
Innovations in Computer Science 2010

A New Approximation Technique for Resource-Allocation
Problems

Barna Saha1 ∗ Aravind Srinivasan1 †
1University of Maryland, College Park, MD 20742, USA

barna@cs.umd.edu srin@cs.umd.edu

Abstract: We develop a rounding method based on random walks in polytopes, which leads to improved
approximation algorithms and integrality gaps for several assignment problems that arise in resource allocation
and scheduling. In particular, it generalizes the work of Shmoys & Tardos on the generalized assignment
problem in two different directions, where the machines have hard capacities, and where some jobs can be
dropped. We also outline possible applications and connections of this methodology to discrepancy theory and
iterated rounding.

Keywords: Scheduling; rounding; approximation algorithms; integrality gap

1 Introduction
The “relax-and-round” paradigm is a well-known

approach in combinatorial optimization. Given an in-
stance of an optimization problem, we enlarge the set
of feasible solutions I to some set I ′ ⊃ I – often the
linear-programming (LP) relaxation of the problem;
we then map an (efficiently computed, optimal) so-
lution x∗ ∈ I ′ to some “nearby” x ∈ I and prove
that x is near-optimal in I. This second “round-
ing” step is often a crucial ingredient, and many gen-
eral techniques have been developed for it. In this
work, we present a new rounding methodology which
leads to several improved approximation algorithms in
scheduling, and which, as we explain, appears to have
connections and applications to other techniques and
problems, respectively.

We next present background on (randomized)
rounding and a fundamental scheduling problem, be-
fore describing our contribution.

Our work generalizes various dependent random-
ized rounding techniques that have been developed
over the past decade or so. Recall that in random-
ized rounding, we use randomization to map x∗ =
(x∗1, x∗2, . . . , x∗n) back to some x = (x1, x2, . . . , xn)
[39]. Typically, we choose a value α that is problem-
specific, and, independently for each i, define xi to be
1 with probability αx∗i , and to be 0 with the comple-
mentary probability of 1 − αx∗i . Independence can,
∗Dept. of Computer Science, University of Maryland, Col-

lege Park, MD 20742. Research supported by NSF Award NSF
CCF-0728839.
†Dept. of Computer Science and Institute for Advanced

Computer Studies, University of Maryland, College Park, MD
20742. Supported in part by NSF ITR Award CNS-0426683
and NSF Award CNS-0626636.

however, lead to noticeable deviations from the mean
for random variables that are required to be very close
to (or even be equal to) their mean. A fruitful idea de-
veloped in [27, 32, 45] is to carefully introduce depen-
dencies into the rounding process: in particular, some
sums of random variables are held fixed with prob-
ability one, while still retaining randomness in the
individual variables and guaranteeing certain types
of negative-correlation properties among them. See
[1] for a related deterministic approach that precedes
these works. These dependent-rounding approaches
lead to numerous improved approximation algorithms
in scheduling and packet-routing [1, 27, 32, 45].

We now introduce a fundamental scheduling model,
which has spurred many advances and applica-
tions in combinatorial optimization, including linear-
, quadratic- & convex-programming relaxations and
new rounding approaches [6, 8, 10, 15, 21, 29, 32, 34,
41, 43]. This model, scheduling with unrelated paral-
lel machines (UPM) – and its relatives – play a key
role in this work. Herein, we are given a set J of n
jobs, a setM of m machines, and non-negative values
pi,j (i ∈ M, j ∈ J): each job j has to be assigned
to some machine, and assigning it to machine i will
impose a processing time of pi,j on machine i. (The
word “unrelated” arises from the fact that there may
be no pattern among the given numbers pi,j .) Vari-
ants such as the type of objective function(s) to be
optimized in such an assignment, whether there is an
additional “cost-function”, whether a few jobs can be
dropped, and situations where there are release dates
for, and precedence constraints among, the jobs, lead
to a rich spectrum of problems and techniques. We
now briefly discuss two such highly-impactful results

342

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

[34, 41]. The primary UPM objective in these works
is to minimize the makespan – the maximum total
load on any machine. It is shown in [34] that this
problem can be approximated to within a factor of 2;
furthermore, even some natural special cases cannot
be approximated better than 1.5 unless P = NP [34].
Despite much effort, these bounds have not been im-
proved. The work of [41] builds on the upper-bound
of [34] to consider the generalized assignment problem
(GAP) where we incur a cost ci,j if we schedule job j
on machine i; a simultaneous (2, 1)–approximation for
the (makespan, total cost)-pair is developed in [41],
leading to numerous applications (see, e.g., [2, 17]).

We generalize the methods of [1, 27, 31, 32, 45],
via a type of random walk toward a vertex of the
underlying polytope that we outline next. We then
present several applications in scheduling and bipar-
tite matching through problem-specific specializations
of this approach, and discuss further prospects for this
methodology.

The rounding approaches of [1, 27, 31, 45] are gen-
eralized to linear systems as follows in [32]. Suppose
we have an n-dimensional constraint system Ax ≤ b
with the additional constraints that x ∈ [0, 1]n. This
will often be a LP-relaxation, which we aim to round
to some y ∈ {0, 1}n such that some constraints in
“Ay ≤ b” hold with probability one, while the rest
are violated “a little” (with high probability). Given
some x ∈ [0, 1]n, the rounding approach of [32] is as
follows. First, we assume without loss of generality
that x ∈ (0, 1)n: those xj that get rounded to 0 or 1
at some point, are held fixed from then on. Next, we
“judiciously” drop some of the constraints in “Ax ≤ b”
until the number of constraints becomes smaller than
n, thus making the system linearly-dependent – lead-
ing to the efficient computation of an r ∈ �n that is
in the nullspace of this reduced system. We then com-
pute positive scalars α and β such that x1 := x+ αr
and x2 := x − βr both lie in [0, 1]n, and both have
at least one component lying in {0, 1}; we then up-
date x to a random Y as: Y := x1 with probabil-
ity β/(α + β), and Y := x2 with the complementary
probability α/(α+β). Thus we have rounded at least
one further component of x, and also have the useful
property that for all j, E[Yj] = xj . Different ways of
conducting the “judicious” reduction lead to a variety
of improved scheduling algorithms in [32]. The setting
of [27, 45] on bipartite b-matchings can be interpreted
in this framework.

We further generalize the above-sketched approach
of [32]. Suppose we are given a polytope P in n di-
mensions, and a non-vertex point x belonging to P .
An appropriate basic-feasible solution will of course

lead us to a vertex of P , but we approach (not nec-
essarily reach) a vertex of P by a random walk as
follows. Let C denote the set of constraints defining
P which are satisfied tightly (i.e., with equality) by
x. Then, note that there is a non-empty linear sub-
space S of �n such that for any nonzero r ∈ S, we can
travel up to some strictly-positive distance f(r) along
r starting from x, while staying in P and continuing
to satisfy all constraints in C tightly. Our broad ap-
proach to conduct a random move Y := x + R by
choosing an appropriately random R from S, such
that the property “E[Yj] = xj” of the previous para-
graph still holds. In particular, let RandMove(x,P)
– or simply RandMove(x) if P is understood – be as
follows. Choose a nonzero r ∈ S arbitrarily, and set
Y := x+f(r)r with probability f(−r)/(f(r)+f(−r)),
and Y := x− f(−r)r with the complementary proba-
bility of f(r)/(f(r) + f(−r)). Note that if we repeat
RandMove, we obtain a random walk that finally
leads us to a vertex of P ; the high-level idea is to in-
tersperse this walk with the idea of “judiciously drop-
ping some constraints” from the previous paragraph,
as well as combining certain constraints together into
one. Three major differences from [32] are: (a) the
care given to the tight constraints C, (b) the choice
of which constraint to drop being based on C, and
(c) clubbing some constraints into one. As discussed
next, this recipe appears fruitful in a number of direc-
tions in scheduling, and as a new rounding technique
in general.

Capacity constraints on machines, random matchings
with sharp tail bounds. Handling “hard capacities” –
those that cannot be violated – is generally tricky in
various settings, including facility-location and other
covering problems [19, 26, 36]. Motivated by problems
in crew-scheduling [22, 40] and by the fact that servers
have a limit on how many jobs can be assigned to
them, the natural question of scheduling with a hard
capacity-constraint of “at most bi jobs to be scheduled
on each machine i” has been studied in [18, 48, 50–
52]. Most recently, the work of [18] has shown that
this problem can be approximated to within a factor
of 3 in the special case where the machines are iden-
tical (job j has processing time pj on any machine).
In § 2, we use our random-walk approach to general-
ize this to the setting of GAP and obtain the GAP
bounds of [41] – i.e., approximation ratios of 2 and 1
for the makespan and cost respectively, while satisfy-
ing the capacity constraints: the improvements are in
the more-general scheduling model, adding the cost
constraint, and in the approximation ratio. We an-
ticipate that such a capacity-sensitive generalization
of [41] would lead to improved approximation algo-

343

B. SAHA AND A. SRINIVASAN

rithms for several applications of GAP, and present
one such in Section 5.

Theorem 1 generalizes such capacitated problems
to random bipartite (b-)matchings with target de-
gree bounds and sharp tail bounds for given linear
functions; see [23] to applications to models for com-
plex networks. Recall that a (b)-matching is a sub-
graph in which every vertex v has degree at most
b(v). Given a fractional (b)-matching x in a bipartite
graph G = (J,M,E) of N vertices and a collection
of k linear functions {fi} of x, many works have con-
sidered the problem of constructing (b-)matchings X
such that fi(X) is “close” to fi(x) simultaneously for
each i [3, 27, 28, 38]. The works [28, 38] focus on
the case of constant k; those of [3, 27] consider gen-
eral k, and require the usual “discrepancy” term of
Ω(
√
fi(x) logN) in |fi(X) − fi(x)| for most/all i; in

a few cases, o(N) vertices will have to remain un-
matched also. In contrast, Theorem 1 shows that
if there is one structured objective function fi with
bounded coefficients associated with each i ∈M , then
in fact all the |fi(X) − fi(x)| can be bounded inde-
pendent of N . This appears to be the first such result
here, and helps with equitable max-min fair alloca-
tions as discussed below.
Scheduling with outliers: makespan and fairness.
Note that the (2, 1) bicriteria approximation that we
obtain for GAP above, generalizes the results of [41].
We now present such a generalization in another di-
rection: that of “outliers” in scheduling [29]. For
instance, suppose in the “processing times pi,j and
costs ci,j” setting of GAP, we also have a profit πj for
choosing to schedule each job j. Given a “hard” tar-
get profit Π, target makespan T and total cost C,
the LP-rounding method of [29] either proves that
these targets are not simultaneously achievable, or
constructs a schedule with values (Π, 3T,C(1+ ε)) for
any constant ε > 0. Using our rounding approach, we
improve this to (Π, (2 + ε)T,C(1 + ε)) in § 3. (The
factors of ε in the cost are required due to the hard-
ness of knapsack [29].) Also, fairness is a fundamental
issue in dealing with outliers: e.g., in repeated runs
of such algorithms, we may not desire long starvation
of individual job(s) in sacrifice to a global objective
function. Theorem 7 accommodates fairness in the
form of scheduling-probabilities for the jobs that can
be part of the input.
Max-Min Fair Allocation. This problem, also known
as the Santa Claus problem, is the max-min version of
UPM, where we aim to maximize the minimum “load”
(viewed as utility) on the machines; it has received a
good deal of attention recently [4, 5, 8, 10, 15, 24]. We
are able to employ dependent randomized rounding

to near-optimally determine the integrality gap of a
well-studied LP relaxation. Also, Theorem 1 lets us
generalize a result of [14] on max-min fairness to the
setting of equitable partitioning of the jobs; see § 4.
Directions for the future: some potential con-
nections and applications. Distributions on struc-
tured matchings in bipartite graphs is a topic that
models many scenarios in discrete optimization, and
we view our work as a useful contribution to it. We
explore further applications and connections in § 6. A
general question involving “rounding well” is the lat-
tice approximation problem [39]: given A ∈ {0, 1}m×n
and p ∈ [0, 1]n, we want a q ∈ {0, 1}n such that ‖A ·
(q−p)‖∞ is “small”; the linear discrepancy of A is de-
fined to be lindisc(A) = maxp∈[0,1]n minq∈{0,1}n ‖A ·
(q − p)‖∞. The field of combinatorial discrepancy
theory [13] has developed several classical results
that bound lindisc(A) for various matrix families A;
column-sparse matrices have received much attention
in this regard. Section 6 discusses a concrete approach
to use our method for the famous Beck-Fiala con-
jecture on the discrepancy of column-sparse matrices
[12], in the setting of random matrices. § 6 also sug-
gests that there may be deeper connections to iterated
rounding, a fruitful approach in approximation algo-
rithms [25, 30, 33, 42, 49]. We view our approach
as having broader connections/applications (e.g., to
open problems including capacitated facility location
[36]), and are studying these directions.

2 Random Matchings with Linear
Constraints, and GAP with Capac-
ity Constraints

We develop an efficient scheme to generate random
subgraphs of bipartite graphs that satisfy hard degree-
constraints and near-optimally satisfy a collection of
linear constraints:

Theorem 1 Let G = (J,M,E) be a bipartite graph
with “jobs” J and “machines” M . Let F be the col-
lection of edge-indexed vectors y (with yi,j denoting
ye where e = (i, j) ∈ E). Suppose we are given:
(i) an integer requirement rj for each j ∈ J and
an integer capacity bi for each i ∈ M ; (ii) for each
i ∈ M , a linear objective function fi : F → � given
by fi(y) =

∑
j: (i,j)∈E pi,jyi,j such that 0 ≤ pi,j ≤ �i

for each j, and (iii) a vector x ∈ F with xe ∈ [0, 1]
for each e. Then, we can efficiently construct a ran-
dom subgraph of G given by a binary vector X ∈ F ,
such that: (a) with probability one, each j ∈ J has
degree at least rj , each i ∈ M has degree at most bi,
and |fi(X) − fi(x)| < �i ∀i; and (b) for all e ∈ E,
E
[
Xe
]

= xe.

344

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

We will now prove an important special case of The-
orem 1: GAP with individual capacity constraints on
each machine. This special case captures much of the
essence of Theorem 1; the full proof of Theorem 1 is
deferred to the final version of this work. The capac-
ity constraint specifies the maximum number of jobs
that can be scheduled on any machine, and is a hard
constraint. Formally the problem is as follows, where
xi,j is the indicator variable for job j being scheduled
on machine i. Given m machines and n jobs, where
job j requires a processing time of pi,j in machine i
and incurs a cost of ci,j if assigned to i, the goal is to
minimize the makespan T = maxi

∑
j xi,jpi,j , subject

to the constraint that the total cost
∑
i,j xi,jci,j is at

most C and for each machine i,
∑
j xi,j ≤ bi. C is the

given upper bound on total cost and bi is the capacity
of machine i, that must be obeyed.

Our main contribution here is an efficient algorithm
Sched-Cap that has the following guarantee, gener-
alizing the GAP bounds of [41]:

Theorem 2 There is an efficient algorithm Sched-
Cap that returns a schedule maintaining all the ca-
pacity constraints, of cost at most C and makespan
at most 2T , where T is the optimal makespan with
cost C that satisfies the capacity constraints.

We guess the optimum makespan T by binary
search as in [34]. If pi,j > T , xi,j is set to 0. The
solution to the following integer program gives the
optimum schedule:∑

i,j

ci,jxi,j ≤ C (Cost)

∑
i,j

xi,j = 1 ∀j (Assign)

∑
j

pi,jxi,j ≤ T ∀i (Load)

∑
j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j
xi,j = 0 if pi,j > T

We relax the constraint “xi,j ∈ {0, 1} ∀(i, j)” to
“xi,j ∈ [0, 1] ∀(i, j)” to obtain the LP relaxation LP-
Cap. We solve the LP to obtain the optimum LP
solution x∗; we next show how Sched-Cap rounds
x∗ to obtain an integral solution within the approxi-
mation guarantee.

Note that x∗i,j ∈ [0, 1] denotes the “fraction” of job
j assigned to machine i. Initialize X = x∗. The algo-
rithm is composed of several iterations. The random

value of the assignment-vector X at the end of iter-
ation h of the overall algorithm is denoted by Xh.
Each iteration h conducts a randomized update using
the RandMove on the polytope of a linear system
constructed from a subset of the constraints of LP-
Cap. Therefore, by induction on h, we will have for
all (i, j, h) that E

[
Xhi,j
]

= x∗i,j .
Let J and M denote the set of jobs and machines,

respectively. Suppose we are at the beginning of some
iteration (h+ 1) of the overall algorithm: we are cur-
rently looking at the values Xhi,j . We will maintain
four invariants:
(I1) Once a variable xi,j gets assigned to 0 or 1, it is

never changed;
(I2) The constraints (Assign) always hold; and
(I3) Once a constraint in (Capacity) becomes tight,

it remains tight.
(IV) Once a constraint is dropped in some iteration,

it is never reinstated.
Iteration (h+1) of Sched-Cap consists of three main
steps:
1. Since we aim to maintain (I1), let us remove all
Xhi,j ∈ {0, 1}; i.e., we project Xh to those co-ordinates
(i, j) for which Xhi,j ∈ (0, 1), to obtain the current
vector Y of “floating” (to-be-rounded) variables; let
S ≡ (AhY = uh) denote the current linear system
that represents LP-Cap. (Ah is some matrix and uh
is a vector; we avoid using “Sh” to simplify notation.)
In particular, the “capacity” of machine i in S is its
residual capacity b′i, i.e., bi minus the number of jobs
that have been permanently assigned to i thus far.
2. Let Y ∈ �v for some v; note that Y ∈ (0, 1)v. Let
Mk denote the set of all machines i for which exactly
k of the values Yi,j are positive. We will now drop
some of the constraints in S:
(D1) for each i ∈M1, we drop its load and capacity

constraints from S;
(D2) for each i ∈ (M2 ∪M3) for which both its load

and capacity constraints are tight in S, we drop
its load constraint from S.

3. Let P denote the polytope defined by this reduced
system of constraints. A key claim that is proven in
Lemma 3 below is that Y is not a vertex of P . We
now invoke RandMove(Y,P); this is allowable if Y
is indeed not a vertex of P .
The above three steps complete iteration (h+ 1).
It is not hard to verify that the invariants (I1)-(I4)
hold true (though the fact that we drop the all-
important capacity constraint for machines i ∈ M1
may look bothersome, a moment’s reflection shows
that such a machine cannot have a tight capacity-
constraint since its sole relevant job j has value Yi,j ∈

345

B. SAHA AND A. SRINIVASAN

(0, 1)). Since we make at least one further constraint
tight via RandMove in each iteration, invariant (I4)
shows that we terminate, and that the number of it-
erations is at most the initial number of constraints.
Let us next present Lemma 3, a key lemma:

Lemma 3 In no iteration is Y a vertex of the current
polytope P .

Proof. Suppose that in a particular iteration, Y
is a vertex of P . Fix the notation v, Mk etc. w.r.t.
this iteration; let mk = |Mk|, and let n′ denote the
remaining number of jobs that are yet to be assigned
permanently to a machine. Let us lower- and upper-
bound the number of variables v. On the one hand, we
have v =

∑
k≥1 k · mk, by definition of the sets Mk;

since each remaining job j contributes at least two
variables (co-ordinates for Y), we also have v ≥ 2n′.
Thus we get

v ≥ n′ +
∑
k≥1

(k/2) ·mk. (1)

On the other hand, since Y has been assumed to be
a vertex of P , the number t of constraints in P that
are satisfied tightly by Y , must be at least v. How
large can t be? Each current job contributes one (As-
sign) constraint to t; by our “dropping constraints”
steps (D1) and (D2) above, the number of tight con-
straints (“load” and/or “capacity”) contributed by the
machines is at most m2 +m3 +

∑
k≥4 2mk. Thus we

have
v ≤ t ≤ n′ +m2 +m3 +

∑
k≥4

2mk. (2)

Comparison of (1) and (2) and a moment’s reflec-
tion shows that such a situation is possible only if: (i)
m1 = m3 = 0 and m5 = m6 = · · · = 0; (ii) the capac-
ity constraints are tight for all machines in M2 ∪M4
– i.e., for all machines; and (iii) t = v. However, in
such a situation, the t constraints in P constitute the
tight assignment constraints for the jobs and the tight
capacity constraints for the machines, and are hence
linearly dependent (since the total assignment “ema-
nating from” the jobs must equal the total assignment
“arriving into” the machines). Thus we reach a con-
tradiction, and hence Y is not a vertex of P .

We next show that the final makespan is at most
2T with probability one:

Lemma 4 Let X denote the final rounded vector.
Algorithm Sched-Cap returns a schedule, where
with probability one: (i) all capacity-constraints
on the machines are satisfied, and (ii) for all i,∑
j∈J Xi.jpi,j <

∑
j x
∗
i,jpi,j + maxj∈J: x∗

i,j
∈(0,1)pi,j .

Proof. Part (i) mostly follows from the fact that we
never drop any capacity constraint; the only care to
be taken is for machines i that end up inM1 and hence
have their capacity-constraint dropped. However, as
argued soon after the description of the three steps of
an iteration, note that such a machine cannot have a
tight capacity-constraint when such a constraint was
dropped; hence, even if the remaining job j got as-
signed finally to i, its capacity constraint cannot be
violated.

Let us now prove (ii). Fix a machine i. If at all its
load-constraint was dropped, it must be when i ended
up in M1,M2 or M3. The case of M1 is argued as in
the previous paragraph. So suppose i ∈ M� for some
� ∈ {2, 3} when its load constraint got dropped; we
know from (I3) and (D2) that its capacity-constraint
must be tight at some integral value u at that point,
and that this capacity-constraint was preserved until
the end. Let us first consider the case � = 2; since Y ∈
(0, 1)v, the only possibility is that u = 1. Thus, the
two jobs fractionally assigned on i at that point have
processing times (p1, p2) and fractional assignments
(y1, y2) on i, where 0 ≤ p1, p2 ≤ T , and 0 < y1, y2 < 1
with y1 + y2 = c = 1. We know from (I3) that at
the end, the assignment vector X will have exactly
one of X1 and X2 being one (with the other being 0).
Simple algebra now shows that p1X1 +p2X2 < p1y1 +
p2y2 + max{p1, p2} as required. Next suppose � = 3;
we must have c = 1 or 2 here. Let us just consider
the case c = 2; the case of c = 1 is similar. Here
again, simple algebra yields that if 0 ≤ p1, p2, p3 ≤ T
and 0 < y1, y2, y3 < 1 with y1 + y2 + y3 = c = 2,
then for any binary vector (X1, X2, X3) of Hamming
weight c = 2, p1X1 + p2X2 + p3X3 < p1y1 + p2y2 +
p3y3 + max{p1, p2, p3}.

Finally we have the following lemma.

Lemma 5 Algorithm Sched-Cap can be derandom-
ized to create a schedule of cost at most C.

Proof. Let Xhi,j denote the value of xi,j at iteration
h. We know for all i, j, h, E[Xhi,j] = x∗i,j , where x∗i,j is
solution of LP-Cap. Therefore, at the end, we have
that the total expected cost incurred is C. The pro-
cedure can be derandomized directly by the method
of conditional expectation, giving an 1-approximation
to cost.

Lemmas 4 and 5 yield Theorem 2.

3 Scheduling with Outliers
In this section, we consider GAP with outliers and

with a hard profit constraint [29]. Formally, the prob-

346

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

lem is as follows, where xi,j is the indicator variable
for job j to be scheduled on machine i. Given m ma-
chines and n jobs, where job j requires processing time
of pi,j in machine i, incurs a cost of ci,j if assigned to i
and provides a profit of πj if scheduled, the goal is to
minimize the make-span, T = maxi

∑
j xi,jpi,j , sub-

ject to the constraint that the total cost
∑
i,j xi,jci,j

is at most C and total profit
∑
j πj
∑
i xi,j is at least

Π.
Our main contribution here is the following:

Theorem 6 For any constant ε > 0, there is an effi-
cient algorithm Sched-Outlier that returns a sched-
ule of profit at least Π, cost at most C(1 + ε) and
makespan at most (2 + ε)T , where T is the optimal
makespan with cost C and profit Π.

Note that this is an improvement over the work of
[29], that constructs a schedule with makespan 3T
with profit Π and cost C(1 + ε). In addition, our ap-
proach also accommodates fairness, a basic require-
ment in dealing with outliers, especially when prob-
lems have to be run repeatedly. We formulate fairness
via stochastic programs that specify for each job j, a
lower-bound rj on the probability that it gets sched-
uled. We adapt our approach to honor such require-
ments:

Theorem 7 There is an efficient randomized algo-
rithm that returns a schedule of profit at least Π, ex-
pected cost at most 2C and makespan at most 3T
and guarantees that for each job j, it is scheduled
with probability rj , where T is the optimal expected
makespan with expected cost C and expected profit
Π. If the fairness guarantee on any one job can be
relaxed, then for every fixed ε > 0, there is an effi-
cient algorithm to construct a schedule that has profit
at least Π, expected cost at most C(1 + 1/ε) and
makespan at most (2 + ε)T .

We defer the proof of Theorem 7 to the full ver-
sion, and focus on Theorem 6. Guess the optimum
makespan T by binary search as in [34]. If pi,j > T ,
xi,j is set to 0. We guess all assignments (i, j) where
ci,j > ε

′C, with ε′ = ε2. Any valid schedule can sched-
ule at most 1/ε′ pairs with assignment costs higher
than ε′C; since ε′ is a constant, this guessing can be
done in polynomial time. For all (i, j) with ci,j > ε′C,
let Gi,j ∈ {0, 1} be a correct guessed assignment. The
solution to the following integer program then gives
an optimal solution:

∑
i,j

ci,jxi,j ≤ C (Cost)

∑
i

xi,j = yj ∀j (Assign)

∑
j

pi,jxi,j ≤ T ∀i (Load)

∑
j

πjyj ≥ Π (Profit)

xi,j ∈ {0, 1} ∀i, j; yj ∈ {0, 1} ∀j
xi,j = 0 if pi,j > T
xi,j = Gi,j ∀(i, j) such that ci,j > ε′C

We relax the constraint “xi,j ∈ {0, 1} and yj ∈
{0, 1}” to “xi,j ∈ [0, 1] and yj ∈ [0, 1]” to obtain the
LP relaxation LP-Out. We solve the LP to obtain an
optimal LP solution x∗, y∗; we next show how Sched-
Outlier rounds x∗, y∗ to obtain the claimed approx-
imation.

Note that x∗i,j ∈ [0, 1] denotes the fraction of job j
assigned to machine i in x∗. Initially,

∑
i x
∗
i,j = y∗j .

Initialize X = x∗. The algorithm is composed of
several iterations; the random values at the end of
iteration h of the overall algorithm are denoted by
Xh. (Since yj is given by the equality

∑
i xi,j , Xh

is effectively the set of variables.) Each iteration h
(except perhaps the last one) conducts a randomized
update using RandMove on a suitable polytope con-
structed from a subset of the constraints of LP-Out.
Therefore, for all h except perhaps the last, we have
E
[
Xhi,j
]

= x∗i,j . A variable Xhi,j is said to be float-
ing if it lies in (0, 1), and a job is floating if it is not
yet finally assigned. The subgraph of (J,M,E) com-
posed of the floating edges (i, j), naturally suggests
the following notation at any point of time: machines
of “degree” k in an iteration are those with exactly
k floating jobs assigned fractionally, and jobs of “de-
gree” k are those assigned fractionally to exactly k
machines in iteration h. Note that since we allow
yj < 1, there can exist singleton (i.e., degree-1) jobs
which are floating.

Suppose we are at the beginning of some iteration
(h + 1) of the overall algorithm; so we are currently
looking at the values Xhi,j . We will maintain the fol-
lowing invariants:
(I1’) Once a variable xi,j gets assigned to 0 or 1, it

is never changed;
(I2’) If j is not a singleton, then

∑
i xi,j remains at

its initial value;
(I3’) The constraint (Profit) always holds;
(I4’) Once a constraint is dropped, it is never rein-

stated.

347

B. SAHA AND A. SRINIVASAN

Algorithm Sched-Outlier starts by initializing
with LP-Out. Iteration (h+1) consists of four major
steps.
1. Since we aim to maintain (I1’), we remove all
Xhi,j ∈ {0, 1}; i.e., we project Xh to those co-ordinates
(i, j) for which Xhi,j ∈ (0, 1), to obtain the current
vector Z of “floating” variables; let S ≡ (AhZ = uh)
denote the current linear system that represents LP-
Out. (Ah is some matrix and uh is a vector.)
2. Let Z ∈ �v for some v; note that Z ∈ (0, 1)v.
Let Mk and Nk denote the set of degree-k machines
and degree-k jobs respectively, with mk = |Mk| and
nk = |Nk|. We will now drop/replace some of the
constraints in S:
(D1’) for each i ∈ M1, we drop its load constraint

from S;
(D2’) for each i ∈ N1, we drop its assignment con-

straint from S; we include one profit constraint,∑
j∈N1
Zi,jπj =

∑
j∈N1
Xhi,jπj that replaces the

constraint (Profit). (Note that at this point, the
values Xhi,j are some constants.)

Thus, the assignment constraints of the singleton
jobs are replaced by one profit constraint.
3. If Z is a vertex of S then define fractional as-
signment of a machine i by hi =

∑
j∈J Zi,j . Define

a job j to be tight, if
∑
i∈M Zi,j = 1. Drop all as-

signment constraints of the nontight jobs and main-
tain a single profit constraint,

∑
j∈N1∪JN Zi,jπj =∑

j∈N1∪JN X
h
i,jπj , where JN are the nontight jobs.

If Z is not yet a vertex of the modified S, then
while there exists a machine i′ whose degree d sat-
isfies hi′ ≥ (d − 1 − ε), drop the load constraint on
machine i′.
4. Let P denote the polytope defined by this reduced
system of constraints. If Z is not a vertex of P , in-
voke RandMove(Z,P). Else, if there is a degree-3
machine with 1 singleton job, assign the singleton job
and the cheaper (less processing time) of the non-
singleton jobs to it. If there exist two singleton jobs,
then discard the one with less profit. Assign remain-
ing of the jobs in a way, so that each machine gets at
most one extra job.

We now prove a key lemma, which shows when
in step 4, Z can possibly be a vertex of the poly-
tope under consideration. Recall that in the bipartite
graph G = (J,M,E), we have in iteration (h+1) that
(i, j) ∈ E iff Xhi,j ∈ (0, 1). Any job or machine having
degree 0 is not part of G.

Lemma 8 Let m denote the number of machine-
nodes in G. If m ≥ 1

ε , then Z is not a vertex of
the current polytope.

Proof. Let us consider the different possible config-
urations of G, when Z becomes a vertex of the poly-
tope P at step 3. There are several cases to consider
depending on the number of singleton floating jobs in
G in that iteration.

Case 1: There is no singleton job: We have
n1 = 0. Then, the number of constraints in S is
EQ =

∑
k≥2mk+

∑
k≥2 nk. Also the number of float-

ing variables is v =
∑
k≥2 knk. Alternatively, v =∑

k≥1 kmk. Therefore, v =
∑
k≥2

k
2 (mk + nk) + m1

2 .
Z being a vertex of P , v ≤ EQ. Thus, we must have,
nk,mk = 0, ∀k ≥ 3 and m1 = 0. Hence every float-
ing machine has exactly two floating jobs assigned to
it and every floating job is assigned exactly to two
floating machines (Config-1 of Figure 1).

Case 2: There are at least 3 singleton jobs: We
have n1 ≥ 3. Then the number of linear constraints
is EQ =

∑
k≥2mk +

∑
k≥2 nk + 1. The last “1”

comes from considering one profit constraint for the
singleton jobs. The number of variables, v = n1

2 +∑
k≥2

k
2 (mk+nk)+ m1

2 ≥ 3
2 +
∑
k≥2

k
2 (mk+nk)+ m1

2 .
Hence the system is always underdetermined and Z
cannot be a vertex of P .

Case 3: There are exactly 2 singleton jobs: We
have n1 = 2. Following similar counting arguments,
we can show that each machine must have exactly
two floating jobs assigned to it and each job except
two is assigned to exactly two machines fractionally
(Config-2 of Figure 1).

Case 4: There is exactly 1 singleton job: We have
n1 = 1. Then EQ =

∑
k≥2mk +

∑
k≥2 nk + 1 and

v ≥ 1
2 +n2+ 3

2n3 +m1
2 +m2+ 3

2m3 +
∑
k≥4

k
2 (mk+nk).

If Z is a vertex of P , then v ≤ EQ. There are few
possible configurations that might arise in this case.

(i) Only one job of degree 3 and one job of degree 1.
All the other jobs have degree 2 and all the machines
have degree 2. We call this Config-3.

(ii) Only one machine of degree 3 and one job of
degree 1. The rest of the jobs and machines have
degree 2. We call this Config-4.

(iii) Only one machine of degree 1 and one job of
degree 1. The rest of the jobs and machines have
degree 2. We call this Config-5.

These configurations are shown in Fig. 1. Each
configuration can have arbitrary number of disjoint
cycles.

In any configuration, if there is a cycle with all
tight jobs, then there always exists a machine with
total fractional assignment 1 and hence its load con-
straint can always be dropped to make the system
underdetermined. So we assume there is no such cy-
cle in any configurations. Now suppose the algorithm
reaches Config-1. If there are two non-tight jobs,

348

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

Figure 1: Different configurations of machine-job bipartite graph at Step 3 and 4

then the system becomes underdetermined. There-
fore, there can be at most one nontight job and
only one cycle (say C) with that nontight job. Let
C have m machines and thus m jobs. Therefore,∑
i,j∈C xi,j ≥ m − 1. Thus there exists a machine,

such that the total fractional assignment of jobs on
that machine is ≥ m−1

m = 1 − 1/m. If m ≥ 1
ε , then

there exists a machine with total fractional assign-
ment ≥ (1− ε). Dropping the load constraint on that
machine makes the system underdetermined.

If the algorithm reaches Config-2, then all the jobs
must be tight for Z to be a vertex. If there are m ma-
chines, then the number of non-singleton jobs ism−1.
If xi1,j1 + xi2,j2 ≥ 1, then following similar averaging
argument as in Config-1, we can show the machine
with maximum fractional job assignment, must have
a total fractional assignment at least 1. Otherwise,
if m ≥ 1

ε , again the machine with maximum frac-
tional job assignment, must have a total fractional
assignment at least 1− ε. For Config-3 and 5, if Z is
a vertex of P , then all jobs must be tight and using
same argument, there exists a machine with fractional
assignment at least (1 − ε) if the algorithm reaches
Config -3 and there exists a machine with fractional
assignment 1, if the algorithm reaches Config-5.

If the algorithm reaches Config-4, then again all
jobs must be tight. If the degree-3 machine has frac-
tional assignment at least 2 − ε, then its load con-
straint can be dropped to make the system under-
determined. Otherwise, the total assignment to the
degree-2 machines from all the jobs in the cycle is at
least m − 2 + ε. Therefore, there exists at least one
degree-2 machine with fractional assignment at least

m−2+ε
m−1 = 1 − 1−ε

m−1 ≥ 1− ε, if m ≥ 1
ε . This completes

the proof.

We next show that the final profit is at least Π and
the final makespan is at most (2 + ε)T :

Lemma 9 Let X denote the final rounded vec-
tor. Algorithm Sched-Outlier returns a schedule,
where with probability one, (i) profit is at least Π,
(ii) for all i,

∑
j∈J Xi,jpi,j <

∑
j x
∗
i,jpi,j + (1 +

ε)maxj∈J: x∗
i,j
∈{0,1}pi,j .

Proof. (i) This essentially follows from the fact
that whenever assignment constraint on any job is
dropped, its profit constraint is included in the global
profit constraint of the system. At step 4, except for
one case (Config-2), all the jobs are always assigned,
so profit can not decrease in those cases. A single-
ton job (say j1) is dropped, only when G has two
singleton jobs j1, j2 fractionally assigned to i1 and i2
respectively, with total assignment xi1,j1 + xi2,j2 < 1.
Otherwise the system remains underdetermined from
Lemma 8. Since the job with higher profit is retained,
πj1xi1,j1 + πj2xi2,j2 ≤ max{πj1 , πj2}.

(ii) From Lemma 8 and (D1’), load constraints
are dropped from machines i ∈ M1 and might be
dropped from machine i ∈ M2 ∪ M3. For i ∈ M1,
only the remaining job j with Xhi,j > 0, can get fully
assigned to it. Hence for i ∈ M1, its total load is
bounded by

∑
j x
∗
i,jpi,j + maxj∈J:x∗i,j∈{0,1}pi,j. For

any machine i ∈ M2 ∪ M3, if their degree d (2 or
3) is such that, its fractional assignment is at least
d − 1 − ε, then by simple algebra, it can be shown
that for any such machine i, its total load is at most

349

B. SAHA AND A. SRINIVASAN

∑
j x
∗
i,jpi,j + (1 + ε)maxj∈J:x∗

i,j
∈{0,1}pi,j . For the re-

maining machines consider what happens at step 4.
Except when Config-4 is reached, any remaining ma-
chine i gets at most one extra job, and thus its total
load is bounded by

∑
j x
∗
i,jpi,j+maxj∈J: x∗i,j∈{0,1}pi,j .

When Config-4 is reached at step 4, if the degree-3
machine has a fractional assignment at most 1, then
for any value ofm, there will exist a degree-2 machine
whose fractional assignment is 1, giving a contradic-
tion. Hence, let j1, j2, j3 be the three jobs assigned
fractionally to the degree-3 machine i and let j3 be
the singleton job, and xi,j1 +xi,j2 > 1. If pi,j1 ≤ pi,j2 ,
then the degree-3 machine gets j1, j3. Else the degree-
3 machine gets j2, j3. The degree-3 machine gets 2
jobs, but its fractional assignment from j1 and j2 is
already at least 1. Since the job with less processing
time among j1 and j2 are assigned to i, its increase in
load can be at most

∑
j x
∗
i,jpi,j+maxj∈J: x∗i,j∈{0,1}pi,j .

Finally we have the following lemma.

Lemma 10 Algorithm Sched-Outlier can be deran-
domized to output a schedule of cost at most C(1+ε).

Proof. In all iterations h, except the last one, for
all i, j, E[Xhi,j] = x∗i,j , where x∗i,j is solution of LP-
Out. Therefore, before the last iteration, we have
that the total expected cost incurred is C. The pro-
cedure can be derandomized directly by the method
of conditional expectation, giving an 1-approximation
to cost, just before the last iteration. Now at the last
iteration, since at most 1

ε jobs are assigned and each
assignment requires at most ε′C = ε2C in cost, the to-
tal increase in cost is at most εC, giving the required
approximation.

Lemmas 9 and 10 yield Theorem 6.

4 Max-Min Fair Allocation
We now present our results for max-min fair allo-

cation [4, 5, 8, 14, 15]. There are m goods and k
persons. Each person i has a non-negative integer
valuation ui,j for good j. The valuation functions are
linear, i.e. ui,C =

∑
j∈C ui,j for any set of C goods.

The goal is to allocate each good to a person such that
the “least happy person is as happy as possible”: i.e.,
mini ui,C is maximized. Our algorithm is based upon
rounding the configuration LP which is described in
Subsection 4.1

Theorem 11 Given any feasible solution to the con-
figuration LP, it can be rounded to a feasible in-
teger solution such that every person gets at least

Θ(
√
k log k

log log k) fraction of the optimum utility with high
probability in polynomial time.

The approximation factor of O(
√
k log k

log log k) is an im-
provement of the previous work of [5], that achieved
an approximation factor of O(

√
k log3 k); our bound is

near-optimal since the integrality gap of the configu-
ration LP is Ω(

√
k) [8]. However, note that the recent

work of Chakrabarty, Chuzhoy and Khanna [20] has
improved the bound to mε. (Also note that m ≥ k.)
Our main point is to show the applicability of our
types of rounding approaches to this variation of the
problem as well.

In the context of fair allocation, an additional im-
portant criterion can be an equitable partitioning of
goods: we may impose an upper bound on the num-
ber of items a person might receive. For example, we
may want each person to receive at most �mk
 goods.
Theorem 1 leads to the following:

Theorem 12 Suppose, in max-min allocation, we
are given upper bounds ci on the number of items
that each person i can receive, in addition to the util-
ity values ui,j . Let T be the optimum max-min allo-
cation value that satisfies ci for all i. Then, we can
efficiently construct an allocation in which for each
person i the bound ci holds and she receives a total
utility of at least T −maxj ui,j .

This generalizes the result of [14], which yields the
“T −maxj ui,j” value when no bounds such as the ci
are given. To our knowledge, the results of [4, 5, 8,
15] do not carry over to the setting of such “fairness
bounds” ci.

We now describe the algorithm and the proof of
Theorem 11 in the next subsection. The major steps
of the algorithm are similar to [5], however within
each step the algorithm uses different rounding tech-
niques; and hence our analysis is completely different.
Rounding techniques are motivated by variants of the
dependent rounding method.

4.1 Algorithm for Max-Min Fair Alloca-
tion

We start by describing bipartite dependent rounding
[27], which is a special case of RandMove that we
have discussed so far.

4.1.1 Bipartite Dependent Rounding
Suppose G = (U, V,E) is a bipartite graph with U

and V being vertices in the two partitions and E being
the edges between them. The edges E are defined
by the vector x. If xi,j ∈ (0, 1), i ∈ U, j ∈ V , then
(i, j) ∈ E and vice-versa. The dependent rounding

350

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

algorithm chooses an even cycle C or a maximal path
P in G, and partitions the edges in C or P into two
matchingsM1 andM2. Then, two positive scalars α
and β are defined as follows:

α = min{η > 0 : ((∃(i, j) ∈M1 : xi,j + η = 1)∨
(∃(i, j) ∈ M2 : xi,j − η = 0))};

β = min{η > 0 : ((∃(i, j) ∈M1 : xi,j − η = 0)∨
(∃(i, j) ∈ M2 : xi,j + η = 1))};

Now with probability β
α+β , set

Yi,j = xi,j + α for all (i, j) ∈M1

and Yi,j = xi,j − α for all (i, j) ∈M2;

with complementary probability of α
α+β , set

Yi,j = xi,j − β for all (i, j) ∈M1

and Yi,j = xi,j + β for all (i, j) ∈M2;

The above rounding scheme satisfies the following
two properties, which are easy to verify:

∀ i, j, E
[
Yi,j
]

= xi,j (3)

∃ i, j, Yi,j ∈ {0, 1} (4)
If X denotes the final rounded variable, then for

any node v ∈ U ∨V ,∑
u∈U
∨
V

Xu,v ∈ {�
∑

u∈U
∨
V

xu,v�, �
∑

u∈U
∨
V

xu,v�}. (5)

4.1.2 Algorithm
Our algorithm is based upon rounding a configuration

linear program similar to [5, 8]. We guess the optimum
solution- value T , using binary search. There is a variable
xi,C for assigning a valid bundle C to person i. An item j
is said to be small for person i, if ui,j < Tλ , otherwise it is
said to be big. Here λ is the approximation ratio, which
will get fixed later. A configuration is a subset of items.
A configuration C is called valid for person i, if,
• ui,C ≥ T and all the items are small; or
• C contains only one item j and ui,j ≥ T

λ
, that is, j

is a big item for person i.
Let C(i, T) denote the set of all valid configurations corre-
sponding to person i with respect to T . The configuration
LP relaxation of the problem is as follows:

∀j :
∑
C�j

∑
i

xi,C ≤ 1 (6)

∀i :
∑

C∈C(i,T)

xi,C = 1

∀i, C : xi,C ≥ 0

Using an argument similar to [8], one can show that
if the above LP is feasible, then it is possible to find a
fractional allocation that provides a bundle with value at
least (1− ε)T for each person in polynomial time.

We define a weighted bipartite graph G, with the vertex
set, A

⋃
B corresponding to the persons and the items re-

spectively. There is an edge between a vertex correspond-
ing to person i ∈ A and item j ∈ B, if a configuration C
containing j is fractionally assigned to i. Define

wi,j =
∑
C�j
xi,C ,

i.e., wi,j is the fraction of item j that is allocated to person
i by the fractional solution of the LP. We know an item
j is big for person i, if ui,j ≥ T

λ
. In this case, the edge

(i, j) is called a matching edge. Otherwise it is called a
flow edge.

Let M and F represent the set of matching and flow
edges respectively. For each vertex v ∈ A⋃B, let mv
be the total fraction of the matching edges incident to it.
Also define fv = 1−mv. The main steps of the algorithm
are shown in Table 1.

Note that these steps are similar to that in [5], but the
rounding techniques within each step are different. The
rounding techniques are described next.

4.1.3 Finding a Random Matching
Consider the edges in M . Remove all the edges (i, j)

that have already been rounded to 0 or 1. Additionally
if an edge is rounded to 1, remove both i and j (person
i is satisfied as ui,j ≥ T

λ
). We know an edge (i, j) ∈ M

implies that ui,j ≥ T
λ

. Therefore, even if different items
have different utility, a person matched to any one item in
this stage has received at least T/λ utility. We initialize
for each (i, j) ∈M , yi,j = wi,j and modify the yi,j values
probabilistically in rounds using the approach described
in Subsubsection 4.1.1. If Yi,j denotes the final rounded
value, then ∀(i, j) by Property (3), E

[
Yi,j
]

= wi,j . This
gives the following corollary.

Corollary 13 The probability that a vertex v ∈ A⋃B
is saturated in the matching generated by the algorithm
is mv.

Proof. Let the edges e1, e2, ..el ∈ M
are incident on v. Then, Pr

[
v is saturated

]
=

Pr
[
∃ei, i ∈ [1, l] s.t v is matched with ei

]
=∑l

i=1 Pr
[
v is matched with ei

]
=
∑l
i=1 wi = mv

4.1.4 Allocating small bundles
Consider a person v, who is not saturated in the match-

ing: how much utility does this person v get ? From all
the bundles which are fractionally assigned to person v,
remove any item j, with mj ≥ 1− ε1 (ε1 to be fixed later).
Since the total sum of mj can be at most k (k = num-
ber of persons), there can be at most k

1−ε1 items in the
bundles with mj ≥ 1− ε1. Therefore the remaining items

351

B. SAHA AND A. SRINIVASAN

Main Steps of the Algorithm for Max-Min Fair Allocation
(1) Guess the value of the optimum solution T by doing a binary search. Solve LP (6).
Obtain the set M and mv, fv for each vertex v in G.

(2) Select a random matching from edges inM using the algorithm described in Subsubsec-
tion 4.1.3, such that for every v ∈ A∨B the probability that v is saturated by the matching
is mv = 1− fv.

(3) Let every person i who is not matched yet selects a bundle C of small goods with
probability xi,Cfi and claims the goods in that bundle, except those already assigned in the
previous step.

(4) For each good j claimed by several persons in the previous step, resolve the contention
by following the algorithm described in Subsubsection 4.1.5.

Table 1: High level description of the algorithm for max-min fair allocation

in the bundle have value fj ≥ ε1. Since bundles only
contain small items, and the total valuation of each bun-
dle (fractionally) is at least T , we have, after removing
the items with mj ≥ 1 − ε1, the remaining valuation is
at least

(
T − ε1k

1−ε1
T
λ

)
. Define a random variable Yv,j for

each remaining item such that,

Yv,j =

{
w′v,juv,j
T/λ

with probability fj
0 otherwise

(7)

Here w′v,j = wv,j
fv

. Since each person v is not saturated
by matching with probability 1 − mv = fv, each such
person v selects bundle C with probability xv,C/fv. Thus
each item j is selected with probability wv,j/fv = w′v,j .

Define Gv =
∑
j
Yv,j . Then T

λ
Gv is the total fractional

assignment to each person after step (3) and after doing
further processing as suggested in the beginning of this
subsubsection. We have,

E
[
Gv
]

=
∑
j

w′v,juv,jfj
T/λ

≥ ε1λ(1− ε1k

(1− ε1)λ
) (8)

Now we will show in Lemma 14 that Yv,j ’s are nega-
tively correlated. Therefore, applying Chernoff-Hoeffding
bound for negatively-correlated random variables [37], we
get

Pr
[
Gv ≤ (1− ε)E

[
Gv
]]
≤ exp(−E[Gv]ε2/3)

for any ε ∈ (0, 1).
Or we have,

Pr
[T
λ
Gv ≤ (1− ε)

∑
j

w′v,juv,jfj
]

≤ exp(−E
[
Gv
]
ε2/3)

Now substitute, ε1 =
√

log k
log log k

1√
k

and λ =

2
√
k
√

log k
log log k . We have,

Pr
[T
λ
Gv ≤ (1− ε)

∑
j

w′v,juv,jfj
]

≤ exp(−E
[
Gv
]
ε2/3)

≤ exp(− log k
2 log log k

ε2/3)

= Θ(log k
k

)

Therefore in this step, the net fractional utility assigned
to each person is ≥

√
log k

k log log k
T (1−ε)

2 , with probability
≥ 1−Θ(log k/k).

Now we prove that Yv,j ’s are negatively correlated.

Lemma 14 The random variables Yv,j , j = 1, 2, .., n as
defined in Equation (7) are negatively correlated.

Proof. Define an indicator random variable

Xj =
{

1 if j is saturated in the matching step
0 otherwise

We will show that ∀b ∈ {0, 1}, for any subset of jobs S,
Pr
[∧
j∈S(Xj = b)

]
≤ ∏

j∈S Pr
[
Xj = b

]
. This will imply

that the Yv,j ’s are negatively correlated.
Fix a subset of items J . Let b = 1 (the proof for b = 0 is

identical). Consider iteration h. Let Hhj =
∑
i
yhi,j , where

yhi,j denote the value of yi,j at the beginning of iteration
h. We will show,

∀i E
[∏
j∈J
Hhj
]
≤ E
[∏
j∈J
H

(h−1)
j

]
(9)

352

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

Thus we will have,

Pr
[∧
j∈J

(Xj = 1)
]

= E
[∏
j∈J
H
|E|+1
j

]
≤ E
[∏
j∈J
H1
j

]
=
∏
j∈J

∑
l

yi,j =
∏
j∈J

Pr
[
Xj = 1

]
Let us now prove (9) for a fixed i. In iteration i, exactly

one of the following three cases occur:
Case 1: All the jobs j ∈ J are internal nodes of the

maximal path. (If it is a cycle all the nodes are internal).
In this case, the value of Hhj ’s, j ∈ J , do not change.

Hence, E
[∏

j∈J H
h
j |Case 1

]
≤ E
[∏

j∈J H
(h−1)
j

]
.

Case 2: Exactly one job, say j1 ∈ J is the end point
of the maximal path considered in iteration h, or has its
value modified.

Let B(j1, α, β) denote the event that the job j1 has its
value modified in the following probabilistic way:

Hhj1 =

{
Hh−1
j1 + α with probability β

α+β
Hh−1
j1
− β with probability α

α+β

Thus,

E
[
Hhj1 |∀j ∈ J, Hh−1

j = aj ∧B(j1, α, β)
]

= aj1

Since the values of Hj , j �= j1 remains unchanged and the
above equation holds for any j1, α, β, we have the desired
result.

Case 3: Two jobs, say j1 and j2 are the end points of
the maximal path considered in iteration i, or have their
values modified.

See Event A of Lemma 2.2 of [27].

4.1.5 Contention Resolution
Consider the subgraph of the flow-graph in which an

edge between a person and an item remains if and only
if the item is claimed by the person in the previous step.
We showed each person has a net fractional utility of at
least T2

√
log k

k log log k (1−ε) = Θ(T
√

log k√
k log log k

) in this subgraph.
The weight on an edge between person v and item j in this
subgraph is w′v,j and the utility of an item j to person v
is uv,j . Now we again do a kind of dependent rounding on
this subgraph, where we additionally consider the utility
of the items while modifying the assignment values on the
edges. This is partly motivated by [46]. We remove all
(i, j) that have already been rounded to 0 or 1. Let F ′
be the current graph consisting of those w′i,j that lie in
(0, 1). Choose any maximal path P = (v0, v1, .., vs) or a
cycle C = (v0, v1, .., vs = v0). The current w′ value of an
edge et = (vt−1, vt) is denoted by yt, that is yt = w′t−1,t.

We will next choose the values z1, z2, .., zs either deter-
ministically or probabilistically, depending on whether a
cycle or a maximal path is chosen. We will update the w′
value of each edge et = (vt−1, vt) to yt + zt.

Suppose we have initialized some value for z1 and that
we have chosen the increments z1, z2, . . . , zt for some t ≥ 1.
Then the value zt+1 corresponding to the edge et+1 =
(vt, vt+1) is chosen as follows:
(PI) vt is an item, then vt+1 = −vt. (Each item is not

assigned more than once.)
(PII) vt is a person. Then choose zt+1 so that the utility

of wt remains unchanged. Set zt+1 =
−uvt,vt−1
uvt,vt+1

The vector z = (z1, z2, ..zs) is completely determined
by z1. We denote this by f(z).

Now let µ be the smallest positive value such that if we
get z1 = µ, then all the w′ values (after incrementing by
the vector z as specified above) stay in [0, 1], and at least
one of them becomes 0 or 1. Similarly, let γ be the smallest
value such that if we set z1 = −γ, then this rounding
progress property holds. Now when we are considering, a
maximal path, we choose the vector z as follows:
(RPI) with probability γ

µ+γ , let z = f(µ);
(RPII) with the complementary probability of µ

µ+γ , let
z = f(−γ).

Therefore in this case, if Z = (Z1, Z2, ..Zs) denote the
random vector z chosen in steps (RPI) and (RPII), the
choice of probabilities in (RPI) and (RPII) ensures that
E[Z1] = 0, and since the rest are functions of z1 alone,
E
[
Zt
]

= 0 for all t.
Now when we are considering a cycle, assume v0 is a

person. The assignment of zi values ensure all the ob-
jects in the cycle are assigned exactly once and utility of
all the persons except v0 remains unaffected. Now the
change in the value of zs is −z1 uv2,v1uv4,v3 ...uvs−1,vs−2

uv2,v3uv4,v5 ...uvs−1,vs
. If

uv2,v1uv4,v3 ...uvs−1,vs−2
uv2,v3uv4,v5 ...uvs−1,vs

> 1, we set z1 = −γ, else we set
z1 = µ. Therefore the utility of the person v0 can only
increase.

Let Y iv denote the utility assigned to person v (frac-
tional and integral) at the end of iteration i. The value
Y 0
v refers to the initial utilities in the flow-graph. Property

(PII) and deterministic rounding scheme while consider-
ing a cycle ensures that as long as a person has degree 2
in the flow-graph Y iv ≥ Y 0

v with probability 1. In partic-
ular if v never has degree 1, then its final utility is same
as its initial utility in the flow graph. Suppose the degree
of person v becomes 1 at some iteration i and let j be
its unique neighbor. Let β = uv,j and suppose, at the
end of the iteration i, the total already rounded utility on
person v and the value of w′v,j are α ≥ 0 and p ∈ (0, 1)
respectively. Note that j, α, β, p are all random variables
and that Y iv = α+ βp; so,

Pr
[
α+ βp ≥ Y 0

v

]
= 1

Fix any j, α, β, p such that α + βp ≥ Y 0
v . Induction

on the iterations show that the final utility of v is α with
probability (1 − p) and α + β with probability p. Thus
the expected utility is α+ βp, which is same as the initial
utility of T2

√
log k

k log log k .
In this process, there are some deterministic rounding

steps interleaved with randomized rounding. We can ig-

353

B. SAHA AND A. SRINIVASAN

nore the deterministic rounding steps, since they always
increase the utility. Define Xv,j = 1 if w′v,j > 0 and
j was given to v, else define it to 0. We can prove
similar to Lemma 14 that the variables Xv,j ’s are neg-
atively correlated. Now since utility of each item is at
most T

λ
, using the Chernoff-Hoeffding bounds for nega-

tive correlation [37], we get that the net utility is con-
centrated around its expected value with probability ≥
1− exp(−

T
2

√
log k

k log log k
T/λ

) > 1− log k
k

.
Therefore we get Theorem 11.

5 Designing Overlay Multicast Net-
works For Streaming

The work of [2] studies approximation algorithms for
designing a multicast overlay network. We first describe
the problem and state the results in [2] (Lemma 15 and
Lemma 16). Next, we show our main improvement in
Lemma 17.

The background text here is largely borrowed from [2].
An overlay network can be represented as a tripartite di-
graph N = (V,E). The nodes V are partitioned into
sets of entry points called sources (S), reflectors (R), and
edge-servers or sinks (D). There are multiple commodities
or streams, that must be routed from sources, via reflec-
tors, to the sinks that are designated to serve that stream
to end-users. Without loss of generality, we can assume
that each source holds a single stream. Now given a set
of streams and their respective edge-server destinations,
a cheapest possible overlay network must be constructed
subject to certain capacity, quality, and reliability require-
ments. There is a cost associated with usage of every link
and reflector. There are capacity constraints, especially on
the reflectors, that dictate the maximum total bandwidth
(in bits/sec) that the reflector is allowed to send. The
quality of a stream is directely related to whether or not
an edge-server is able to reconstruct the stream without
significant loss of accuracy. Therefore even though there is
some loss threshold associated with each stream, at each
edge-server only a maximum possible reconstruction-loss
is allowed. To ensure reliability, multiple copies of each
stream may be sent to the designated edge-servers.

All these requirements can be captured by an integer
program. Let us use indicator variable zi for building re-
flector i, yi,k for delivery of k-th stream to the i-th re-
flector and xi,j,k for delivering k-th stream to the j-th
sink through the i-th reflector. Fi denotes the fanout con-
straint for each reflector i ∈ R. Let px,y denote the failure
probability on any edge (source-reflector or reflector-sink).
We transform the probabilities into weights: wi,j,k =
− log (pk,i + pi,j − pk,ipi,j). Therefore, wi,j,k is the neg-
ative log of the probability of a commodity k failing to
reach sink j via reflector i. On the other hand, if φj,k is
the minimum required success probability for commodity
k to reach sink j, we instead use Wj,k = − log (1− φj,k).
Thus Wj,k denotes the negative log of maximum allowed
failure. ri is the cost for opening the reflector i and cx,y,k
is the cost for using the link (x, y) to send commodity k.

Thus we have the IP (see Table 2).
Constraints (10) and (11) are natural consistency re-

quirements; constraint (12) encodes the fanout restriction.
Constraint (13), the weight constraint, ensures quality and
reliability. Constraint (14) is the standard integrality-
constraint that will be relaxed to construct the LP re-
laxation.

There is an important stability requirement that is re-
ferred as color constraint in [2]. Reflectors are grouped
into m color classes, R = R1 ∪ R2 ∪ . . . ∪ Rm. We want
each group of reflectors to deliver not more than one copy
of a stream into a sink. This constraint translates to∑

i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (15)

Each group of reflectors can be thought to belong to
the same ISP. Thus we want to make sure that a client is
served only with one – the best – stream possible from a
certain ISP. This diversifies the stream distribution over
different ISPs and provides stability. If an ISP goes down,
still most of the sinks will be served. We refer the LP-
relaxation of integer program (Table 2) with the color
constraint (15) as LP-Color.

All of the above is from [2].
The work of [2] uses a two-step rounding procedure and

obtains the following guarantee.
First stage rounding: Rounds zi and yi,k for all i and
k to decide which reflector should be open and which
streams should be sent to a reflector. The results from
rounding stage 1 can be summarized in the following
lemma:

Lemma 15 ([2]) The first-stage rounding algorithm in-
curs a cost at most a factor of 64 log |D| higher than the op-
timum cost, and with high probability violates the weight
constraints by at most a factor of 1

4 and the fanout con-
straints by at most a factor of 2. Color constraints are all
satisfied.

By incurring a factor of Θ(logn) in the cost, the con-
stant factors losses in the weights and fanouts can be im-
proved.

Second stage rounding: Rounds xi,j,k’s using the open
reflectors and streams that are sent to different reflectors
in the first stage. The results in this stage can be summa-
rized as follows:

Lemma 16 ([2]) The second-stage rounding incurs a cost
at most a factor of 14 higher than the optimum cost and
violates each of fanout, color and weight constraint by at
most a factor of 7.

Our main contribution is an improvement of the second-
stage rounding through the use of repeated RandMove
and by judicious choices of constraints to drop. Let us
call the linear program that remains just at the end of
first stage LP-Color2. More precisely, we show:

354

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

min
∑
i∈R
rizi +

∑
i∈R

∑
k∈S
ck,i,kyi,k +

∑
i∈R

∑
k∈S

∑
j∈D
ci,j,kxi,j,k

s.t yk,i ≤ zi ∀i ∈ R, ∀k ∈ S (10)
xi,j,k ≤ yi,k ∀i ∈ R, ∀j ∈ D, ∀k ∈ S (11)∑
k∈S

∑
j∈D
xi,j,k ≤ Fizi ∀i ∈ R (12)

∑
i∈R
xi,j,kwi,j,k ≥Wj,k ∀j ∈ D, ∀k ∈ S (13)

xi,j,k ∈ {0, 1}, yi,k ∈ {0, 1}, zi ∈ {0, 1} (14)

Table 2: Integer Program for Overlay Multicast Network Design

Lemma 17 LP-Color2 can be efficiently rounded such
that cost and weight constraints are satisfied exactly,
fanout constraints are violated at most by additive 1 and
color constraints are violated at most by additive 3.

We defer the proof of the above lemma to the full ver-
sion.

6 Future Directions
We discuss two speculative directions related to our

rounding approach that appear promising.
Recall the notions of discrepancy and linear discrep-

ancy from the introduction. A well-known result here,
due to [12], is that if A is “t-bounded” (every column has
at most t nonzeroes), then lindisc(A) ≤ t; see [31] for a
closely-related result. These results have also helped in
the development of improved rounding-based approxima-
tion algorithms [9, 47]. A major open question from [12] is
whether lindisc(A) ≤ O(

√
t) for any t-bounded matrix A;

this, if true, would be best-possible. Ingenious melding of
randomized rounding, entropy-based arguments and the
pigeonhole principle have helped show that lindisc(A) ≤
O(
√
t log n) [11, 35, 44], improved further to O(

√
t log n)

in [7]. However, the number of columns n may not be
bounded as a function of t, and it would be very inter-
esting to even get some o(t) bound on lindisc(A), to start
with. We have preliminary ideas about using the random-
walks approach where the subspace S (that is orthogonal
to the set of tight constraints C in our random-walks ap-
proach) has “large” – Θ(n) – dimension. In a little more
detail, whereas the constraints for rows i of A are dropped
in [12] when there are at most t to-be-rounded variables
corresponding to the nonzero entries of row i, we propose
to do this dropping at some function such as c0t to-be-
rounded variables, for a large-enough constant c0 (instead
of at t). This approach seems promising as a first step, at
least for various models of random t-bounded matrices.

Second, there appears to be a deeper connection be-
tween various forms of dependent randomized rounding –
such as ours – and iterated rounding [25, 30, 33, 42, 49].
In particular: (i) the result that we improve upon in § 2

is based on iterated rounding [18]; (ii) certain “budgeted”
assignment problems that arise in keyword auctions give
the same results under iterated rounding [16] and weighted
dependent rounding [46]; and (iii) our ongoing work sug-
gests that our random-walk approach improves upon the
iterated-rounding-based work of [28] on bipartite match-
ings that are simultaneously “good” w.r.t. multiple linear
objectives (this is related to, but not implied by, The-
orem 1). We believe it would be very fruitful to un-
derstand possible deeper links between these two round-
ing approaches, and to develop common generalizations
thereof using such insight.

References
[1] A. Ageev and M. Sviridenko. Pipage rounding: a new

method of constructing algorithms with proven per-
formance guarantee. Journal of Combinatorial Opti-
mization, 8(3):307–328, 2004.

[2] K. Andreev, B. Maggs, A. Meyerson, and R. Sitara-
man. Designing overlay multicast networks for
streaming. In SPAA, pages 149–158, 2003.

[3] S. Arora, A. Frieze, and H. Kaplan. A new rounding
procedure for the assignment problem with applica-
tions to dense graph arrangement problems. Mathe-
matical Programming, pages 1–36, 2002.

[4] A. Asadpour, U. Feige, and A. Saberi. Santa Claus
meets Hypergraph Matchings. In Proc. APPROX-
RANDOM, pages 10–20, 2009.

[5] A. Asadpour and A. Saberi. An approximation algo-
rithm for max-min fair allocation of indivisible goods.
In STOC ’07: Proceedings of the thirty-ninth an-
nual ACM Symposium on Theory of computing, pages
114–121, 2007.

[6] Y. Azar and A. Epstein. Convex programming for
scheduling unrelated parallel machines. In Proc. of
the ACM Symposium on Theory of Computing, pages
331–337. ACM, 2005.

[7] W. Banaszczyk. Balancing vectors and gaussian mea-
sures of n-dimensional convex bodies. Random Struc-
tures & Algorithms, 12:351–360, 1998.

355

B. SAHA AND A. SRINIVASAN

[8] N. Bansal and M. Sviridenko. The Santa Claus prob-
lem. In STOC ’06: Proceedings of the Thirty-eighth
Annual ACM Symposium on Theory of Computing,
pages 31–40, 2006.

[9] A. Bar-Noy, S. Guha, J. (Seffi) Naor, and B. Schieber.
Multicasting in heterogeneous networks. In Proc.
ACM Symposium on Theory of Computing, pages
448–453, 1998.

[10] M. Bateni, M. Charikar, and V. Guruswami. Maxmin
allocation via degree lower-bounded arborescences.
In STOC ’09: Proceedings of the 41st annual ACM
Symposium on Theory of computing, pages 543–552,
2009.

[11] J. Beck. Roth’s estimate on the discrepancy of integer
sequences is nearly sharp. Combinatorica, 1:319–325,
1981.

[12] J. Beck and T. Fiala. “Integer-making” theorems.
Discrete Applied Mathematics, 3:1–8, 1981.

[13] J. Beck and V. T. Sós. Discrepancy theory, volume II,
chapter 26, pages 1405–1446. Elsevier Science B.V.
and the MIT Press, 1995.

[14] Ivona Bezáková and Varsha Dani. Allocating indivis-
ible goods. SIGecom Exch., 5(3):11–18, 2005.

[15] D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allo-
cating goods to maximize fairness. In FOCS ’09: 50th
Annual IEEE Symposium on Foundations of Com-
puter Science, 2009.

[16] D. Chakrabarty and G. Goel. On the Approxima-
bility of Budgeted Allocations and Improved Lower
Bounds for Submodular Welfare Maximization and
GAP. In FOCS, pages 687–696, 2008.

[17] Chandra Chekuri and Sanjeev Khanna. A polynomial
time approximation scheme for the multiple knapsack
problem. SIAM J. Comput., 35(3):713–728, 2005.

[18] Z. Chi, G. Wang, X. Liu, and J. Liu. Approximat-
ing scheduling machines with capacity constraints.
In FAW ’09: Proceedings of the Third International
Frontiers of Algorithmics Workshop, pages 283–292,
2009. Corrected version available as arXiv:0906.3056.

[19] J. Chuzhoy and J. (Seffi) Naor. Covering problems
with hard constraints. SIAM Journal on Computing,
36:498–515, 2006.

[20] Julia Chuzhoy and Paolo Codenotti. Resource mini-
mization job scheduling. In APPROX, 2009.

[21] T. Ebenlendr, M. Křćal, and J. Sgall. Graph balanc-
ing: a special case of scheduling unrelated parallel
machines. In SODA ’08: Proceedings of the Nine-
teenth annual ACM-SIAM Symposium on Discrete
Algorithms, pages 483–490, 2008.

[22] M. M. Etschmaier and D. F. X. Mathaisel. Airline
scheduling: An overview. Transportation Science,
19(2):127–138, 1985.

[23] S. Eubank, V. S. A. Kumar, M. V. Marathe, A. Srini-
vasan, and N. Wang. Structural and algorithmic
aspects of massive social networks. In ACM-SIAM
Symposium on Discrete Algorithms, pages 711–720,
2004.

[24] U. Feige. On allocations that maximize fairness.

In SODA ’08: Proceedings of the Nineteenth an-
nual ACM-SIAM Symposium on Discrete Algorithms,
pages 287–293, 2008.

[25] Lisa Fleischer, Kamal Jain, and David P. Williamson.
An iterative rounding 2-approximation algorithm for
the element connectivity problem. In FOCS’ 01: Pro-
ceedings of the 42nd Annual IEEE Symposium on
Foundations of Computer Science, pages 339–347,
2001.

[26] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and
A. Srinivasan. An improved approximation algorithm
for vertex cover with hard capacities. Journal of
Computer and System Sciences, 72:16–33, 2006.

[27] R. Gandhi, S. Khuller, S. Parthasarathy, and
A. Srinivasan. Dependent rounding and its appli-
cations to approximation algorithms. Journal of the
ACM, 53:324–360, 2006.

[28] F. Grandoni, R. Ravi, and M. Singh. Iterative round-
ing for multi-objective optimization problems. In
ESA ’09: Proceedings of the 17th Annual European
Symposium on Algorithms, 2009.

[29] A. Gupta, R. Krishnaswamy, A. Kumar, and
D. Segev. Scheduling with outliers. In
Proc. APPROX, 2009. Full version available as
arXiv:0906.2020.

[30] Kamal Jain. A factor 2 approximation algorithm for
the generalized steiner network problem. Combina-
torica, 21:39–60, 2001.

[31] R. M. Karp, F. T. Leighton, R. L. Rivest, C. D.
Thompson, U. V. Vazirani, and V. V. Vazirani.
Global wire routing in two-dimensional arrays. Al-
gorithmica, 2:113–129, 1987.

[32] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan
Parthasarathy, and Aravind Srinivasan. A unified ap-
proach to scheduling on unrelated parallel machines.
Journal of the ACM, 56(5), 2009.

[33] Lap Chi Lau, Joseph Naor, Mohammad R.
Salavatipour, and Mohit Singh. Survivable network
design with degree or order constraints. In STOC ’07:
Proceedings of the thirty-ninth annual ACM Sympo-
sium on Theory of computing, pages 651–660, 2007.

[34] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approx-
imation algorithms for scheduling unrelated parallel
machines. Mathematical Programming, 46:259–271,
1990.

[35] J. Matoušek and J. H. Spencer. Discrepancy in arith-
metic progressions. Journal of the American Mathe-
matical Society, 9:195–204, 1996.

[36] M. Pál, É. Tardos, and T. Wexler. Facility location
with nonuniform hard capacities. In Proc. Forty-
Second Annual Symposium on Foundations of Com-
puter Science, pages 329–338, 2001.

[37] A. Panconesi and A. Srinivasan. Randomized dis-
tributed edge coloring via an extension of the
chernoff-hoeffding bounds. SIAM J. Comput.,
26(2):350–368, 1997.

[38] C. H. Papadimitriou and M. Yannakakis. On the
approximability of trade-offs and optimal access of

356

A NEW APPROXIMATION TECHNIQUE FOR RESOURCE-ALLOCATION PROBLEMS

web sources. In FOCS ’00: Proceedings of the 41st
Annual Symposium on Foundations of Computer Sci-
ence, pages 86–92, 2000.

[39] P. Raghavan and C. D. Thompson. Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7:365–374,
1987.

[40] R. Rushmeier, K. Hoffman, and M. Padberg. Recent
advances in exact optimization of airline scheduling
problems. Technical report, George Mason Univer-
sity, 1995.

[41] D. B. Shmoys and É. Tardos. An approximation algo-
rithm for the generalized assignment problem. Math-
ematical Programming, 62:461–474, 1993.

[42] Mohit Singh and Lap C. Lau. Approximating min-
imum bounded degree spanning trees to within one
of optimal. In STOC ’07: Proceedings of the thirty-
ninth annual ACM Symposium on Theory of comput-
ing, pages 661–670, 2007.

[43] M. Skutella. Convex quadratic and semidefinite
relaxations in scheduling. Journal of the ACM,
46(2):206–242, 2001.

[44] J. H. Spencer. Six standard deviations suffice.
Transactions of the American Mathematical Society,
289:679–706, 1985.

[45] A. Srinivasan. Distributions on level-sets with appli-
cations to approximation algorithms. In IEEE Sym-
posium on Foundations of Computer Science, pages
588–597, 2001.

[46] A. Srinivasan. Budgeted allocations in the full-
information setting. In Proc. International Work-
shop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), pages 247–253,
2008.

[47] A. Srinivasan and C.-P. Teo. A constant-factor ap-
proximation algorithm for packet routing and balanc-
ing local vs. global criteria. SIAM Journal on Com-
puting, 30:2051–2068, 2001.

[48] L. Tsai. Asymptotic analysis of an algorithm for bal-
anced parallel processor scheduling. SIAM J. Com-
put., 21(1):59–64, 1992.

[49] Vijay V. Vazirani. Approximation Algorithms.
Springer-Verlag, 2001.

[50] G. Woeginger. A comment on scheduling two parallel
machines with capacity constraints. Discrete Opti-
mization, 2(3):269–272, 2005.

[51] H. Yang, Y. Ye, and J. Zhang. An approximation al-
gorithm for scheduling two parallel machines with ca-
pacity constraints. Discrete Appl. Math., 130(3):449–
467, 2003.

[52] J. Zhang and Y. Ye. On the Budgeted MAX-CUT
problem and its Application to the Capacitated Two-
Parallel Machine Scheduling, 2001.

357

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

