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Abstract: Coding theoretic and complexity theoretic considerations naturally lead to the question of gener-
ating symmetric, sparse, redundant linear systems. This paper provides new way of constructions with better
parameters and new lower bounds.
Low Density Parity Check (LDPC) codes are linear codes defined by short constraints (a property essential
for local testing of a code). Some of the best (theoretically and practically) used codes are LDPC. Symmetric
codes are those in which all coordinates “look the same”, namely there is some transitive group acting on the
coordinates which preserves the code. Some of the most commonly used locally testable codes (especially in
PCPs and other proof systems), including all “low-degree” codes, are symmetric. Requiring that a symmetric
binary code of length n has large (linear or near-linear) distance seems to suggest a “conflict” between 1/rate
and density (constraint length). In known constructions, if one is constant then the other is almost worst
possible - n/poly(logn).
Our main positive result simultaneously achieves symmetric low density, constant rate codes generated by a
single constraint. We present an explicit construction of a symmetric and transitive binary code of length n,
near-linear distance n/(log logn)2, of constant rate and with constraints of length (logn)4.
The construction is in the spirit of Tanner codes, namely the codewords are indexed by the edges of a sparse
regular expander graph. The main novelty is in our construction of a transitive (non Abelian!) group acting
on these edges which preserves the code. Our construction is one instantiation of a framework we call Cayley
Codes developed here, that may be viewed as extending zig-zag product to symmetric codes.
Our main negative result is that the parameters obtained above cannot be significantly improved, as long as
the acting group is solvable (like the one we use). More specifically, we show that in constant rate and linear
distance codes (aka "good" codes) invariant under solvable groups, the density (length of generating constraints)
cannot go down to a constant, and is bounded below by log(Ω(�)) n if the group has a derived series of length �.
This negative result precludes natural local tests with constantly many queries for such solvable "good" codes.
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1 Introduction

The work in this paper is motivated from several (re-
lated) research directions. We first give a very high
level description of these, and then proceed to describe
our results.

1.1 Motivation

Locally testable codes. Codes in which the prox-
imity to a codeword can be determined by a few co-
ordinate queries have proven a central ingredient in
some major results in complexity theory. They ap-
pear as low-degree tests in the IP = PSPACE,
MIP = NEXP and PCP = NP theorems, and
indeed the work of [16] (which was later partly de-
randomized by [8]) elucidates their role as the “com-
binatorial heart” of PCPs. The quest to simultane-

ously optimize their coding theoretic parameters and
the number of queries used has recently culminated
in the combination of [7] and [13] (see also [26]) in
a length n binary linear code of linear distance and
rate 1/(logn)O(1), testable with a constant number of
queries (which are testing linear constraints of con-
stant length). Further improving the rate to a con-
stant is a major open problem. Essential to locally
testable codes is having short constraints.

LDPC codes. Low Density Parity Check codes are
precisely linear codes with short constraints. Density
is the constraints length. These codes were defined in
the seminal work of Gallager [14] in the 60’s. Only in
the 90’s, due to works of [22, 30, 32] and others did
LDPC codes start to compete with the algebraic con-
structions in the coding-theory scene. Today these
provide some of the best practical and theoretical
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codes for many noise models, and are extremely ef-
ficient to encode and decode. In particular, they can
achieve linear distance, constant rate and constant
constraint size simultaneously. But their natural po-
tential for local testing was (possibly) devastated by
such results as [6], who showed that a general class
of LDPC codes, based on expanders, requires a linear
number of queries to test, despite having constant-
size constraints. We note that possessing short defin-
ing constraints is not always an obvious property of
a code – e.g. it was only recently discovered in [19]
that the sparse dual-BCH codes have such constraints
(but unfortunately this code has a very bad rate).

Symmetric codes. Many of the classical codes, e.g.
Hamming, Reed-Solomon, Hadamard, Reed-Muller,
BCH, and some Goppa codes are symmetric, namely
there is a transitive group acting on the coordinates
which leaves the code invariant. Symmetry is not only
elegant mathematically - it often also implies concise
representation of the code as well as tools to analyze
its quality parameters, like rate and distance. Huge
literature is devoted to such codes within coding the-
ory, but even for cyclic codes (those invariant under
cyclic shifts) it is still a major open problem if they
can have simultaneously constant rate and linear dis-
tance. The conjecture is that this is impossible. A
major result of Berman from the seventies [9] shows
that there are no good cyclic codes of length n where
all the prime divisors of n are bounded. Interesting
progress on this conjecture was made by Babai Sh-
pilka and Stefankovic [5] that extend Berman’s result
and relax the conditions on the sizes of the prime di-
visors of the code length. Moreover [5] show that the
conjecture is true if one requires the cyclic code to
be defined by constraints of constant length (i.e to
be LDPC). McElice [25] proved (non constructively)
that there are asymptotically good non-linear codes
invariant under the action of very large groups, how-
ever these codes are clearly not LDPC.

Symmetric low-density and locally testable
codes. Starting with linearity testing of [10] and
the first low-degree tests of [4, 28], nearly all locally
testable codes appearing in proof systems are sym-
metric. A theory studying the extent to which sym-
metry can help (or handicap) local testing was initi-
ated by Kaufman and Sudan [18]. They generalized
known examples showing that when the acting group
is the affine group (and the coordinates are naturally
identified with the elements of the vectors space acted
upon), then having short constraints that define the
code is not only necessary, but also sufficient for local
testability. Moreover, in these cases the orbit (under

the group action) of a single constraint suffices to de-
fine the code, and a canonical local test is picking a
random constraint from that orbit1. Again, the rate
of all these codes is poor, and [18] challenge recon-
ciling the apparent conflict between rate and density,
possibly for other groups.

Expanding Cayley graphs. Gallager’s construc-
tion [14] of LDPC codes was based on sparse random
graphs, and Tanner’s construction [35] was based on
high girth graphs. Sipser and Spielman [32] identified
expansion as the crucial parameter of graphs which
yield codes with good parameters. This was followed
up in almost all subsequent works, using expanders
to construct codes. This work motivated further ex-
plicit constructions of good expanders. As example,
we note that the [32] “belief propagation” decoding
algorithm for LDPC was simplest if the underlying
graph is a lossless expander, and subsequently [11]
were able to explicitly construct such expanders. Un-
fortunately, all codes constructed this way seem far
from symmetric. But expander graphs can certainly
be symmetric! Indeed, almost all constructions of ex-
pander graphs are Cayley graphs, namely the vertices
correspond to the elements of a finite group, and edges
are prescribed by a fixed generating set of the group.
It is evident that such graphs are symmetric, namely
the group itself acts transitively on the vertices and
preserves the edges. We note importantly that even
the zig-zag product construction of expanders [31],
which started as a combinatorial alternative to alge-
braic constructions, was extended to allow iterative
probabilistic constructions of Cayley graphs [2, 27]
via the semi-direct product of groups. Our codes are
partially motivated by making explicit the probabilis-
tic construction of [2, 27] Attempts to construct codes
iteratively exist, with the best example being Meir’s,
partially explicit construction [26]. However, again,
this code is far from symmetric.

Several natural research directions point to the fol-
lowing question: To what extent can symmet-
ric LDPC codes attain (or even come close
to) the coding theory gold standard of linear
distance and constant rate? To fix ideas, let us
consider symmetric codes with linear (or even near-

1We note that the existence of a single constraint that gen-
erates a code gives rise to a canonical algorithm for local testing
the code. An algorithm that picks a random constraint from
the orbit. For codes invariant under the affine group, Kauf-
man and Sudan have shown that such a canonical algorithm
is indeed a valid local tester for the code. This motivates the
search for other symmetric codes generated by the orbit(s) of
one (or few) generators, with the hope that local testing would
be implied.
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linear) distance, and examine the trade-off between
density and 1/rate. In all known codes if 1/rate
or density is constant then the other is worst pos-
sible, about n/poly(logn), the code length! Best den-
sity/rate trade-offs for known binary high distance
symmetric codes are the following. Reed-Muller codes
over binary field (say degree-d polynomials), which
are invariant under the affine group, have short con-
straints (2d-long) but pathetic rate (logn)d/n. BCH
codes, invariant under the cyclic group, have constant
rate, but constraints of (worst possible) length Ω(n).
Reed-Muller codes over large fields concatenated with
Hadamard achieve density (logn)1/ε with (1/rate) be-
ing 2(logn)ε [3, 34].2

Indeed, some believed that the conflict between den-
sity and rate in symmetric codes cannot be recon-
ciled. On the other hand, no result precludes the ra-
tio of density/rate from being best possible, namely a
constant! Our paper addresses both upper and lower
bounds on this trade-off.

1.2 Our Results and Techniques

We first describe our upper bounds and then our lower
bounds.

1.2.1 Upper Bounds

Our main positive result allows simultaneous constant
rate and polylogarithmic density, and in particular
reduces the upper bound on the ratio density/rate
to poly logn! More precisely, Theorem 11 gives an
explicit construction of length-n symmetric codes of
constant rate and distance n/(log logn)2 which is de-
fined by constraints of a length poly(logn). Moreover,
these constraints constitute the orbit of a single con-
straint, under the transitive action of a (non Abelian)
group.

In order to prove this result, we develop a framework
of “Cayley Codes”, which we describe next. They ex-
tend Tanner codes in that the coordinates of the code
are identified with the edges of a regular expander
graph, and constraints are imposed on neighborhoods
(namely edges incident on each single vertex) accord-
ing to a fixed “inner code” B. In Cayley codes we
naturally insist that the underlying graph is a Cayley
graph, namely the vertices are the elements of a group

2Note that when this code is mostly used to get constant
query complexity, it is modified to make coordinates corre-
spond not to the value of the encoded polynomial on a point,
but rather its value on an entire line or larger subspace. This
has lousy rate, and when derandomized to improve the rate,
transitivity of the action is lost.

G, and a set of generators S of the group determine
edges in a natural way. While this a graph is sym-
metric (G acts transitively on its vertices), there is no
such guarantee in general for the code. The problem
is to find a group that acts on the edges of the graph,
and preserves all copies of the internal code. We show
that if some group H simultaneously acts transitively
on the code B and acts on the group G, then the
semi-direct product group G⋊H acts transitively on
the edges. We note that this action is not standard.

We then turn to find an appropriate instantiation of
this idea with good parameters. This paragraph is
a bit technical and may be skipped at first reading.
The group G is chosen to be the hypercube 𝔽

t
2, and

S a very specific ε-biased set in G (so as to make
the associated Cayley graph expanding), which can
be identified with the elements of a cyclic group H
isomorphic to the multiplicative group of of F ∗t4 . The
inner code B is chosen to be a BCH code on S on
which the group H acts transitively. The inferior dis-
tance and density of the code B are mitigated since
its length is only polylogarithmic in the length of the
whole code. Now the action of H on G (whose na-
ture we describe in the technical section) allows the
construction of the semi-direct product G ⋊ H . We
now define the action of this group on directed edges
of the graph, and prove that all parts fit: this group
acts transitively on the Tanner code of the Cayley
graph on G;S.

Alon, Lubotzky and Wigderson [2] provided a ran-
domized construction of high rate high distance codes
generated by two orbits. They asked about explicit
constructions of high rate, high distance codes gener-
ated by few orbits (for the group they studied). Our
construction provides such explicit codes generated by
one orbit!.

1.2.2 Lower Bounds

The second result (Theorem 13) shows that there is no
good code invariant under a solvable group with few
low-weight generators. In fact we rule out the possi-
bility of such codes even if the support of their gener-
ators is o(logΩ(�) n) if the group has a derived series of
length � and n is the code length. This result exclude
the possibility of good solvable locally testable codes
with few low weight generators. Note that the codes
we have constructed in the upper bound section are
solvable. Our methods extend work of Lubotzky and
Weiss [23], who showed a similar lower bound on the
number of generators Cayley graphs on these groups
to be expanders. The extension is in two directions -
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we show the same for Schreier graphs, and then ex-
tend their argument from finding standard separators
to finding ε-partitions of the graph to many parts -
from which we can deduce information on the dis-
tance and rate of the associated Tanner codes.

A work by Babai,Shpilka and Stefankovic [5] showed
that there are no good cyclic codes with low weight
constraints (with no restriction on the number of gen-
erating constraints). Since low weight constraints are
a necessary (but not sufficient) condition for testabil-
ity, they showed that there are no good cyclic locally
testable codes. Our work here shows that there are
no good solvable locally testable codes with few low
weight generating constraints. i.e. we exclude good
locally testable codes over larger groups of symmetry
but under the assumption of few low weight gener-
ating constraints. As far as we know, it could well
be the case that a cyclic code whose dual has a low
weight basis must have a basis that is generated by a
constant many low-weight constraints.

The proof showing that there are no good solvable
codes with few low weight generators has two main
parts. First, for a parameter ε (later taken to be o(1))
we define a new notion that we call an ε-partition of a
graph, which extends the notion of a small separator,
in that we demand that the separating set splits the
graph into many pieces. More precisely, a graph has
an ε-partition (Definition 22) if one can remove ε frac-
tion of its vertices to make all connected components
of relative size at most ε. We show that a Schreier
graph of a solvable group with d = o(logΩ(�) n) gener-
ators has an ε-partition where ε is sub-constant. The
proof of this part is by induction on the derived length
of the group (Lemma 18) with the Abelian being the
base case. (Lemma 16). This extends a technique
of Lubotzky and Weiss [23] from Cayley to Schrier
graphs, and from separators to ε-partitions.

In the second part of the proof (Lemma 21) we as-
sociate codes invariant under groups with Schreier
graphs over these groups (see Definition 26), and show
that if the associated Schreier graph has an ε-partition
then either the rate or the relative distance of the code
is bounded by ε.

1.2.3 Organization

In Section 2 we present some general definitions to
be used through out the work. In Section 3 we in-
troduce the notion of Cayley codes, and present our
main conceptual theorem (Theorem 7) showing suf-
ficient conditions under which symmetric codes with
one generator exist. In Section 4 we show our explicit

construction of an almost good code with one gen-
erator of polylorarithmic weight (Theorem 11). Fi-
nally, we show that there are no good Abelian and
solvable codes with few low weight generators (Theo-
rem 12, Theorem 13). These lower bounds appear in
Section 5.

2 Some General Definitions

We start with some basic definitions that are being
used throughout this work. The definitions deal with
group actions, Abelian and solvable groups, linear
codes, Cayley graphs and Schreier graphs.

2.1 Group Theory Definitions

Definition 1 (Group automorphism). A group auto-
morphism is an isomorphism from a group to itself.
The automorphisms of a group G form a group, de-
noted Aut(G).

Definition 2 (The symmetric group). The symmet-
ric group on a set X, denoted by Sym(X), is the group
of permutations of the set X. The compusition of two
permutations f, g (viewed as bijective functions on X)
is denoted f ◦ g.
Definition 3 (Action of a group on a group). An
action of a group H on a group G is a group homo-
morphism φ : H → Aut(G). In other words, each
element h ∈ H corresponds to an automorphism φh
of G, where φh1·h2 = φh1φh2 . Let gh = φh(g) denotes
the action of h ∈ H on g ∈ G.

Definition 4 (Action of a group on a set, transitiv-
ity). An action of a group H on a set X is a group
homomorphism φ : H → Sym(X) that sends each el-
ement h to a permutation of the elements of X. Let
xh denotes the action of h ∈ H on x ∈ X. That is,
an action should satisfy for every h, h′ ∈ H,x ∈ X

xhh
′

= (xh
′
)h

The action is called transitive if for every x1, x2 ∈ X
there exists h ∈ H such that

xh1 = x2

Fact 1. If a group H acts on sets G, S, then H acts
also on G× S in the obvious way.

Definition 5 (Orbit). Suppose a group H acts on
a set X. The orbit of an element x ∈ X under the
action of H is the set

xH = {xh|h ∈ H}.
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Definition 6 (Semi-direct product group). Suppose
a group H acts on a group G. The semidirect product
G⋊H is a group whose elements are pairs (g, h) where
g ∈ G and h ∈ H. We define

(g1, h1) · (g2, h2) = (g1 · gh
−1
1

2 , h1 · h2).

Definition 7 (Abelian group). A finite group G is
Abelian if for every a, b ∈ G, ab = ba.

Definition 8 (Commutator subgroup). For a group
G, the commutator subgroup of G denoted [G,G] is
a subgroup of G generated by all commutators of G,
where a commutator of g, h ∈ G is [g, h] = g−1h−1gh.
The identity element of G is the only commutator iff
G is Abelian.

Definition 9 (Normal subgroup). For a group G,
a subgroup H of G is Normal if for every g ∈ G,
gHg−1 = H.

Definition 10 (Quotient group). For a group G and
a normal subgroup H of G, the quotient group of H
in G, written G/H is the set of cosets of H in G, with
the operation (Ha)(Hb) = Hab.

Fact 2. For a group G, the quotient group G/[G,G]
is Abelian.

Definition 11 (Solvable group). For a group G de-
note G0 = G, and Gi+1 = [Gi, Gi]. G is solvable of
derived length � if G�−1 �= 1 and G� = 1, the trivial
group of size 1. Also note that by Fact 2 Gi/Gi+1 is
an Abelian group for i = 0, · · · �− 1.

Note that Abelian groups are solvable with derived
length 1.

2.2 Codes Definitions

Definition 12 (Linear code, length, dimension, rate,
distance). A code C ⊆ 𝔽

X is linear if C forms a linear
subspace over 𝔽. The orthogonal space to C is denoted
as the dual-code C⊥. The length of the code C is |X |.
The dimension of the code C is the dimension of the
subspace that is described by C. The rate of the code
C denoted as rC is the dimension of the code divided
by its length. A weight of a codeword c ∈ C denoted as
w(c) is the number of non-zero elements in the image
of c. The distance of C is the minimum weight of a
non-zero codeword of C, divided by the length of C.

Definition 13 (Concatenated code). Given linear
codes Ci ⊆ 𝔽

Xi , 1 ≤ i ≤ n, a concatenated code
C ⊆ 𝔽

X1∪···∪Xn is a linear code such that c ∈ C iff
c|Xi ∈ Ci for every i, where c|Xi denotes the restric-
tion of c to the coordinates Xi.

Definition 14 (Code invariant under a group). An
action of a group H on a set X, induces an action of
H on the set 𝔽

X = {f : X → 𝔽} that is defined as
follows. For f ∈ 𝔽

X , h : X → X, fh = f ◦ h ∈ 𝔽
X .

A code C ⊆ 𝔽
X is said to be H-invariant if

C = HCdef= {fh|f ∈ C, h ∈ H}

C that is H-invariant is also H-transitive if the action
of H on X is transitive (by definition 4).

Definition 15 (Short generators, Support of gener-
ators). A linear code C ⊆ 𝔽

X that is H-invariant
has (r, w)-short generators if there exist r codewords
c1, ...cr ∈ C⊥ each of weight at most w, such that
the vectors cH1

⋃ · · ·⋃ cHr span C⊥. For a generator
ci ∈ C⊥, let s(ci) ⊆ X be the coordinates on which
ci has non-zero support. The support of the given
generators of C is s(c1)

⋃ · · ·⋃ s(cr) ⊆ X.

2.3 Graph Definitions

Definition 16 (Cayley graph). Given a group G and
a set of generator S ⊂ G, the Cayley graph Cay(G,S)
is a graph, whose vertices are labeled by elements of G,
and there is an edge (u, v) iff there exist s ∈ S, such
that u · s = v. When set S is symmetric (i.e. s ∈ S
iff s−1 ∈ S), then the graph Cay(G,S) is undirected.

Definition 17 (Schreier graph). Given a group G
that acts on a set X and a set of generator S ⊆ G, the
Schreier graph Shr(G,X, S) is a graph, whose vertices
are labeled by elements of X, and there is an edge
(x1, x2) iff there exist s ∈ S, such that x2 = xs1 (recall
that xs1 denotes the action of s on x1).

Definition 18 (Edge-transitive graph). A graph H =
(V,E) is edge-transitive [17] if there exists a group G
that acts on the edges of the graph and preserve the
graph, and such that for all pairs of edges e1, e2 ∈ E
there exists an element g ∈ G such that g(e1) = e2.

3 Cayley Codes

In this section we present our conceptual contribu-
tion. We define Cayley codes and show conditions
under which these codes are invariant under a group
that acts transitively on them. Moreover, we derive
conditions, under which these codes are generated by
few low weight generators under the action of that
group.

Definition 19 (Cayley code). Given a Cayley Graph
Cay(G,S) and a linear code B ⊆ 𝔽

S of length |S| =
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d define the linear a Cayley code Cay(G,S,B) ⊆
𝔽
|G|·|S|/2 as follows. Its coordinates are the |G| ·
|S|/2 undirected edges of the graph Cay(G,S), namely
the pairs {(g, si), (gsi, s−1

i )}, g ∈ G, si ∈ S =
{s1, · · · , sd}. The defining linear constraints are the
local constraints of B on the edges incident on every
vertex, namely

c ∈ Cay(G,S,B) iff for every g ∈ G the following
holds:

• Vertex consistency:
(c{(g,s1),(gs1,s

−1
1 )}, · · · , c{(g,sd),(gsd,s−1

d
)}) ∈ B.

The following lemmas are concerned with the rate and
distance of the Cayley codes.

Lemma 1 (Rate of Cayley codes). The code
Cay(G,S,B) with B of block length |S| = d and rate
rB >

1
2 , has rate 2rB − 1.

Proof. The rate of the code follows immediately from
the definition. Consider c ∈ Cay(G,S,B). c is of
length |G||S|/2.

The codeword c obeys |G| vertices constraints of the
form (c{(g,s1),(gs1,s

−1
1 )}, · · · , c{(g,sd),(gsd,s−1

d
)}) ∈ B, for

every g ∈ G. Each such vertex constraint impose
|S|(1− rB) constraints of the code B. The total num-
ber of constraints imposed is |G||S|(1 − rB). Hence,
the rate of the code is 1− 2(1− rB) = 2rB − 1.

Lemma 2 (Distance of Cayley codes). Consider the
Cayley code Cay(G,S,B) for a linear code B of block
length |S| = d, and minimum relative distance δ.
If the Cayley graph Cay(G,S) is an expander with
normalized second largest eigenvalue λ then the code
Cay(G,S,B) has minimum distance at least

(
δ−λ
1−λ
)2

.

Proof. Follows immediately from [32] (Lemma 15).

In the following we define an action of the semi-
direct product group and show that the Cayley graph
Cay(G,S) is edge transitive under this action. This
is then used for showing that the Cayley codes are
invariant under this group that acts transitively on
them.

Definition 20 (Action of the semi-direct product
group). Let G be a group, S ⊆ G a symmetric set.
Let H be a group such that H acts on G, and H acts
on S and preserves S. In such case the semi-direct
product G⋊H is defined. We define the action of the

semi-direct product G⋊H on G× S to be as follows
for (g, h) ∈ G⋊H, (g′, s′) ∈ (G× S).

(g, h)(g′, s) = gg′h
−1
, sh

−1

In the following we show that the defined action of the
semi direct product group G⋊H on G× S is indeed
an action.

Lemma 3 (The action of the semi-direct product
group is valid). The action of the semi-direct prod-
uct G⋊H on G×S defined in Definition 20 is indeed
an action.

Proof. The defined action of G ⋊ H on G × S acts
on G and on S separately. The separate actions are
well defined since H acts on G and H acts on S. The
combined action ofG⋊H on G×S is then well defined
by Fact 1.

In the following we show conditions under which the
Cayley graph Cay(G,S) is edge transitive under the
above action of the semi-direct product group G⋊H .

Lemma 4 (Conditions for the Cayley graph to be
edge-transitive under the action of the semi-direct
product group). Let G be a group, S ⊆ G a sym-
metric set. Let H be a group such that:

• H acts on G.
• H acts transitively on S.

Then the graph Cay(G,S) is edge-transitive under the
action of the semi-direct product group G⋊H.

Proof. Since H acts on G and H acts on S the semi-
direct product group G⋊H is well defined as well as
its action on G×S. For proving the edge-transitivity
we first need to show that edges are mapped to
edges (edge preservation), and that every edge can
be mapped to every other edge (transitivity).

Edge preservation. We need to show that undi-
rected edges (which are pairs of anti-directional di-
rected edges) are mapped to undirected edges, namely
that for (g, h) ∈ G⋊H , (g′, s) ∈ G× S

(g, h)(g′, s) = (g′(g,h), s(g,h))
(g, h)(g′s, s−1) = ((g′s)(g,h), (s−1)(g,h))

is such that (g′s)(g,h) = g′(g,h) ·s(g,h), and (s(g,h))−1 =
(s−1)(g,h).
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Indeed,

(g′s)(g,h) = g(g′s)h
−1

= gg′h
−1
sh
−1

= g′(g,h) · s(g,h) ;

(s(g,h))−1 = (sh
−1

)−1 = (s−1)h
−1

= (s−1)(g,h)

Transitivity. We need to show that the action of
G ⋊ H on G × S is transitive. That is, we need to
show that for every (g′, s), (g′′, s′′) ∈ G×S there exists
(g, h) ∈ G⋊H such that (g, h)(g′, s) = (g′′, s′′).

Recall, that the action of (g, h) ∈ G ⋊H on (g′, s) ∈
G × S is of the form (g, h)(g′, s) = (g′(g,h), s(g,h)) =
(gg′h−1

, sh
−1).

Pick h such that s′′ = sh−1 (this can be done since H
acts transitively on S).

Pick g such that g′′ = gg′h−1 (this can be done since
G acts transitively on itself).

Hence the transitivity is obtained.

In the following we show conditions under which the
Cayley code Cay(G,S,B) is invariant under the above
action of the semi-direct product group G⋊H .

Lemma 5 (Conditions for the Cayley code to be in-
variant and transitive under the semi-direct product
group). Let G be a group, S ⊆ G a symmetric set.
Let B ⊆ 𝔽

S be a linear code. Let H be a group such
that:

• H acts on G.
• H acts transitively on S.
• B is H-invariant

Then the code Cay(G,S,B) ⊆ 𝔽
|G||S|/2 is invari-

ant under the action of the semi-direct product group
G⋊H. Moreover, the code Cay(G,S,B) is transitive
under this group.

Proof. By Lemma 4 the semi-direct product group
G ⋊ H acts transitively on the edges of the Cayley
graph Cay(G,S). Assume |G| = n, |S| = d. For
showing that the code Cay(G,S,B) ⊆ 𝔽

|G||S|/2 is
invariant under the semi-direct product group G ⋊

H we need to show that for every (g, h) ∈ G ⋊

H , c = (c{(g1,s1)(g1s1,s
−1
1 )}, · · · , c{(gn,sd)(gnsd,s−1

d
)}) ∈

Cay(G,S,B) we have

(g, h) · c = (c{(g(g,h)
1 ,s

(g,h)
1 )((g1s1)(g,h),(s−1

1 )(g,h))}, · · · ,
c{(g(g,h)

n ,s
(g,h)
d

),((gnsd)(g,h),(s−1
d

)(g,h))}) ∈ Cay(G,S,B)

For showing the last we need to show that vertex con-
sistency is preserved.

Vertex consistency. We show that for every 1 ≤
i ≤ n:

(c{(g(g,h)
i

,s
(g,h)
1 )((gis1)(g,h),(s−1

1 )(g,h))}, · · · ,
c{(g(g,h)

i
,s

(g,h)
d

),((gisd)(g,h),(s−1
d

)(g,h))}) ∈ B.
By the assumption that c ∈ Cay(G,S,B), we know
that for every 1 ≤ i ≤ n:

(c{(gi,s1)(gis1,s
−1
1 )}, · · · , c{(gi,sd)(gisd,s−1

d
)}) ∈ B.

Hence, similarly, for every 1 ≤ i ≤ n:
(c{(g(g,h)

i
,s1)(g(g,h)

i
s1,s

−1
1 )}, · · · ,

c{(g(g,h)
i

,sd),(g(g,h)
i

sd,s
−1
d

)}) ∈ B
This is since we only got the G coordinate permuted.
Since by assumption the code B isH-invariant we also
know that for every h−1 ∈ H (and every 1 ≤ i ≤ n)

(c{(g(g,h)
i

,sh
−1

1 )(g(g,h)
i

sh
−1

1 ,(sh−1
1 )−1)}, · · · ,

c{(g(g,h)
i

,sh
−1
d

),(g(g,h)
i

sh
−1
d
,(sh−1
d

)−1)}) ∈ B.
Given the action of the semidirect product group G⋊

H on the S coordinate in G×S (where the action on
S is performed only by H), and where (g′s′)(g,h) =
g′(g,h) · s′(g,h), and (s′(g,h))−1 = (s′−1)(g,h) we obtain
that for every 1 ≤ i ≤ n:

(c{(g(g,h)
i

,s
(g,h)
1 )((gis1)(g,h),(s−1

1 )(g,h))}, · · · ,
c{(g(g,h)

i ,s
(g,h)
d

),((gisd)(g,h),(s−1
d

)(g,h))}) ∈ B
as required.

The transitivity of the code Cay(G,S,B) ⊆ 𝔽
|G||S|/2

under the action of the semidirect product group G⋊

H is implied by Lemma 4.

The following lemma bounds to the number of gener-
ators of a Cayley code as well as their weight.
Lemma 6 (The number/weight of generators of a
Cayley code). Let G be a group, S ⊆ G a symmetric
set. Let B ⊆ 𝔽

S be a linear code of rate rB > 1
2 . Let

H be a group such that:

• H acts on G.
• H acts transitively on S.
• B is H-invariant

Then the code Cay(G,S,B) ⊆ 𝔽
|G||S|/2 has at most

(1−rB)|S| generators (under action of the semi-direct
product group G ⋊H) of weight at most |S|. In par-
ticular, if H is the cyclic group the code Cay(G,S,B)
has one generator (more generally, if B is gener-
ated by one generator with respect to H then the code
Cay(G,S,B) has one generator).
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Proof. By Lemma 4 the code Cay(G,S,B) is invari-
ant under the semi-direct product group G⋊H . Po-
tential generators are contained in a basis to the code
dual to B, hence there are at most (1 − rB)|S| such
generators. If H is the cyclic group then the code
dual to B is generated by a single vector and its or-
bit under H . As the generators of the Cayley code
code Cay(G,S,B) are contained in the generators of
the code dual to B, the code Cay(G,S,B) has one
generator.

The following is the main theorem of the of this
section. It defines conditions for the existence of
codes with high rate, high distance and few genera-
tors (under a certain group) of low weight. The proof
of the theorem follows immediately from Lemma 4,
Lemma 5 and Lemma 6.

Theorem 7 (Cayley Codes Theorem). Let G be a
group, S ⊆ G a symmetric set. Let H be a group. Let
B ⊆ 𝔽

S be a linear code such that:

• Cay(G,S) is an expander with second normalized
eigenvalue λ.
• Distance of B is δ > λ.
• Rate of B is greater than 1

2 (rB > 1
2 ).

• H acts on G.
• H acts transitively on S.
• B is H-invariant with 1-generator.

Then the code Cay(G,S,B) ⊆ 𝔽
|G||S|/2 has constant

rate 2rB − 1 and distance [(δ − λ)/(1 − λ)]2. It is
transitive and invariant under the semi-direct product
group G⋊H. The code is generated by one generator
of weight bounded by |S|.

4 Transitive High Rate and High Dis-
tance Code with One Low Weight
Generator

In the following we aim at finding groupsG, H , S ⊆ G
a symmetric set and a linear code B of length |S|
that meets the conditions of the main theorem (The-
orem 7). We start by showing that if we take G = F t2
then there exists S ⊆ G ε-biased set |S| = t4 − 1
and a group H = F ∗t4 , such that H acts on G and
H acts transitively on S. Recall that S is ε-biased in
G is equivalent to saying that the second normalized
eigenvalue of Cay(G,S) is at most ε.

Lemma 8 (Choosing G,H, S). Let t = 2a such that
4a = s|t. Let G = F t2 . Let q = t4 = 2s. Let H = F ∗q
then the following holds.

• H acts on G.

• There exists explicit g ∈ F t2 such that the set S =
{gH} ⊆ G is an ε-biased set with ε = 1/q1/4 log q.

Proof. We will consider several related representa-
tions of elements in F2t using its subfield F2s .

Let d = t
s = 2s/4

s ,. Let e1, · · · , ed be a basis for F2t
over F2s such that for v ∈ F2t is written uniquely
as v = v1e1 + v2e2 + · · · + vded with vi ∈ F2s . As
elements of the underlying vector spaces, we’ll use
the vector representation v = (v1, v2, · · · , vd) where
v1, · · · , vd ∈ F s2 . Finally, we will also let v corre-
spond to the univariate degree d polynomial fv(x) =
v1x+ v2x2 + · · ·+ vdxd ∈ F (2s)[x].

The action of H on G is simple: for any h ∈ H and
v ∈ G we define vh to be

(v1, v2, · · · , vd)h = (v1h, v2h2, · · · , vdhd)
with multiplication in F2s componentwise. This is
clearly an action.

To define the ε-biased set S, let g = (1, 1, · · · , 1) =∑d
i=1 ei ∈ F t2 , and define S = gH = {gh : h ∈ H}.

By definitionH acts transitively on S and |S| = |H | =
q−1. We now turn to upper bound the bias of this set,
namely upper bound

∑
h∈H ψ(gh) for all nontrivial

additive characters ψ of F2t .

For this estimate we factor each such character
through F2s . Formally, let ψ0 be some fixed nontriv-
ial additive character of F2s . Let Tr : F2t → F2s

denote the (linear) trace function. Then all addi-
tive characters of F2t are then obtained as: ψ(v) =
ψ0(Tr(zv)) with some z ∈ F ∗2t . Fix any such z, and
lets call the associated character sum ∆z. By linearity
of the trace, we have

∆z =
∑
h∈H
ψ(gh) =

∑
h∈H
ψ((e1 + e2 + · · ·+ ed)h) =

∑
h∈H

d∑
i=1
ψ0(Tr(zei · hi)) =

∑
h∈H
ψ0(

d∑
i=1

(Tr(zei)) · hi)

Let us denote by ai = Tr(zei) ∈ F2s . Since the ei are
a basis and z �= 0, not all ai can be simultaneously
zero. Using the polynomial representation above, we
have ∆z =

∑
h∈H ψ0(fa(h)), namely a complete char-

acter sum of a nonzero degree d polynomial over F ∗2s .
By Weil bound [12, 36], |∆z| < d ·

√
2s = 2s/4

s · 2s/2 =
q/(q1/4 log q).
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Lemma 9. (Bounding the second eigenvalue in
Cay(G,S)) Let G, S defined as in Lemma 8. The
Cayley graph Cay(G,S) is an expander with second
normalized eigenvalue λ < 2/(q1/4 log q). Observe
that this graph has 2t vertices. The degree of each
vertex is (t)4 − 1 = q − 1.

Proof. Since G = F t2 is Abelian the eigenvalues of
Cay(G,S) can be expressed in terms of the characters
of F t2 . Specifically, if S is an ε-biased set then the
second normalized eigenvalue of Cay(G,S) is at most
2ε. The value of λ is obtained by the fact that S is
an ε-biased set, for ε = 1/(q1/4 log q) by Lemma 8.

In the following, we use t, q, s as they are defined in
Lemma 8. To complete the construction of a Cayley
code that meets the condition of Theorem 7, we need
a linear cyclic code B transitive under the action of
the cyclic group H . We next show that such a code
of length |S| = q − 1, rate greater than 1

2 and large
distance can be simply taken to be an appropriate
BCH code.

Lemma 10. (A linear code B invariant under the
cyclic group F ∗q with good rate and distance) There
exists a linear cyclic code B of length q − 1 (i.e. in-
variant under the cyclic group H = F ∗q ) that has rate
greater than 1/2 and normalized distance greater than
1/c log q for some constant c > 1.

Proof. By Corollary 10 in [33] the BCH code is a lin-
ear cyclic code of length N = q−1 that can be chosen
to obey the following relation N − k = (d/2) logN .

Where N is the length of the code, k is the dimension
of the code, d is the distance (actual distance, not
normalized). Thus if we pick k to be greater than N2 ,
we obtain d > N/c logN for some constant c > 1. i.e.
a normalized distance greater than 1/c log q for some
constant c > 1

Theorem 11 (Almost good code with one genera-
tor of polylogrithmic weight). Let G, H, S, B be as
above. Let M = 2t. The Cayley code Cay(G,S,B)
has length n =M×(logM)4/2, constant rate, distance
greater than 1

c′(log logn)2 for some constant c′ > 1. The
code is transitive and invariant under the semi direct
product group G⋊H, and it is generated by one gen-
erator of weight at most (logn)4.

Proof. Consider G,H, S,B from above. By Lemma 9,
the Cayley graph Cay(G,S) is an expander with sec-
ond largest eigenvalue λ < 2/q1/4 log q. By Lemma 10

the linear code B is a cyclic code that has distance
δ = 1/c log q > λ, moreover rB > 1

2 . By definition
of H,G, S,B, H acts on G, H acts transitively on S
and B is H-invariant with 1-generator. Hence all the
conditions of Theorem 7 are met and the code has
constant rate, distance

(
δ − λ
1− λ

)2
=
(

1/c log q − 2/q1/4 log q
1− 2/q1/4 log q

)2

= 1
c′ log2 q

= 1
c′(log logM)2

Moreover, The code is transitive and invariant under
the semi direct product group G⋊H , and it is gener-
ated by one generator of weight at most (logM)4.

5 There are no Good Abelian and
Solvable Codes with Few Low
Weight Generators

In the following we show that good codes with few low
weight generators cannot be obtained from invariance
under Abelian and solvable groups.

The main theorems of this section are the following.

Theorem 12 (No good Abelian codes with genera-
tors of low support). An n-length linear code tran-
sitive and invariant under an Abelian group, defined
by the orbits of constraints that are supported on
s ≤ (logn)1/4 coordinates, has either rate or relative
distance bounded by ε, where ε = n−1/6d2 with d = s2.
Moreover, if the rate of the code exceeds ε, the code is
a concatenation of codes of length at most εn each.

Before stating the theorem for the solvable case we
need the following definition.

Definition 21. For a function f(x) the k-iterate of
f , denoted f (k)(x) = f(f(....f(x))) where the last has
k-repetitions.

The lower bound theorem for the solvable case is the
following.

Theorem 13 (No good solvable codes with genera-
tors of low support). An n-length linear code tran-
sitive and invariant under a solvable group of de-
rived length �, defined by the orbits of constraints
that are supported on s ≤ (logn)(2l) coordinates, has
either rate or relative distance bounded by ε, where
ε = d/(logn)(l) with d = s2. Moreover, if the rate
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of the code exceeds ε, the code is a concatenation of
codes of length at most εn each.

The theorems imply the following corollary.

Corollary 1. For a linear code invariant and tran-
sitive under an Abelian/solvable group with s, ε as
above. Let δ =

√
ε. If the rate of the code is at least

δ, then the code must have 1/δ codewords with pair-
wise disjoint support.

Proof of Corollary 1. If the rate of the code is at least
δ =
√
ε then the theorems imply that the code is a

concatenation of codes of length at most εn each. Ev-
ery such concatenated code contributes ε to the total
rate of the code. Hence the code is obtained by a con-
catenation of at least 1/δ = 1/

√
ε linear codes. Each

such concatenated code contributes at least one code-
word of disjoint support from the other codewords, so
the proof of the corollary is established.

The proofs of the theorems have two main parts. First
we define a new notion that we call an ε-partition of a
graph (Definition 22), and show that a Schreier graph
of an Abelian/solvable group with d generators has
an ε-partition (where d and ε are as defined as in the
theorems). The proof of this part is by induction on
the derived length of the group (Lemma 18) with the
Abelian being the base case (Lemma 16).

In the second part (Lemma 21) we associate codes in-
variant under groups with Schreier graphs over these
groups (see Definition 26), and show that if the associ-
ated Schreier graph has an ε-partition then either the
rate or the relative distance of the code is bounded by
ε.

Theorem 12 follows immediately from Lemma 21 and
Lemma 16 below. Similarly, the proof of Theorem 13
follows immediately from Lemma 21 and Lemma 18.

We start by introducing the notion of an ε-partition
of a graph that plays a major role in the proofs.

Definition 22 (ε-Partition of a Graph). A graph H
on vertices X has an ε-partition if X can be partition
into X0, X1, · · · , Xt (i.e. X = X0 ∪ X1∪, · · · ,∪Xt),
each of size at most ε|X |, such that there are no edges
between Xi, Xj for all distinct i, j > 0 (i.e. the re-
moval of X0 partitions the graph to many small con-
nected components).

We stress that the notion of ε-partition for sub-
constant ε is stronger than non-expansion. E.g. take

a disjoint union of two identical Cayley expanders, the
obtained graph is transitive, non-expanding and has
no ε-partition.

In the following we study ε-partitions of non-
expanding Schreier graphs of Abelian and solvable
groups. An interesting open question is which other
groups obey the condition that a non-expanding
Schreier graphs of these groups have ε-partition for
sub-constant ε.

5.1 ε-Partitions of Non-expanding Abelian
Schreier Graphs

In the following we study non-expanding Schreier
graphs of Abelian groups and show that they have
ε-partition for sub-constant ε. The proofs of this sub-
section use the followings pair of tools. The first tool
is a decomposition theorem for Abelian groups (Theo-
rem 14). The second tool is a reduction from Schreier
graphs to Cayley graphs (Claim 15).

Theorem 14 (Decomposition Theorem for Abelian
groups). A finite Abelian group G can be obtained by
a direct product of constant many cyclic groups. I.e
G = C1×C2×, · · · ,×C� where Ci’s are cyclic groups.

Claim 15 (A reduction from Schreier to Cayley
graphs ). Let G be an Abelian group and S ⊆ G a
(symmetric) set. Let X be a set such that G acts on
X transitively. Then the Schreier graph Sch(G,X, S)
is isomorphic to a Cayley graph Cay(G′, S′) where G′
is Abelian, |G′| = |X | and |S′| = |S|.

Proof. By the Decomposition Theorem for Abelian
groups G = C1 × C2×, · · · ,×C� where Ci are cyclic
groups. Since G acts on X transitively we have for
every x ∈ X , X = {xg|g ∈ G}. Fix the stabilizer
H of a point x ∈ X . i.e. H = {g ∈ G|xg = x}.
The stabilizer H is a subgroup of G, hence H is also
Abelian and the group G′ = G/H is well defined.
Also, G′ acts on X and the natural homomorphism
G → G′ maps the generators S to a set S′ ⊆ G′. So
we obtain |G′| = |X | and by the transitivity of the
action of G on X we can label X with the elements of
G′ so the Schreier graph Sch(G,X, S) is isomorphic
to a Cayley graph Cay(G′, S′).

We now turn to show that non-expanding Schreier
graphs of Abelian groups have ε-partition for sub-
constant ε.

Lemma 16. Let G be an Abelian group and X be a
set such that G acts on X and |X | = n. Let S ⊆ G
be a (symmetric) set of size d ≤ (logn)1/2. Then, the
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Schreier graph Sch(G,X, S) has an ε-partition, with
ε ≤ n− 1

6d2 .

Proof. Assume first that the action of G on X is tran-
sitive. By Claim 15 above, the graph Sch(G,X, S)
is isomorphic to the Cayley graph Cay(G′, S′) where
G′ is Abelian and |S′| = |S|. Now by Claim 17 be-
low, the Cayley graph Cay(G′, S′) (and hence also the
Schreier graph Sch(G,X, S)) has an ε-partition with
ε ≤ n− 1

4d2 .

If the action of G on X is not transitive then con-
sider partition of X induced by the action of G. i.e.
X = X1∪X2∪· · ·∪Xk where the action of G on each
Xi is transitive. In this case the graph Sch(G,X, S) =
Sch(G,X1, S)∪· · ·∪Sch(G,Xk, S), where G is transi-
tive on each Xi. We can assume that each Xi is such
that |Xi| ≥ n1− 1

4d2 ≥ n 3
4 since otherwise the relevant

connected component is already of the required size.
By the previous discussion the graph Sch(G,Xi, S)
has an ε-partition with ε ≤ n− 3

4·4d2 ≤ n− 1
6d2 . This

implies that the Schreier graph Sch(G,X, S) has an
ε-partition with ε ≤ n− 1

6d2 .

Claim 17. Let G be an Abelian group of size n, and
S ⊆ G a (symmetric) set of size d ≤ (logn)1/2. Then,
the Cayley graph Cay(G,S) has an ε-partition, with
ε ≤ n− 1

4d2 .

Proof. By the Decomposition Theorem for Abelian
groups every Abelian group is direct product of cyclic
groups. Moreover, we can assume that there are at
most d of these, otherwise S does not even generate
G, and we can work on each connected component
separately. Thus, we may assume that one of these
cyclic groups is H = Zm, with m > n1/d, and G =
H ×K. We will partition H only by removing from
it at most εm vertices D, and leaving all components
Ci with size at most εm each. This induces in G a set
of vertices D × K to remove of at most εn vertices,
after which the components of G will be Ci×K of at
most εn vertices each.

Let T be the projection of S on H , namely the H
coordinates of each element of S in its H ×K repre-
sentation. T may be a multiset, but has size at most
d, and consider the Cayley graph Cay(H,T ).

Let T = {h1, h2, ..., hd} where each hi is an integer in
[−m/2,m/2], which we use to represent Zm.

Let t be such that t2d = m/2. Thus, t = (m/2)1/2d.

1/t = 1/(m/2)1/2d < 1/n1/4d2
= 1/2(logn)/4d2

First case. Assume all |hi| < m/t2. We break Zm to
t2 intervals of lengthm/t2 each. Then the partition to
disjoint pieces is clear: go around the circle Zm, and
remove every t’th interval. Thus, in total we remove
m/t vertices and get disconnected pieces of size at
most m/t each. Hence, we obtain an ε-partition with
ε ≤ 1/2(logn)/4d2 = n−

1
4d2 .

Second case. If the first case does not apply we show
that the Cayley graph Cay(H,T ) is isomorphic to the
first case, so we could be done by the proof of the first
case once we order the vertices right.

Denote I(x) the name (in [t2]) of the interval that
x (an element of Zm) belongs to, in the intervals of
length m/t2 defined above. Now consider the map
f : Zm → (t2)d defined by f(a) = (I(a · h1), I(a ·
h2), ..., I(a · hd)). Since t2d = m/2 < m we have a
collision f(a) = f(b), which means that for c = b− a
we have |c · hi| < m/t2 for all i. In other words, if
we order the elements according to c · 1, c · 2, ..., c ·m,
then we are back to the first case.

5.2 ε-Partitions of Non-expanding Solvable
Schreier Graphs

In the following we study non-expanding Schreier
graphs of solvable groups and show that they have
ε-partition for sub-constant ε.

Lemma 18. Let G be a solvable group of derived
length �, and X be a set |X | = n, such that G acts
on X. Let S ⊆ G be a (symmetric) set of size d ≤
[(logn)1/4](�). Then, the Schreier graph Sch(G,X, S)
has an ε-partition, with ε ≤ 1

2
([(logn)1/4](�))2

6d2

.

Before moving to the proof of the lemma we de-
scribe the proof strategy. Given a Schreier graph
Sch(G,X, S) where G is solvable of derived length
�, acts on X , with a set of generators S ⊆ G
of size d, we define a subgroup H of G, and
two simpler Schreier graphs Sch(G/H,X/H, S′) and
Sch(H,X1, S1). The first graph is Abelian and the
second has a shorter derived series. We first show
that either Sch(G/H,X/H, S′) or Sch(H,X1, S1) has
an ε-partition. We then show (Claim 20) that if either
of the graphs Sch(G/H,X/H, S′) or Sch(H,X1, S1)
has an ε-partition then so does Sch(G,X, S). This
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follows closely the structure of proof in [23], which we
need to extend in two ways: from Cayley to Schreier
graphs, and from non-expansion to ε-partition. This
reduction/induction increases the number of genera-
tors exponentially.

5.2.1 Definitions of Simpler related
Schreier Graphs

Definition 23 (The Schreier graph
Sch(G/H,X/H, S′)). Let H = [G,G] and recall
that G/H is Abelian, and H is normal.

For x ∈ X, let xH = {xg1 |g1 ∈ H}, i.e. xH is the or-
bit of x ∈ X under H. Let X/H be the set of different
orbits. Note that the orbits X/H are a partition of X.
The cosets of X/H are simply xHa with a’s being coset
representatives of H in G.

Thus, the action of G/H on X/H is induced by the ac-
tion of G on X, and it can be defined as (Ha)(xH) =
(xa)H = xHa (by the normality of H).

Hence, we build a Schreier graph on the orbits us-
ing the induced action on them of G/H. Namely,
Sch(G/H,X/H, S′) is the Schreier graph on the X/H
orbits where S′ = Im(S) under the natural map from
G→ G/H.

In order to define the Schreier graph Sch(H,X1, S1)
we need to define a map f with its properties first.

Definition 24 (The map f). Let H = [G,G] and
n = [G : H ]. Let T = {t1, · · · tn} be the right coset
representatives of H (T = T−1), and denote by f :
G → T the map from G → T , such that f(g) = ti iff
g is in the coset Hti.

Claim 19. The map f : G → T has the following
properties

1. g[f(g)]−1 ∈ H
2. For every g, h ∈ G, f(f(g)f(h)) = f(gh).

3. For every g ∈ G, [f(g)]−1 = f(g−1).

4. For every zj , zj′ ∈ H, ti, ti′ ∈ T and s ∈ G, if
(zj)tis = (zj′ )ti′ then zjtis[f(tis)]−1 = zj′ .

Proof. In the following we prove the four different
properties of f .

Proof of 1. For g ∈ G, g = g1t where g1 ∈ H, t ∈ T ,
we have that f(g) = t. Hence g[f(g)]−1 = gt−1 =
g1tt

−1 = g1 ∈ H .

Proof of 2. Let g, h ∈ G be as follows. g = g1ti, h =
h1tj where g1, h1 ∈ H , ti, tj ∈ T .

f(gh) = f(g1tih1tj) = f(g1(tih1)tj) = f(g1(h′1ti)tj)
for some h′1 ∈ H since H is normal.

Thus,

f(gh) =f((g1h′1)titj) = f(titj) = f(f(g1ti)f(h1tj))
=f(f(g)f(h))

Proof of 3. By the normality of H , there exists
g′ ∈ H such that g′−1t−1

i = t−1
i g

−1
1 .

[f(g)]−1 =[f(g1ti)]−1 = t−1
i = f(g′−1t−1

i )
=f(t−1

i g
−1
1 ) = f(g−1)

Proof of 4. Note first the following facts that follow
easily from the previous properties of f .

• If s ∈ G is such that (zj)tis = (zj′)ti′ then
f(s) = f(t−1

i ti′ ). This is since f(tis) = f(ti′),
so f(f([ti]−1)f(tis)) = f(f([ti]−1)f(ti′)). Hence
f([ti]−1tis) = f(s) = f([ti]−1ti′).
• For every ti, ti′ , f(ti) = ti, f(ti′) =
f(tif(ti−1ti′)).

Assume that for s ∈ G, (zj)tis = (zj′)ti′ .

(zj)tis =(zj′)ti′ = (zj′ )f(ti′) = (zj′)f(tif(t−1
i ti′))

=(zj′)f(tif(s)) = (zj′)f(tis)

Hence, (zj)tis[f(tis)]−1 = (zj′).

We now move to the definition of the Schreier graph
Sch(H,X1, S1).

Definition 25 (The Schreier graph Sch(H,X1, S1)).
Let H = [G,G]. For x ∈ X, let X1 = xH . Given G
and X, let G′ to be the smallest subgroup of G con-
taining H such that G′/H acts transitively on X/H.
The coset representatives of H in this G′ are noted
TX = {ti ∈ T |xHti ∈ X/H} where TX ⊆ T (T
is as defined in the definition of the map f). Wlog
we can assume G′ = G. Hence, TX = T and
|TX | = |X/H | = |G/H | = |T |. The set of genera-
tors S1 ⊆ H are of the following form. tis[f(tis)]−1,
ti ∈ T , s ∈ S. Hence, |S1| ≤ |S||X/H |.

5.2.2 Proof of Lemma 18

The proof is by induction on �. For � = 1, G is Abelian
so the lemma follows immediately from Lemma 16.
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Assume the lemma holds for � − 1. We next prove
that it holds for �. Let H = [G,G]. Recall that G/H
is Abelian. Let g(n) = [(logn)1/4](�)

d .

Let |X/H | = k.

Case one: 2(d2g2(n)) < k. I.e. d < (log k)1/2

g(n) ,
then again by Lemma 16, the Schreier graph
Sch(G/H,X/H, S′) has an ε-partition, with

ε ≤ 1

2
log k
6d2
≤ 1

2
g2(n)

6

= 1

2
([(logn)1/4](�))2

6d2

.

Case two: 2(d2g2(n)) ≥ k. Here the Schreier graph
Sch(H,X1, S1) is such that n′ = |X1| ≥ n

2(d2g2(n)) ≥
n

[(logn)1/4](�−1) and it has a set of generators S1, where

|S1| ≤ kd ≤ d2(d2g2(n)) ≤ 2(d4g2(n))

≤ ([(log n)1/4](�−1))1/g2(n) ≤ [(log n′)1/4](�−1)

g(n)
.

Thus, according to the induction hypothesis applied
to Sch(H,X1, S1), the graph Sch(H,X1, S1) has an
ε-partition, with

ε ≤ 1

2
([(logn′)1/4](�−1))2

6|S1|2
≤ 1

2
g2(n)

6

= 1

2
([(logn)1/4](�))2

6d2

.

We complete the proof of the lemma by showing
in the next claim (Claim 20) that if either of the
graphs Sch(G/H,X/H, S′) or Sch(H,X1, S1) has an
ε-partition then so does Sch(G,X, S).

Claim 20. If either of the graphs
Sch(G/H,X/H, S′) or Sch(H,X1, S1) has an
ε-partition then so does Sch(G,X, S).

Proof. If the graph Sch(G/H,X/H, S′) has an ε-
partition, then by removing at most ε|X/H | cosets
a partition of |X/H | into sets Z1, Z2, · · · , Zm ⊆ X/H
is obtained, where each set is of size at most ε|X/H |
with no edges from S′ between pieces. Let TZi be
the coset representatives of the cosets in Zi. An
ε-partition of Sch(G,X, S) is immediately implied
by the partition of Sch(G/H,X/H, S′) by remov-
ing at most ε|X/H | whole cosets of size |xH | each
from Sch(G,X, S). Namely, such a partition is
HTZ1 , · · ·HTZm where each part is of size at most
ε|X/H | · |H | = ε|X | and there are no edges from S
between the parts.

If the graph Sch(H,X1, S1) has an ε-partition, recall
the definitions of the map f : G → T and the coset
representatives T .

Assume that the ε-partition of the graph
Sch(H,X1, S1) partition the vertex set X1
into sets Z1, Z2, · · · , Zm each of size at most
ε|X1| with no edges from S1 between pieces.
The ε-partition of Sch(H,X1, S1) implies an ε-
partition of Sch(Hti, X1ti, S1) , ti ∈ T into sets
Z1ti, Z2ti, · · · , Zmti.
Now consider the partition of Sch(G,X, S) into pieces
of the form {Zjt1, · · · , Zjt|T |}, (ti ∈ T ). We next
show that this is indeed a partition. I.e. there is no
edge s ∈ S that connects any (zj)ti and (zj′)ti′ . This
follows from the forth property proved in Claim 19
showing that for every zj, zj′ ∈ H , ti, ti′ ∈ T and
s ∈ S, if (zj)tis = (zj′)ti′ then zjtis[f(tis)]−1 = zj′ ,
i.e. there exists s1 = tis[f(tis)]−1 ∈ S1, such that
zjs1 = zj′ . The forth property proved in Claim 19
implies that if there is an edge between parts defined
by the above partition of Sch(G,X, S), then there
is an edge between parts in the above partition of
Sch(H,X1, S1). However, we assumed that the par-
tition of Sch(H,X1, S1) is valid and hence so is the
partition of Sch(G,X, S).

5.3 A Coding Result and the Proofs of
Theorems 12 and 13

In the following we consider codes invariant under
groups and associate with them Schreier graphs which
we call the Schreier-graph of the code (see following
Definition 26). We show that if the Schreier-graph
of the code has an ε-partition then either the rate
or the relative distance of the code are bounded by ε
(Lemma 21). The ε-partitions of Abelian and solvable
Schreier graphs (Lemma 16 and Lemma 18) combined
with this coding theory result (Lemma 21) immedi-
ately imply the proofs of Theorem 12 and Theorem 13.

Definition 26 (Schreier graph of a code). Let C ⊆
𝔽
X be a linear code invariant and transitive under

a group G, where C is defined by the orbits of con-
straints that are supported on a set W ⊆ X of size
d. The Schreier graph of the code C is the graph
Sch(G,X, S) where S is defined as follows. Pick
x ∈ X, Let S′ ⊆ G be such that W = {xg|g ∈ S′}.
S = {gi(gj)−1|gi, gj ∈ S′}, i.e. |S| = d2 is such that
for each generating constraint of C, there is a clique
in the graph between its coordinates.

Lemma 21. Let C ⊆ 𝔽
X be a linear code invari-
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ant and transitive under a group G. Assume C is
defined by the orbits of constraints that are supported
on d coordinates of C. If the Schreier graph of the
code Sch(G,X, S) (recall |S| = d2) has an ε-partition
then either the rate or the relative distance of C are
bounded by ε. Moreover, if the rate of the code ex-
ceeds ε, the code is a concatenation of codes of length
at most ε|X | each.

Proof. If the rate of C is bounded by ε then we are
done. It remains to show that if the rate of C is larger
than ε then the distance of C is at most ε|X |.
By the definition of a Schreier graph of a code, The
Schreier graph of the code C, Sch(G,X, S), con-
tains a clique between the coordinates of each gen-
erating constraint of the code C. Since the graph
Sch(G,X, S) has an ε-partition, there exists a par-
tition of X = X0 ∪ X1 ∪ · · · ∪ Xq into disjoint sets
Xi each of size at most ε|X |, such that there are no
edges between Xi, Xj for i �= j > 0. The fact that the
graph Sch(G,X, S) contains a clique between the co-
ordinates of each generating constraint of the code C,
and the ε-partition of Sch(G,X, S) imply that each
generating constraint of the code C has support com-
pletely contained in Xi ∪X0 for some i.

Consider constraints of the form {x = 0|x ∈ X0}.
There are at most ε|X | such constraints. Since we
assume that the rate of C is larger than ε, there exists
a sub-code B ⊆ C, B �= 0, that satisfy all of the
generating constraints of C as well as the constraints
{x = 0|x ∈ X0}. Using the fact that each generating
constraint of C has support completely contained in
Xi ∪ X0 for some i, we obtain that each generating
constraint of B has support completely contained one
Xi, i ≥ 0.

So B ⊆ C ⊆ 𝔽
X is a non-zero linear code, for which

there exists a partition of X = X0∪X1∪· · ·∪Xq into
subsets Xi each of size at most ε|X |, and a set of con-
straints that generate B, each of which has support
completely contained in one Xi, hence by Claim 22
(below), B (and hence C) has distance bounded by
ε|X |.

Claim 22. Let C ⊆ 𝔽
X be a linear code. If there

exists a partition of X = X0∪X1∪· · ·∪Xq into subsets
Xi each of size at most ε|X |, and a set of constraints
that span C⊥ each of which has support completely
contained in one Xi, then C is a concatenation of
disjoint codes Ci ⊆ 𝔽

Xi of length at most ε|X | each,
and in particular, C has distance bounded by ε|X |.

Proof. To see that C is a concatenation of codes we
need to show c ∈ C iff ci ∈ Ci for every i (where ci
is the restriction of c to the coordinates of Xi). If
c ∈ C then it obeys the constraints of the code C.
Since the constraints that define the code C can be
partitioned into disjoint sets, where each set defines
the code Ci, we have that if c ∈ C then ci ∈ Ci for
every i. Next we show that if c ∈ 𝔽

X is such that
ci ∈ Ci for every i, then c ∈ C. Since the constraints
that define C can be partitioned into constraints that
define Ci for every i, and since we know that ci obeys
all the constraints of Ci we have that c obeys all the
defining constraints of C and hence c ∈ C. To see
that the distance of C is bounded by ε|X | note that if
C is not empty then it contains a non zero codeword
c ∈ C, where c = c0||c1|| · · · ||cq; ci ∈ Ci. Since c is
non zero there exists some non-zero ci (assume w.l.o.g
that i = 0). As C is a concatenation of codes Ci’s,
c ∈ C implies that c′ = c0||0||0 · · ·0||0 is also in C and
it has weight bounded by |X1| ≤ ε|X |, hence C has
distance bounded by ε|X |.

6 Conclusions and Open Questions

This paper was motivated from by the construction
of locally-testable codes of good coding-theoretic pa-
rameters. As is well known, Goldreich and Sudan [16]
showed how to obtain such codes can be constructed
from PCPs with related parameters, and good param-
eters are achieved by combining the PCPs of Dinur
[13] with Ben-Sasson and Sudan [7]. Specifically,
they achieve linear binary codes of length n with lin-
ear distance, rate 1/(logn)c and constant-size queries.
These codes are completely explicit.

Removing the PCP machinery and obtaining such
codes (and even better ones) directly is a basic ques-
tion, motivated at length in the paper of Meir [26].
He succeeds only partially, in that his construction
that is partly probabilistic. Moreover, the construc-
tion cleverly retains “proofs of membership” in the
code, as part of the code, which make it resemble
Dinur’s PCP construction.

We take a completely different approach. As all
locally-testable codes must be LDPC codes (since
low query complexity means low density in the par-
ity check matrix), and moreover many locally-testable
codes are symmetric (have a transitive group acting
on them), we ask first if the above coding theoretic
parameters can be attained by codes that are simulta-
neously symmetric and low-density. We give the first
such construction. Our codes are linear binary codes
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of length n with near linear distance n/(log logn)2,
constant rate and both density bounded by 1/(logn)4.
The group acting transitively is non-Abelian. All pre-
viously known symmetric codes with such (or even
weaker) distance had either density or (1/rate) close
to n, and groups in all cases are Abelian.

There are several open questions that arise from this
work.

• Cayley codes and local testing. Are the Cayley
codes we construct actually locally testable? We
tend to think that they are not, in which case
would be the first example of a symmetric LDPC
code which is not locally testable. As we offer
a general framework of Cayley codes, possibly
other choices of components in this framework
can lead to to locally-testable codes.
• Improving the parameters. Can one get the ul-

timate – symmetric, constant density good codes
(namely with linear distance and constant rate)?
Our lower bounds imply that for such a result
the acting group must be “more noncommuta-
tive” than the one we use, namely it cannot be
solvable with a constant-length derived series.
• Key to our lower bound is our that Cayley codes

of such groups have ε-partition, a property which
implies in particular that such codes must have
two disjoint codewords. Interestingly, the ques-
tion of proving the latter property for similar
codes comes up naturally in the work of Lackenby
[20, 21] on 3-dimensional manifolds. Specifically,
he asks if linear codes symmetric under the ac-
tion of p-groups (which are solvable, but can have
constant degree Cayley graphs), which have con-
stant rate, density and normalized distance, must
have two codewords with disjoint support. Our
lower-bound techniques fails for such groups.
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