-
mulation of the clustering problem is likely to be NP-
hard. However this does not preclude the possibility
that the problem can be solved efficiently in prac-
tice. In fact, in numerous application areas, large-
scale clustering problems are solved on a regular ba-
sis. As mentioned above, we are only interested in
instances where the data is actually made up of fairly
well-defined clusters - the instances where solving the
problem is interesting from the practical perspective.

Put differently, the usual way for proving that clus-
tering is NP-hard is by a reduction to, say, SAT. This
reduction entails the construction of instances for the
clustering problem, such that the existence of an al-
gorithm that can solve all of them efficiently implies
the existence of an algorithm that efficiently solves
SAT. However, it may well be the case that all these
∗This research is supported by grants from the binational

Science Foundation Israel-US and the Israel Science Founda-
tion.

instances are clearly artificial, and solving them is of
no practical interest.

As a concrete example, consider the problem of
clustering protein sequences into families. Out of the
enormous space of all possible sequences, only a tiny
fraction is encountered in nature, and it is only about
these (or slight modifications thereof) that we actu-
ally care.

Our case in point is the Max-Cut problem, which
can be thought of as a clustering into two clusters. It
is well known that this problem is NP-complete, and
so it is believed that there is no algorithm that solves
it correctly on all graphs, in polynomial time. In
this work we strive to identify properties of instances
of the Max-Cut problem (i.e., of weighted graphs),
which capture the notion that the input has a well-
defined structure w.r.t Max-Cut (i.e., the maximal cut
“stands out” among all possible cuts). Our goal is to
show that Max-Cut can be solved efficiently on inputs
that have such properties.

Consideration of a similar spirit have led to the de-
velopment of Smoothed Analysis initiated in [16], (see
[17] for some of the exciting developments in that
area. The similarity has two main facets: (i) Both
lines of research attempt to investigate the computa-
tional complexity of problems from a non-worst-case
perspective, (ii) Both are investigations of the geome-
try of the instance space of the problem under consid-
eration. The goal being to discover interesting parts
of this space in which the instances have complexity
lower than the worst case. Viewed from this geomet-
ric perspective, the set-up that we study here is very
different than what is done in the theory of smoothed
analysis. There one shows that the hard instances
form a discrete and isolated subset of the input space.
Consequently, for every instance of the problem, a
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small random perturbation is very likely to have low
computational complexity. In the problems that we
study here the situation is radically different. The “in-
teresting” instances (stable instances as we shall call
them) are very rare. Indeed, it is not hard to show
that under reasonable models of random instances the
probability that a random instance be stable is zero,
or at least tends to zero as the problem size grows.
What we wish to accomplish is to efficiently solve all
instances within this subspace. We claim that this
tiny set is interesting because it includes all realistic
clustering problems.

Another line of work in a similar venue is the (c, ε)-
property defined by Balcan, Blum and Gupta [1]: An
instance to a problem is said to have this property
if all c-approximations of the optimal solution are ε-
close to it. Balcan, Blum and Gupta show that a
solution close to the optimal one can be found effi-
ciently for such instances (two solutions are “close”
if they differ from one another by at most an ε frac-
tion of the vertices). As with Smoothed Analysis, this
is an step beyond worst-case analysis, and as we do
here, the focus is on specific instances whose optimal
solution has a certain structure. However, while the
(c, ε)-property deals with the structure of the solution
space under a given objective function, here we are in-
terested in how the optimal solution maps the vicinity
of the input instance into the solution space.

The notion of stability is central to our work. This
is a concrete way to formalize the notion that the only
instances of interest are those for which small pertur-
bation in the data (which may reflect e.g. some mea-
surement errors) do not change the optimal partition
of the graph.

Definition 1.1. Let W be an n× n symmetric, non-
negative matrix. A γ-perturbation of W , for γ ≥ 1, is
an n×n matrix W ′ such that ∀i, j = 1, . . . , n, Wi,j ≤
W ′i,j ≤ γ ·Wi,j.
Let (S, [n]\S) be a maximal cut of W , i.e. a partition
that maximizes

∑
i∈S,j /∈SWi,j . The instance W (of

the Max-Cut problem) is said to be γ-stable, if for
every γ-perturbationW ′ ofW , (S, [n]\S) is the unique
maximal cut of W ′.

However this definition is, perhaps, not sufficient.
Consider two bipartite graphs which are joined to-
gether by a single edge. The resulting graph is γ-
stable for all γ, but the alignment of the two bipratite
graphs with respect to one another completely de-
pends on the adjoining edge. Hence, to better cap-
ture our intuition of what it means for a solution to
be stable, it is reasonable to demand that in addition
to stability the graph contains no small cuts. We show

that the combination of both these properties indeed
allows solving Max-Cut efficiently (Example 4.3).

In section 3 we present an algorithm that solves
correctly and in polynomial time γ-stable instances
of Max-Cut: (i) On simple graphs of minimal degree
δ, when γ > 2n

δ , and (ii) On weighted graphs of max-
imal degree ∆ when γ >

√
∆n. In section 4 we ex-

plore several spectral conditions which make Max-Cut
amenable on stable instances. This involves analyz-
ing the spectral partitioning heuristic for Max-Cut. In
particular, we show that Max-Cut can be solved ef-
ficiently on (locally) stable expander graphs, and on
graphs where the solution is sufficiently distinct from
all other cuts. In the appendix we show how to deduce
an improved approximation bound for the Goemans-
Williamson algorithm on stable instances, and that
Max-Cut is easy in a certain random model for such
instances.

Finally, we should mention that this is just a first
step. In particular, it is of great interest to study
more permissive notions of stability where a small
perturbation can slightly modify the optimal solu-
tion. There are also other natural ways to capture
the concept of stability. Similar considerations can be
applied to many other optimization problems. Some
of these possibilities are briefly discussed below, but
these questions are mostly left for future investiga-
tions.

2 Preliminaries
2.1 Notation

Throughout the paper we denote the vertex set of
the graph G under discussion by [n]. A vector v ∈ ℝ

n

induces the partition of [n] into the sets. ({i : vi >
0}, {i : vi ≤ 0}). Viewed as a partition of G’s vertex
set, we call it the cut induced by v in G.

The indicator vector of a partition (S, S̄) of [n] (or
a cut in G), is the vector v ∈ {−1, 1}n, with vi = 1 iff
i ∈ S.
For a weighted graph G, we denote the indicator vec-
tor of its maximal cut by mc∗. We generally assume
that this cut is unique, otherwise mc∗ is an indicator
of some maximal cut.

For a subset A ⊂ [n], we denote Ā = [n]\A.
For two disjoint subsets of vertices in the graph,
A,B, we denote by E(A,B) the set of edges going be-
tween them, and w(A,B) =

∑
(i,j)∈E(A,B)Wi,j . With

a slight abuse of notation, we denote w(i) =
∑
jWi,j .

Finally, for a set of edges F ⊂ E, denote w(F ) =∑
(i,j)∈F Wi,j .
We switch freely between talking about the graph

and about its associated weight matrix. Given a sym-
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metric nonnegative n × n matrix W with zero trace
(as input to the max cut problem), we define its sup-
port as a graph G = (V,E) with vertex set V = [n]
where (i, j) ∈ E iff wij > 0.

2.2 Properties and Equivalent Definitions
A useful way to think of γ-stability is as a game

between two (computationally unbounded) players,
Measure and Noise: Given a graph G, Measure
chooses a cut (S, S̄). Noise then multiplies weights
of his choice by factors between 1 and γ, obtaining a
graphG′ (over the same vertex and edge sets, but with
possibly different weights). He then chooses a differ-
ent cut, (T, T̄ ). Noise wins if in G′ w(T, T̄ ) > w(S, S̄).
Otherwise, Measure wins. A graph is γ-stable if Mea-
sure has a winning strategy.

Observe that the players’ strategy is clear: Measure
chooses the maximal cut, and Noise , w.l.o.g., multi-
plies by γ the weights of the edges in E(T, T̄ )\E(S, S̄).
Multiplying weights of other edges either does not
change w(T, T̄ )− w(S, S̄), or decreases it. Hence, we
arrive at an equivalent definition for γ-stability is:

Proposition 2.1. Let γ ≥ 1. A graph G graph with
maximal cut (S, S̄) is γ-stable (w.r.t. Max-Cut) if for
every vertex set T �= S, S̄,

w(E(S, S̄)\E(T, T̄ )) > γ · w(E(T, T̄ )\E(S, S̄)).

This view of stability suggests how γ-stable graphs
can be generated: Let G′ be a γ′-stable graph. Multi-
plying the weights of all the edges in the maximum cut
by γ
γ′ yields a γ-stable graph G. Moreover, it is not

hard to see that all γ-stable graphs can be obtained
this way. In other words, in the following random pro-
cess every γ-stable graph on n vertices has a positive
probability: Generate a random graph on n vertices,
say according to G(n, p) (for some p �= 0, 1); Find
the maximal cut and its stability γ′. Multiply all cut
edges by γ

γ′ . Note, however, that in this naive model
the maximal cut can be easily identified by simply ex-
amining edge weights - those of weight γγ′ are the cut
edges.

One pleasing aspect of γ-stability is that it is obliv-
ious to scale - multiplying all weights in a graph by
a constant factor does not change its stability. This
can be readily seen from Proposition 2.1. It may seem
natural to define γ two-way stability as robustness to
perturbation by a multiplicative factor between 1

γ and
γ (so called, two-way perturbation). But oblivious-
ness to scale easily implies that a graph is γ two-way
stable iff it is γ2-stable.

It is also natural to consider a solution as “inter-
esting” if it stands out among all the alternatives.

Let (S, S̄) be a maximal cut in a graph G, and con-
sider an alternative cut, (T, T̄ ). Consider the set
E(S, S̄)∆E(T, T̄ ) of those edges on which the two
cuts “disagree”. We seek to measure the difference
between the cuts (S, S̄) and (T, T̄ ) relative to the size
of w(E(S, S̄)∆E(T, T̄ )). So say that (S, S̄) is α edge
distinct (with α > 0), if for any T ⊂ V ,

w(S, S̄)− w(T, T̄ ) > α · w(E(S, S̄)∆E(T, T̄ )).

Now, denote WT = w(E(T, T̄ )\E(S, S̄)) and WS =
w(E(S, S̄)\E(T, T̄ )). If G is α edge distinct then

WS −WT = w(S, S̄)− w(T, T̄ )
> α · w(E(S, S̄)∆E(T, T̄ ))
= α · (WS +WT ).

Hence, WS ≥ α
1−αWT , and by Proposition 2.1 G is

1+α
1−α -stable. Similarly, if G is γ-stable, then it is γ−1

γ+1
edge distinct.

2.3 Variations on a Theme
We shall also be interested in a weaker version of

stability, which proves useful for some of the results
in sequel:

Definition 2.1. Let W be an instance of the Max-
Cut problem and let (S, S̄) be its optimal partition.
We say that W is γ-locally stable if for all v ∈ S

γ ·
∑
u∈S
Wu,v <

∑
u∈S̄
Wu,v,

and for all v ∈ S̄

γ ·
∑
u∈S̄
Wu,v <

∑
u∈S
Wu,v,

Observe that every γ-stable graph is also γ-locally
stable - this follows from Definition 2.1, with T being
a single vertex.

It is essentially known that Max-Cut is NP-hard
even when restricted to γ-locally stable instances (for
γ at most exponential in the size of the input) [14]
1. In fact, one can impose local stability, without
altering the overall stability: Let G be a graph with

1The NP-completeness of Max-Cut can be shown by a re-
duction from 3-Not-all-equal SAT: Construct a graph over the
formula’s literals, and for every 3-clause define three edges (a
triangle) connecting the clause’s literals. It is not hard to see
that the formula is satisfiable iff the graph’s Max-Cut’s value
is twice the number of clauses. It is also not hard to see that
if this is indeed the case, the cut is 2-locally stable. Further-
more, by adding edges between a literal and its negation, the
structure of the Max-Cut does not change, and local stability
increases.
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weighted adjacency matrix W . Let G× be a graph on
V × {0, 1}, with weighted adjacency matrix:

G× =
(

W τ · w(i) · I
τ · w(i) · I W

)

(for some τ ≥ 1.)
It is not hard to see that the maximal cut in G×
consists of two copies of that in G. Specifically, (S, S̄)
is a maximal cut in G iff (S×{0}∪ S̄×{1}, S×{1}∪
S̄ × {0}) is a maximal cut in G×.
It is also not hard to see that G is γ-stable, iff G× is,
and that G× is at least 2τ -locally stable.

The definition of stability via edge distinctness for-
malizes the notion that in instances of interest, the
Max-Cut should be distinctly better than all other
cuts. Clearly, cuts which differ only slightly from the
maximum one in structure can only differ slightly in
value, so the difference in value should be quantified
in terms of the distance between the cuts.

Definition 2.2. Let (S, S̄) be a cut in a (weighted)
graph G = (V,E) and k > 0. We say that this cut is
k-distinct if for any cut (T, T̄ ),

w(e(S, S̄))− w(e(T, T̄ ) ≥ kmin{|S∆T |, |S∆T̄ |}.

We say that a graph is (k, γ)-distinct (w.r.t. Max-
Cut) if its maximal cut is k-distinct and γ-locally sta-
ble.

In example 4.4 we show that Max-Cut can be solved
on (k, γ)-distinct instance when k and γ are suffi-
ciently large.

3 Combinatorial Approach
One approach in solving a Max-Cut problem is to

identify a pair of vertices which must to be on the
same side of the optional cut (e.g. in a simple graph,
two vertices with the same neighborhood). Two such
vertices can be safely merged into a single vertex -
keeping multiple edges. If this can be repeated un-
til a bipartite graph is obtained, then the problem is
solved.

Observe that if G is a γ-stable graph, and i, j are
two vertices on the same side of the maximal cut, then
the graphG′, obtained from G by merging i and j into
a single vertex i′, is γ-stable as well. Indeed, any γ-
perturbation of G′ induces a γ-perturbation of G over
the same edges. If as a result of this perturbation
the maximal cut changes in G′, then this new cut
is also maximal in the similarly perturbed G, since
it contains the same edges (in contradiction with G
being γ-stable).

This observation implicitly guides the first algo-
rithm presented below. In it we identify pairs of ver-
tices which are on opposite sides of the maximal cut.
By continuing to do so, we grow bigger and bigger
connected bipartite subgraphs, until they all connect.
In the second algorithm we explicitly merge together
vertices on the same side as long as we know how to,
and then, once we have a much smaller graph, use the
first algorithm.

3.1 An Efficient Algorithm for n-stable In-
stances

We start by describing an algorithm, that solves
the Max-Cut problem on (weighted) graphs of maxi-
mal degree ∆ which are

√
∆n-stable. The idea is to

iteratively identify sets of edges which belong to the
maximal cut. When they form a connected spanning
bipartite graph, the maximal cut is found.

FindMaxCut(G) (G is a weighted graph)
1. Initialize T = (V (G), ∅). Throughout the

algorithm T will be a bipartite subgraph of
G.

2. While T is not connected, do:
(a) Let C1, . . . , Ct be the connected com-

ponents of T . Each of them is a bi-
partite graph, with vertex bipartition
V (Ci) = (Li, Ri).

(b) Let Ci∗ be a component with the
least number of vertices. For each
j = 1, . . . , t, j �= i∗, let E0

j =
E(Li∗ , Lj) ∪ E(Ri∗ , Rj) and E1

j =
E(Li∗ , Rj) ∪ E(Ri∗ , Lj). Let j∗ and
c∗ be such that the weight of Ec

∗
j∗ is

the largest among all Ecj .
(c) Add the edges of Ec∗j∗ to T

3. Output the cut defined by the two sides of
T .

Theorem 3.1. There is an algorithm that solves
correctly and in polynomial time every instance of
weighted Max-Cut that is γ-stable for every γ >
min{√∆n, n2 }. Here an instance is an n-vertex graph
of maximal degree ∆.

Proof: We will show that the above algorithm is well
defined, and outputs the correct solution on

√
n∆-

stable instances of Max-Cut. Let (S, S̄) be the maxi-
mal cut. We maintain that throughout the algorithm,
S separates each connected component Ci = (Li, Ri).
Namely, either Li ⊂ S, Ri ⊂ V \S or Ri ⊂ S, Li ⊂
V \S.
This clearly holds at the outset. If it holds at ter-
mination, the algorithm works correctly. So consider
the first iteration when this does not hold. Let Ci∗
be a smallest connected component at this stage, and
denote k = |Ci∗ |. Up to this point our assumption
holds, so say Li∗ ⊂ S and Ri∗ ∩ S = ∅. Let j∗ and
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c∗ be those chosen as in step 2b. Since this is the
point where the algorithm errs, Ec∗j∗ is added to T ,
yet Ec∗j∗ ∩ E(S, S̄) = ∅.
Now consider the γ-perturbation of the graph ob-
tained by multiplying the edges in Ec∗j∗ by γ. If the
original graph is γ-stable, the maximal cut of the per-
turbed graph is (S, S̄) as well. Consider the cut ob-
tained by flipping the sides of Li∗ and Ri∗ . That is,
denote Z = S\Li∗ ∪Ri∗ , and consider the cut (Z, Z̄).
The cut (Z, Z̄) contains the edges Ec∗j∗ , which (S, S̄)
does not. For each j �= j∗, let cj be such that Ecjj
is in the cut (S, S̄) (we’ll be interested only in non-
empty subsets). In the extreme case, all these edges
are not in the cut (Z, Z̄). Observe that all other edges
in E(S, S̄) are also in E(Z, Z̄).
Define J = {j �= i : Ecjj �= ∅}. Since the weight of
(Z, Z̄), even in the perturbed graph, is smaller than
that of (S, S̄), we have that:

γ · w(Ec
∗
j∗ ) <

∑
j∈J
w(Ecjj ).

(The l.h.s. is a lower bound on what we gain when
we switch from S to Z, and the r.h.s. is an upper
bound on the loss.) Recall that Ec∗j∗ was chosen to be
the set of edges with the largest total weight. Hence,∑
j∈J w(Ecjj ) ≤ |J |w(Ec∗j∗ ), and so γ < |J |. Clearly,
|J | ≤ min{nk , k∆}, and so:

γ2 <
n

k
k∆ = n∆.

This is a contradiction to the assumption that the
input is

√
n∆-stable.

Since in particular γ > ∆, local stability implies
that for each vertex we know that the heaviest edge
emanating from it is in the optimal cut (if there are
several edges of maximal weight all of them are).
Hence, it is safe to start with T having these edges
as it edge set. Thus, k ≥ 2, implying that n2 stability
is sufficient.

Note that we have actually proven that the algo-
rithm works as long as it can find a connected com-
ponent Ci∗ , such that |{j : Ecj �= ∅}| < γ, for c = 0, 1.

The concept of stability clearly applies to other
combinatorial optimization problems. Similarly, the
algorithm above can be adjusted to solve highly sta-
ble instances of other problems. For example, a simi-
lar algorithm finds the optimal solution to (weighted)√
n∆-stable instances of the Multi-way Cut problem,

and ∆-stable instances of the Vertex Cover problem
(where again n is the number of vertices in the graph,
and ∆ the maximal degree).

3.2 An Efficient Algorithm for Simple
Graphs of High Minimal Degree

A complementary approach is useful when the
graph is unweighted, and of high minimal degree.
Suppose a γ-stable graph, for some big (but bounded)
γ has minimal degree n/2. Then by local stability
each side in the maximal cut must be of size nearly
n/2, and the neighborhoods of any two vertices on
the same side have most of their vertices in common.
Thus we can easily cluster together the vertices into
the two sides of the maximal cut. Even when the min-
imal degree is lower, we can use the same scheme to
obtain several clusters of vertices which are certain to
be on the same side, and then use the algorithm from
the previous subsection to find the maximal cut.

Theorem 3.2. There is an algorithm that solves cor-
rectly and in polynomial time every instance of un-
weighted Max-Cut that is γ-stable for every γ ≥ 4n

δ .
Here an instance is an n-vertex graph G = (V,E) of
minimal degree δ. Furthermore, if δ = Ω( n

logn ), then
γ-local stability suffices.

It clearly suffices to consider γ = 4n
δ . Let Ni ⊂ V

be the neighbor set of vertex i and di = |Ni|. Define
H to be a graph on V with i, j adjacent if |Ni∩Nj | >
di+dj
γ+1 . Since G is in particular γ-locally stable, every

vertex i has at most di
γ+1 of its neighbors on its own

side of the maximal cut. Hence, the vertices of each
connected component of H must be on the same side
of the maximal cut.

Let c be the number of connected components in H
and let U ⊂ V be a set of c vertices, with exactly one
vertex from each of these connected components. Let
the degrees of the vertices in U be di1 ≤ di2 ≤ . . . ≤
dic . For any u, v ∈ U we have that |Nu∩Nv| ≤ du+dv

γ+1 .
We claim that c < γ+1

2 . If this is not the case, let us
apply the inclusion-exclusion formula and conclude:

|
(γ+1)/2⋃

1
Ni|

≥
(γ+1)/2∑
j=1

(dij −
j−1∑
k=1

dij + dik
γ + 1

)

=
(γ+1)/2∑
j=1

dij (1−
1
γ + 1

j−1∑
k=1

(1 +
dik
dij

))

≥
(γ+1)/2∑
j=1

dij (1−
2(j − 1)
γ + 1

)

since, by assumption dik ≤ dij for k < j. Also,
dij ≥ δ for all j, and clearly |⋃(γ+1)/2

1 Ni| < n.
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Therefore,

n > |
(γ+1)/2⋃

1
Ni| ≥ δ

(γ+1)/2∑
j=1

(1− 2(j − 1)
γ + 1

)

= δ(γ + 1
2
− 2(γ + 1)(γ − 1)

8(γ + 1)
) ≥ γδ

4

a contradiction which implies c < γ+1
2 .

Now consider the graphG′ obtained from G by con-
tracting all vertices in each Ci into a single vertex,
keeping multiple edges. By our previous observation,
G′ has the same max-cut value asG. Consequently, as
discussed at the beginning of this section, the graph
G′ is γ-stable. It follows that G′ is a weighted graph
whose stability exceeds half its number of vertices. By
Theorem 3.1, the optimal cut in G′ (and hence in G)
can be found in polynomial time, as claimed.

It is also worth mentioning that if δ = Ω( n
logn ) then

γ is O(log n), and we can find the maximal cut in G′
by going over all cuts. Moreover, in this case it suffices
to assume that G is γ-locally stable.

4 A Spectral Approach
4.1 Definitions

Spectral partitioning is a general name for a num-
ber of heuristic methods for various graph partitioning
problems which are popular in several application ar-
eas. The common theme is to consider an appropriate
eigenvector of a possibly weighted adjacency matrix
of the graph in question, and partition the vertices
according to the corresponding entries. Why is it at
least conceivable that such an approach should yield
a good solution for Max-Cut? The Max-Cut problem
can clearly be formulated as:

min
y∈{−1,1}n

∑
(i,j)∈E

Wi,jyiyj .

The Goemans-Williamson algorithm [8] works by
solving an SDP relaxation of the problem. In other
words, where as above we multiply the matrix W by
a rank 1 PSD matrix, in the SDP relaxation, we mul-
tiply it be a PSD matrix of rank (at most) n. Let
us consider instead the relaxation of the condition
y ∈ {−1, 1}n, to y ∈ ℝ

n, ||y||2 = n. The resulting
problem is well-known: By the variational characteri-
zation of eigenvalues, this relaxation amounts to find-
ing the eigenvector corresponding to the least eigen-
value of W . Let u be such a vector. This suggests a
spectral partitioning of W that is the partition of [n]
induced by u.
We also consider what we call extended spectral parti-
tioning: Let D be a diagonal matrix. Think ofW +D

as the weighted adjacency matrix of a graph, with
loops added. Such loops do not change the weight of
any cut, so that regardless of what D we choose, a cut
is maximal in W iff it is maximal in W +D. Further-
more, it is not hard to see thatW is γ-stable, iffW+D
is. Our approach is to first find a “good” D, and then
take the spectral partitioning of W +D as the max-
imal cut. These observations suggest the following
question: Is it true that for every γ-stable instance
W with γ large enough there exists a diagonal D for
which extended spectral partitioning solves Max-Cut?
If so, can such a D be found efficiently? Below we
present certain sufficient conditions for these state-
ments.

4.2 Spectral Partitions of Stable Instances
The input to the max cut problem is a symmetric

nonnegative n × n matrix W with zero trace. The
support of W is a graph G = (V,E) with vertex set
V = [n] where (i, j) ∈ E iff wij > 0.

Lemma 4.1. Let W be a γ-stable instance of Max-
Cut with support G = (V,E). Let D be a diagonal ma-
trix, and u an eigenvector corresponding to the least
eigenvalue of W + D. If γ ≥ max(i,j)∈E |uiuj |

min(i,j)∈E |uiuj | , then
the spectral partitioning induced by W +D yields the
maximal cut.

Proof: As noted above, for any diagonal matrix
D, the problems of finding a maximal cut W + D
and in W are equivalent. Normalize u so that
min(i,j)∈E |ui · uj | = 1. (If u has any 0 coordinates,
the statement of the lemma is meaningless). Let D′
be the diagonal matrix D′i,i = Di,i · u2

i . Let W ′ be
the matrix W ′i,j = Wi,j · |uiuj|. Observe that W ′ is
a γ-perturbation of W , hence the maximal cut in W ′
(and inW ′+D′), is the same as inW . In other words,
mc∗ is a vector that minimizes the expression:

min
x∈{−1,1}n

x(W ′ +D′)x.

Also, the vector u minimizes the expression

min
y∈ℝn

(
∑
i,j

Wi,jyiyj +
∑
i

Di,iy
2
i )/||y||2.

Think of u as being revealed in two steps. First,
the absolute value of each coordinate is revealed, and
then, in the second step, its sign. Thus, in the second
step we are looking for a sign vector x that minimizes
the expression:

(
∑
i,j

Wi,j · |ui|xi · |uj |xj +
∑
i

Di,iu
2
i )/||u||2.
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Clearly, mc∗ is such a vector. Since the input is sta-
ble, the optimal cut is unique, and so mc∗ and −mc∗
are the only such vectors. Hence, the partition they
induce is the same as that induced by u.

Note 4.1. A more careful analysis shows a somewhat
stronger result. It suffices that

γ ≥ max(i,j)∈E : uiuj<0−uiuj
min(i,j)∈E : uiuj≥0 uiuj

.

4.3 A Sufficient Condition for Extended
Spectral Partitioning

Lemma 4.2. Let W be a γ-stable instance of Max-
Cut, for γ > 1, and let D be the diagonal ma-
trix Di,i = mc∗i

∑
jWi,jmc

∗
j . If W + D is posi-

tive semi-definite, then extended spectral partitioning
solves Max-Cut for W efficiently.

Proof: It is easy to see that the vector mc∗ is in the
kernel ofW+D. SinceW+D is positive semidefinite,
0 is its least eigenvalue, and mc∗ is an eigenvector
of W + D corresponding to the smallest eigenvalue.
Hence, the assertion of Lemma 4.1 holds. It remains
to show that Max-Cut can be found efficiently.

Observe that trace(D) = w(Ecut) − w(Enotcut) =
2 · w(Ecut) − w(E), where Ecut is the set of edges
in the maximal cut, and Enotcut is the set of all other
edges. Hence, to determine the value of the Max-Cut,
it suffices to compute m = trace(D). Since mc∗(W +
D)mc∗ = 0, it follows that mc∗ W mc∗ = −m.

We claim that m = min trace(A) over A ∈ 𝔸,
where 𝔸 is the set of all positive definite matrices
A such that Ai,j = Wi,j for i �= j. (As we discuss
in the appendix A.1, this is the dual problem of the
Goemans-Williamson relaxation ([8]).)

That the smallest such trace is ≤ m follows since
W+D ∈ 𝔸. For the reverse inequality note that every
A ∈ 𝔸 satisfies mc∗Amc∗ = −m+ trace(A). But A is
positive semidefinite so trace(A) ≥ m as claimed.

As observed by Delorme and Poljak [5] (and, in fact
already in [2]), the theory developed by Grötschel,
Lovász and Schrijver [9, 10] around the ellipsoid algo-
rithm makes it possible to efficiently solve the above
optimization problem.

Note that the solution to the optimization problem
is not necessarily unique, but this can be overcome
by slightly perturbing W at random. If W is stable,
then such a modification leaves mc∗ unchanged.

If W is a real symmetric matrix under consider-
ation, we denote its eigenvalues by λ1 ≥ · · · ≥ λn.
We show next that if the last two eigenvalues are
sufficiently small in absolute value, then the asser-
tion in Lemma 4.2 holds. We also recall the nota-
tion w(i) =

∑
jWi,j . Since w(i) can be viewed as a

“weighted vertex degree”, we denote mini{w(i)} by
δ̃ = δ̃(W ).

Lemma 4.3. Let W be a γ-locally stable instance of
Max-Cut with spectrum λ1 ≥ · · · ≥ λn, support G
and smallest weighted degree δ̃. Let D be a diagonal
matrix with Di,i = mc∗i

∑
jWi,jmc

∗
j . If

2δ̃ · γ − 1
γ + 1

+ λn + λn−1 > 0,

then W +D is positive semidefinite. Furthermore, if
W is γ stable for γ > 1 then Max-Cut can be found
efficiently.

Proof: Let x (resp. y) be a unit eigenvectors of
W+D corresponding to the smallest (second smallest)
eigenvalue of W + D. We can and will assume that
x and y are orthogonal. Since 0 is an eigenvalue of
W +D (with eigenvector mc∗) it follows that x(W +
D)x ≤ 0. If we can show that y(W +D)y > 0, then
the second smallest eigenvalue of W +D is positive,
and this matrix is positive semidefinite, as claimed.

By local stability, Di,i ≥ γ−1
γ+1 δ̃, so all of D’s eigen-

values are at least γ−1
γ+1 δ̃.

Therefore

xWx ≤ −xDx ≤ −γ − 1
γ + 1

δ̃.

By the variational theory of eigenvalues (the
Courant-Fischer Theorem), since x and y are two or-
thogonal unit vectors there holds

λn + λn−1 ≤ xWx+ yWy.

Also,

γ − 1
γ + 1

δ̃ ≤ yDy.

When we sum the three inequalities it follows that

2
γ − 1
γ + 1

δ̃ + λn + λn−1 ≤ y(W +D)y.

The Lemma follows. Lemma 4.2 implies that ex-
tended spectral partitioning solves Max-Cut for W .

4.4 Examples of Graph Families on which
Max-Cut Can Be Found Efficiently

Lemma 4.3 gives a sufficient condition under which
the extended spectral partitioning solves Max-Cut ef-
ficiently. In this subsection we identify certain families
of graphs for which the assertion in the lemma holds.
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Example 4.1. Let G be a 1 + ε stable, γ-locally sta-
ble graph with all w(i) equal. Let λn−1 ≥ λn be its
two smallest eigenvalues. Max-Cut can be found effi-
ciently on G if

λn−1
λn
<
γ − 3
γ + 1

,

and ε > 0.

Proof: By the Perron-Frobenius theorem, λ1 = δ̃,
and the all-one vector is the corresponding eigenvec-
tor. It also implies that δ̃ = λ1 ≥ |λn|. For the
condition in lemma 4.3 to hold, it thus suffices that

−2 · λn γ − 1
γ + 1

+ λn + λn−1 > 0,

which is exactly the stated condition.
Example 4.2. Let G be a 1+ε stable, γ-locally stable
d-regular simple graph with second eigenvalue λ. Max-
Cut can be found efficiently on G if

γ >
5d+ λ
d− λ ,

and ε > 0.

Proof: Let A be the adjacency matrix of G, and Ain
the adjacency matrix of the graph spanned by the
edges of the maximal cut. Let Aout = A−Ain. Since
G is γ-locally stable the maximal degree in Aout, and
hence its spectral radius, is at most d

γ+1 . Therefore,
by subtracting Aout from A, eigenvalues are shifted
by at most this value (this follows, e.g., by Weyl’s
theorems on matrix spectra). In other words, the
second eigenvalue of Ain is at most λ + d

γ+1 . Since
Ain is bipartite, its spectrum is symmetric, and so
|λn−1(Ain)| ≤ λ + d

γ+1 . Now adding Aout to Ain
again shifts the spectrum by at most d

γ+1 , and so
|λn−1(A)| ≤ λ + 2d

γ+1 . In addition, by the Perron-
Forbenius theorem, |λn(A)| ≤ d and so

−(λn(A) + λn−1(A)) ≤ d+ λ+ 2d
γ + 1

.

For the condition in lemma 4.3 to hold, it thus suffices
that

2d · γ − 1
γ + 1

> d+ λ+ 2d
γ + 1

,

as claimed.
Example 4.3. Let G = (V,E) be a 1 + ε stable, d-
regular simple graph with Cheeger constant h. Max-
Cut can be found efficiently on G if

γ >
5 +
√

1− (h/d)2

1−√1− (h/d)2
,

and ε > 0.

Proof: Recall that the Cheeger constant of a graph
is defined as

h(G) = min
U⊂V : |U|≤n2

|E(U, Ū)|
|U | ,

and provides on upper bound on G’s second eigen-
value (e.g. [13]):

λ2(G) ≤
√
d2 − h(G)2.

By Example 4.2 Max-Cut can be found efficiently on
G.

Example 4.4. Let G = (V,E) be a 1+ε stable, (k, γ)-
distinct d-regular simple graph. Max-Cut can be found
efficiently on G if

γ >
5 +
√

1− (k/d)2

1−√1− (k/d)2
,

and ε > 0.

Proof: Let (S, S̄) be the largest cut in G. Pick an
arbitrary set U ⊂ V of size ≤ n/2. We will derive a
lower bound on |E(U, Ū)| and therefore a lower bound
on G’s Cheeger constant.

So let us consider the cut (T, T̄ ) obtained from
(S, S̄) by swapping the position of each vertex in U .
Since |U | < n/2,

min{|S∆T |, |S∆T̄ |} = min{|U |, |Ū |} = |U |.

Now k-distinctness implies that |E(T, T̄ )| ≤
|E(S, S̄)| − k|U |. But every edge in E(S, S̄) \E(T, T̄ )
belongs to E(U, Ū). Consequently, |E(U, Ū)| ≥ k|U |,
and since U was arbitrary, h ≥ k.

By Example 4.3 Max-Cut can be found efficiently
on G.

5 Conclusion, Open Problems and Ac-
knowledgements

In this work we have shown that stability, supple-
mented by certain properties of the input instance,
allows for an efficient algorithm for Max-Cut. How-
ever, if nothing is assumed about the input, we only
know that n-stability is sufficient. Can this be im-
proved? Note that γ ≥ n is very far from what hap-
pens in the random model, where it is only required
that γ ≥ 1 + Ω(

√
logn
n ). A bold conjecture is that

there is some constant, γ∗, s.t. γ∗-stable instances
can be solved in polynomial time. By contrast, can it
be proven that Max-Cut is NP-hard even for γ-stable
instances for some small, constant γ?
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Our motivation in defining stability and distinct-
ness is to identify natural properties of a solution to
an NP-hard problem, which “make it interesting”, and
allow finding it in polynomial time. Stability and dis-
tinctness indeed make Max-Cut amenable, but are in
no way the only possible properties, and it would be
very interesting to suggest others.

We thank Ting-Yu Lin for finding an error in an
earlier version of the manuscript. We also thank the
anonymous reviewer who pointed us to [1] for doing
so.
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A Results Derived from Previous
Works

A.1 Performance of the Goemans-
Williamson Approximation Algorithm

Let us quickly recall the Goemans and Williamson
approximation algorithm for Max-Cut [8]. We first
rephrase the Max-Cut problem as:

Maximize 1
2
∑

(i,j)∈E
Wi,j(1− yiyj)

over y ∈ {−1, 1}n.

Equivalently, we seek to minimize
∑

(i,j)∈EWi,jYi,j
over all {−1, 1}-matrices Y that are positive semi-
definite and of rank 1. In the G-W algorithm the
rank constraint is relaxed, yielding a semi-definite
programming problem which can be solved efficiently
with approximation guarantee of ∼ 0.8786. More-
over, they show that when the weight of the maximal
cut is sufficiently big, this guarantee can be improved.
Namely, let R (≥ 1

2 ) be the ratio between the weight
of the maximal cut and the total weight of the edges.
Let h(t) = arccos(1−2t)/π. Then the approximation
ratio is at least h(R)/R.
By local stability, the contribution of each v ∈ V to
the maximal cut is γ

γ+1 the total weight of the edges
incident with it. Summing this over all vertices, we
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get that the maximal cut weighs at least R = γ
γ+1 of

the total weight. Thus, the performance guarantee of
the G-W algorithm on γ-stable instances is at least
(1−O( 1√

γ )).
Note that for this we only required local stability.
The semi-definite program used in the G-W algo-

rithm can be strengthened when the input is γ-stable,
by inequalities that express this stability. It is inter-
esting whether these additional constraints can im-
prove the approximation ratio further.

A.2 Spectrally Partitioning Random
Graphs

Consider the following model for random weighted
graphs. Let P be some probability measure on [0,∞).
Generate a matrixW ′ (a weighted adjacency matrix),
by choosing each entry W ′i,j , i < j, independently
from P . Set W ′i,j = W ′j,i for i > j, and W ′i,i = 0.
Let C be the set of edges in the maximal cut of W
(for “reasonable” P ’s, this will be unique w.h.p.). Set
Wi,j = γ ·W ′i,j for (i, j) ∈ C.
It is easy to see that W is indeed γ-stable, yet for cer-
tain probability measures the problem becomes triv-
ial. For example, if P is a distribution on {0, 1}, the
maximal cut inW simply consists of all the edges with
weight γ.
An even simpler random model is the following. Take
n even. Generate an n × n matrix W ′ as above.
Choose S ⊂ [n], |S| = n/2 uniformly at random.
Let C be the set of edges in the cut (S, S̄). Set
Wi,j = γ ·W ′i,j for (i, j) ∈ C. Denote this distribution
𝔾(n, P, γ). For an appropriate γ, w.h.p. (S, S̄) will be
the maximal cut in W . This random model is close
to what is sometimes known as “the planted partition
model” ([2–4, 6, 7, 11, 12, 15]).
Following work by Boppana [2] on a similar random
model (for unweighted graphs), we can deduce that
w.h.p. the maximal cut of graphs from this distribu-
tion can be found efficiently:

Theorem A.1. Let P be a distribution with bounded
support, expectation µ and variance σ2. There exists
a polynomial time algorithm that w.h.p. solves Max-
Cut for G ∈ 𝔾(n, P, γ), when γ = 1 + Ω(

√
logn
n ).

The theorem follows from Lemma 4.2 and the fol-
lowing one, which is an easy consequence of [2]:

Lemma A.1. Let P be a distribution with bounded
support, expectation µ and variance σ2. Let G ∈
𝔾(n, P, γ), and S the subset chosen in the generat-
ing G. Let mc ∈ {−1, 1}n be the indicator vector of
the cut (S, S̄). Let D be the diagonal matrix defined
by Di,i = mc W mc. If γ ≥ 1 + Ω(

√
logn
n ), then

w.h.p.:
1. mc is the indicator vector of the maximal cut in
G.
2. W +D is positive semi-definite.
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