
Innovations in Computer Science 2010

Non-Malleable Codes
Stefan Dziembowski1 Krzysztof Pietrzak2 Daniel Wichs3

1 University of Rome, La Sapienza
2 CWI Amsterdam

3 New York University
stefan@dziembowski.net K.Z.Pietrzak@cwi.nl wichs@cs.nyu.edu

Abstract: We introduce the notion of “non-malleable codes” which relaxes the notion of error-correction
and error-detection. Informally, a code is non-malleable if the message contained in a modified codeword is
either the original message, or a completely unrelated value. In contrast to error-correction and error-detection,
non-malleability can be achieved for very rich classes of modifications.
We construct an efficient code that is non-malleable with respect to modifications that effect each bit of the
codeword arbitrarily (i.e. leave it untouched, flip it or set it to either 0 or 1), but independently of the value of the
other bits of the codeword. Using the probabilistic method, we also show a very strong and general statement:
there exists a non-malleable code for every “small enough” family F of functions via which codewords can be
modified. Although this probabilistic method argument does not directly yield efficient constructions, it gives
us efficient non-malleable codes in the random-oracle model for very general classes of tampering functions —
e.g. functions where every bit in the tampered codeword can depend arbitrarily on any 99% of the bits in the
original codeword.
As an application of non-malleable codes, we show that they provide an elegant algorithmic solution to the
task of protecting functionalities implemented in hardware (e.g. signature cards) against “tampering attacks”.
In such attacks, the secret state of a physical system is tampered, in the hopes that future interaction with
the modified system will reveal some secret information. This problem, was previously studied in the work of
Gennaro et al. in 2004 under the name “algorithmic tamper proof security” (ATP). We show that non-malleable
codes can be used to achieve important improvements over the prior work. In particular, we show that any
functionality can be made secure against a large class of tampering attacks, simply by encoding the secret-state
with a non-malleable code while it is stored in memory.

Keywords: Codes, Cryptography, Information Theory, Tamper-Proof Security

1 Introduction
Consider the following three-step process, which we

call the “tampering experiment”:
1. A source message s is encoded via a (possibly

randomized) procedure Enc, yielding a codeword
c = Enc(s).

2. The codeword is modified under some tampering-
function f ∈ F to an erroneous-codeword c̃ =
f(c).

3. The erroneous-codeword c̃ is decoded using a
procedure Dec, resulting in a decoded-message
s̃ = Dec(c̃).

The tampering experiment can be used to model
several interesting real-world settings, such as data
transmitted over a noisy channel, or adversarial tam-
pering of data stored in the memory of a physical de-
vice, which we will talk about more later. We would
like to build special encoding/decoding procedures
(Enc,Dec), which give us some meaningful guarantees
about the results of the above tampering experiment,

for large and interesting families F of tampering func-
tions. Let us explore several possibilities for the type
of guarantees that we may hope for.

Error Correction. One very natural guaran-
tee, called error correction, would be to require that
for any tampering-function f ∈ F and any source-
message s, the tampering experiment always produces
the correct decoded-message s̃ = s. This notion of
correction was first studied in the seminal work of
Shannon in 1948 [33] with respect to random noise
(e.g each bit of the codeword c is flipped with some
probability p < 1/2) and later by Hamming in 1950
[18], who introduced the notion of an error-correcting
code with respect to worst-case errors. In particu-
lar, we can think of Hamming’s notion of an error-
correcting code (with distance d) as guaranteeing the
error-correction property for the family F of func-
tions f for which the Hamming distance between an
erroneous-codeword c̃ = f(c) and c is small (at most
d/2 − 1). Since their introduction, error-correcting

434

NON-MALLEABLE CODES

codes have received much attention and found count-
less applications in both theory and practice. There
has also been some study of error correction for other
families F , such as ones where tampering functions
preserve edit distance instead of Hamming distance
(see the survey of [25]). However, it is also clear that
error correction cannot be achieved for many natural
(and simple) function families – such as even the sin-
gle “zero function” f that maps all values x to the
all-zero string.

Error Detection. A weaker guarantee,
called error-detection, requires that the tampering-
experiment always results in either the correct value
s̃ = s or a special symbol s̃ = ⊥ indicating that
tampering has been detected (where the latter can
only happen when the codeword has been modified to
c̃ �= c). This notion of error-detection is a weaker
guarantee than error-correction, and achievable for
larger families F of tampering functions. For ex-
ample, Hamming’s notion of an error-correcting code
with distance d can detect up to d−1 errors (but only
correct d/2− 1 errors).

The recent work of Cramer et al. [11] intro-
duced the notion of “Algebraic Manipulation Detec-
tion” (AMD) codes. Such codes have an inherently
randomized encoding procedure and guarantee that
for any a-priori chosen error-vector ∆ �= 0, we get
Dec(Enc(s) + ∆) = ⊥ with overwhelming probability
over the randomness of the encoding.1 In other words,
these codes guarantee error-detection with respect to
the family Ferr consisting of all constant-error func-
tions f∆ given by f∆(x) def= x + ∆. The definition
of AMD codes is an interesting departure from the
traditional study of error correction/detection, where
restrictions are usually placed on the relationship be-
tween the codeword c and the erroneous-codeword
c̃ (e.g. they are assumed to be close in some met-
ric space). Under the tampering-family Ferr, the
erroneous-codeword c̃ = f∆(c) = c + ∆ can in prin-
ciple take on any possible value, and hence the final
relationship between c and c̃ can be arbitrary. How-
ever, the tampering functions f∆ ∈ Ferr are restricted
in how they derive the erroneous-codeword c̃ from c,
since the error-vector ∆ is specified a-priori and in-
dependently of the value of c (which contains some
randomness from the encoding procedure). We take
a similar view in this work, and study restrictions on
the family F of tampering functions rather than just
the final relationship between a codeword and an er-
roneous codeword.

1We will often just use the addition operation + over bit-
strings, where an n-bit string is interpreted as a value in 𝔽

n
2 .

Unfortunately, even error detection cannot be
achieved for many other natural (and simple) func-
tion families F . For example, the family Fconst of all
constant-functions fc∗(x)

def= c∗, always contains some
function that maps all values to a “valid” codeword
c∗ (for which Dec(c∗) �= ⊥), and hence is neither cor-
rectable nor detectable.
Non-Malleability. As the main focus of this work,
we present yet another meaningful and previously un-
explored notion, which we call “non-malleability”. A
non-malleable code ensures that either the tamper-
ing experiment results in a correct decoded-message
s̃ = s, or the decoded-message s̃ is completely indepen-
dent of and unrelated to the source-message s. In par-
ticular, if the decoded-message is s̃ �= s, then it does
not reveal any information about the source-message
s. Compared to error correction or error detection,
the “right” formalization of non-malleability is some-
what harder to define.

Let Tamperfs be a random variable for the value of
the decoded-message s̃, which results when we run
the tampering experiment with source-message s and
tampering-function f , over the randomness of the en-
coding procedure. Intuitively, we wish to say that the
distribution of Tamperfs is independent of the encoded
message s. Of course, we also want to allow for the
case where the tampering experiment results in s̃ = s
(for example, if the tampering function is identity),
which clearly depends on s. Thus, we require that for
every tampering-function f ∈ F , there exists a dis-
tribution Df which outputs either concrete values s̃
or a special same� symbol, and faithfully models the
distributions of Tamperfs in the following sense: for
every source-message s, the distributions of Tamperfs
and Df are statistically close when the same� symbol
is interpreted as s. That is, Df specifies a distribu-
tion for the “outcomes” of the tampering-experiment
with a function f ∈ F , except that it is allowed
some ambiguity by outputting a same� symbol to in-
dicate that the decoded-message should be the same
as the source-message, without specifying what the
exact value is. The fact that Df depends on only f
and not on s, shows that the outcome of Tamperfs is
independent of s, exempting equality.

Error-correction w.r.t. to some class F of tam-
pering functions trivially implies non-malleability
w.r.t. to F : simply define Df to always output
the same� symbol. Error-detection only implies non-
malleability if for every f ∈ F , the probability
Pr[Dec(f(Enc(s))) = ⊥] (i.e. that a tampered code-
word is invalid) is the same for all source-message
s. In that case, for each f ∈ F there is a distri-
bution Df over {same�,⊥} which satisfies the defini-

435

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

tion of non-malleability. For example, the above is
the case for AMD codes where, for each f∆ ∈ Ferr,
Pr[Dec(f∆(Enc(s))) = ⊥] = Pr[Dec(Enc(s) + ∆) = ⊥]
is either 0 if ∆ = 0, or negligbily close to 1 if ∆ �= 0,
independently of s.

1.1 Main Results for Non-Malleability
We show that non-malleability can be achieved

for many rich families F of tampering functions, for
which error-correction and error-detection are impos-
sible.
Bit-Wise Independent Tampering. As one very
concrete example, we study non-malleability with re-
spect to the family of functions f which specify, for
each bit of the codeword c, whether to keep it as is, flip
it, set it to 0, set it to 1. That is, each bit of the code-
word is modified arbitrarily but independently of the
value of the other bits of the codeword. We call this
the “bit-wise independent tampering” family FBIT.
Note that this family contains constant functions
Fconst and constant-error functions Ferr as subsets.
Therefore, as we have mentioned, error-correction and
error-detection cannot be achieved w.r.t. this family.
Nevertheless, we show an efficient non-malleable code
for this powerful family. Our construction, described
in Section 4, is based on AMD codes (described above)
and a type of linear secret-sharing scheme (over bits)
with some additional properties.
All families of bounded size. Even non-
malleability cannot be achieved with respect to the
family of all tampering functions. No matter what
encoding/decoding procedure one chooses, there is al-
ways some function f , which, on input c, computes
s = Dec(c), sets s′ to be the same as s but with
e.g. the last bit flipped, and outputs c̃ = Enc(s′).
However, we notice that this “bad” function f de-
pends on the encoding/decoding procedure. There-
fore, even though for any coding scheme, there ex-
ists some tampering function f that breaks non-
malleability, we show that for any “small enough”
tampering family F , there exists some coding scheme
which is non-malleable w.r.t. F . Note that, when
considering codewords of size n, the family Fall of all
tampering functions on n-bit codewords has size given
by log(log(|Fall|)) = n + log(n). Our result shows
that for any slightly smaller family F whose size is
given by log(log(|F|)) < n, there exist non-malleable
codes w.r.t. F and, in particular, a random code is
likely to be non-malleable with overwhelming prob-
ability. This is in contrast to error-correction and
error-detection, for which there exist some small fam-
ilies F (of size log(log(|F|)) = log(n)) for which no
code can be error-correcting or error-detecting (e.g.

the family Fconst).
Unfortunately, our existential result is derived via

a probabilistic method argument, and therefore does
not directly lead to efficient constructions. However,
as a corollary of the probabilistic method argument,
we can show that efficient codes in the “random or-
acle model” are non-malleable w.r.t. large function
families F . For example, we get such non-malleable
code w.r.t. all functions which tamper the left and
right half of the codeword independently.2 More gen-
erally, we get such codes for the family of functions f ,
where the ith bit in f(c) is a function of an arbitrary
fraction (say, 99%) of the bits of c.

1.2 Application to Tamper-Resilient Cryp-
tography

Traditionally, cryptographic security notions as-
sume that an adversary only has “black-box” access
to an attacked system. That is, she can only observe
the inputs/output behavior to the system, but gets no
further information. Such models often fail to capture
physical reality, where an adversary can attack an ac-
tual physical implementation of the system. Attacks
which go beyond black-box access are called “imple-
mentation attacks”, and we distinguish between two
classes of such attacks, namely “leakage” and “tam-
pering” attacks.3 Leakage-attacks refer to all attacks
where the adversary can learn some information about
the secret internal state of a system by measuring
some properties of its physical implementation (e.g.
timing, radiation, heat, power consumption). Tam-
pering attacks, on the other hand, refer to attacks
where the adversary actively modifies the computa-
tion (e.g. by cutting wires in the circuit or heating
it to introduce random errors in memory), and then
learns some information from the input/output be-
havior of the modified computation. As an example
of how such attacks are used, the work of Boneh, De-
Millo and Lipton [5] shows that if random faults are
introduced into the computation of a single RSA sig-
nature, then the resulting output can be used to factor
the modulus. Of course, a physical attacker can be a
combine both leakage and tampering attacks.

To get any non-trivial security for an implementa-
tion, some degree of security against both, leakage
and tampering attacks, is necessary: no security can
be achieved if the device just leaks the entire secret

2i.e. The family F of functions f : {0, 1}n → {0, 1}n which
can be written as f1, f2 for f1, f2 : {0, 1}n/2 → {0, 1}n/2,
such that, for any value c = (c1, c2), we have f(c1, c2) =
(f1(c1), f2(c2)).

3Leakage-attacks are often called “passive attacks”, whereas
tampering (or tampering combined with leakage) attacks are
called “active attacks”.

436

NON-MALLEABLE CODES

state, and no security can be achieved if the adversary
can tamper the computation to the extent that she
can simply replace the original computation with a
computation that outputs the entire secret state. The
cryptographic community has recently seen a flurry of
work on cryptographic systems with leakage-resilience
properties [1, 2, 12–15, 20, 21, 24, 26, 29]. On the
other hand, we are aware of only two works which for-
mally study security against tampering attacks: the
work of Genaro et al. [16] and Ishai et al. [19].4 Our
model of tamper-resilience is similar to that of [16]
and we first describe this model and our results. We
then we compare this to the results (and model) of
[16, 19].
Model of Tamper-Resilient Security. Follow-
ing Gennaro et al. [16], we consider the problem
of constructing a secure device by combining secret
“leakage-proof” but not “tamper-proof” memory with
a public “tamper-proof” and “leakage-proof” circuit.
Thus, only the parts of the device that are fixed and
publicly known cannot be tampered with. The ad-
vantage of this approach is that one only has to man-
ufacture some fixed tamper proof circuitry, but the
memory – which must be read/written constantly and
thus is harder to protect – need not be tamper-proof.
On the other hand, as discussed in [15, 24], the re-
quirement that all components of the device are com-
pletely “leakage-proof” is a very strong one and very
hard, if not impossible, to satisfy in practice. Luck-
ily, we can use the above-mentioned recent results on
leakage-resilient cryptography to weaken this require-
ment, and allow some bounded amount of information
to leak during computation. Therefore, we are left
with the task of securing the tamper-prone memory
against tampering attacks.
Our Results. We consider an arbitrary sys-
tem 〈G, s〉 consisting of a public functionality G as-
sumed to be implemented on a “tamper-proof” and
“leakage-proof” circuit, and a secret state s stored
in “leakage-proof” but “tamper-prone” memory. The
system may be stateful and interactive: a user can
invoke it periodically with inputs x by submitting an
Execute(x) command, at which point the system com-
putes (y, s′) ← G(x, s), updates its state to s := s′
and outputs y. We call this type of interaction with
the system black-box access. We also assume that an
adversary can, in addition, interact with the system
by issuing Tamper(f) commands, for some tampering
functions f ∈ F , at which point the system state is
modified to s := f(s). We call this type of interaction

4Ad-hoc solutions for some particular systems were proposed
by [17, 23]. Some of these were subsequently broken [7, 9],
highlighting the need for formal study.

(via both Execute and Tamper commands) tampering
access to the system. Our goal is to take any system
〈G, s〉 and compile it into a new system 〈G′, s′〉, which
acts exactly the same as the original in any black-box
interaction (i.e. preserves functionality), but is also
tamper resilient. We formalize the latter, by requir-
ing that, for any adversary A with tampering access
to the compiled system 〈G′, s′〉, there is a simulator
S which only has black-box access to the original sys-
tem 〈G, s〉 and “learns” the same information as A. In
other words, tampering-access in the compiled system
does not give A any advantage over black-box access
to the original.

As our main result for tamper-proof security, we
show that any coding scheme (Enc,Dec), which is non-
malleable w.r.t. some family F , can be used to com-
pile any system 〈G, s〉 into a system 〈GEnc,Dec,Enc(s)〉
which is tamper-resilient w.r.t. F . The compiled sys-
tem 〈GEnc,Dec,Enc(s)〉 stores its state in encoded form.
As the first step in any computation, the compiled sys-
tem decodes its state and then runs the original com-
putation with the decoded state and the input. Lastly,
at the end of the computation, the compiled system
re-encodes its updated state and updates the mem-
ory contents with the new state. On a high-level, the
compiled system is tamper-resilient since tampering
with the encoded state c via a f ∈ F produces a pre-
dictable result, which is independent of the underly-
ing state s. More precisely, the tampering interaction
can be simulated by sampling from the distribution
Df used to define non-malleability: if the outcome is
the same� symbol, tampering-access to the compiled
system can be simulated by black-box access to the
original system, and, if the outcome is some specific
value s̃, tampering-access can be simulated by run-
ning 〈G, s̃〉 independently of the original system.

Comparison to “Algorithmic Tamper-Proof

Security” of [16].

As we mentioned, our model of tamper-resilient se-
curity, where we assume a “tamper-proof”/“leakage-
proof” public circuit and a “leakage-proof” but not
“tamper-proof” memory was proposed and studied
by Gennaro et al. [16]. The main solution of that
work consists of using a (strong) public-key signature
scheme and storing the state s along with a signa-
ture σ = Signsk(s) on memory. In our context, we
can think of this solution as using a keyed encoding
scheme (Encsk,Decpk) where Encsk(s) is now a secret
encoding algorithm which outputs s along with a sig-
nature σ = Signsk(s) under the secret-key sk. The
decoding function Decpk(s, σ) verifies the signature σ
using pk, outputs ⊥ if the signature is invalid, and s
otherwise. We compare the above solution with our

437

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

solution using non-malleable codes.
Limited Functionality: The security notion

achieved by the signature-based coding scheme
does not satisfy our notion of non-malleability,
even for simple/natural function families like
bit-wise independent tampering FBIT. The
problem is that a tampering-attacker can learn
some limited information about the state s by
(for example) setting the first bit of the encoded
state (s, σ) to 0. Then the decoded-message is
s if and only if the first bit of s already was 0,
and ⊥ otherwise (as w.h.p. σ will not be a valid
signature). Therefore, the adversary can learn
some bits of s via tampering attacks.5 This
issue was already recognized in the work of [16],
but it was noted that tamper-resilient security
is still achieved for some functionalities such as
signatures and encryption schemes where leaking
logarithmically many bits about the secret key
can be tolerated without breaking the security.
Unfortunately, even in these special cases, some
problems come up: for example, security breaks
down if an adversary has tampering-access to
many signature/encryption devices that use the
same secret key, and encryption security breaks
down if the adversary can adaptively perform
a tampering attack based on the challenge-
ciphertext. More generally, the signature-based
solution does not provide a general method for
making any functionality G tamper-resilient. In
contrast, our solution using non-malleable codes
gives us strong guarantees for all functionalities
G, ensuring that a tampering attack can always
be simulated.

Secret-keyed Encoding: Another big difference
between our solution and that of [16] is that our
encoding/decoding procedures are public and un-
keyed, while that of [16] requires a secret-keyed
encoding procedure (and a public-keyed decod-
ing). This has several implications. Firstly, the
use of a secret-keyed encoding means that state
of G has to be decided by an outside party (that
knows the secret signing-key sk) and cannot be
done by the system itself. In particular, this so-
lution will not work for stateful functionalities G
which need to update their own state. Secondly,
the use of keys brings up some key-management
problems where the “software” designer (who de-
cides on the state s) needs to coordinate with

5In fact, using this type of an attack, one can learn up to
logarithmically many bits of s with polynomial probability. A
“self-destruct” feature, which we will discuss below, will pre-
vent the adversary from launching this attack many times on
different bits of the state, ultimately learning the entire secret.

the hardware designer (who knows the signing
key sk). In contrast, our solution has public en-
coding/decoding and therefore is applicable to
stateful functionalities G without requiring key-
management.

Assumptions: The signature-based solution re-
quires computational assumptions (one-way
functions), while our main constructions of non-
malleable codes are information theoretic.

Tampering family F : The main benefit of the
signature-based solution is that it allows for the
most general family F of all efficient tampering
functions. In contrast, all of our solutions (neces-
sarily) only consider smaller classes of tampering
functions, namely those for which non-malleable
codes exist. In this aspect, our result is weaker
but still well motivated since tampering-attacks
are unlikely to be “too complicated”. To the
best of our knowledge, bit-wise independent tam-
pering (considered in Section 4) already covers
the majority of real-world tampering attacks that
have been demonstrated in practice.

Self-Destruct/Self-Update: The ATP model of
[16] assumes a “self-destruct” feature, which
means that whenever the memory content de-
codes to ⊥ (i.e. is not of the form (s, σ) where σ is
a valid signature of s), the device is “destroyed”.
This can be done by overwriting the memory con-
tent with some dummy value, say the all-zero
string, or setting some (tamper-proof) flag that
prevents future use of the device.
Our construction of a tamper-proof systems via
non-malleable codes has a similar self-destruct
feature implicitly built into it: the system freshly
re-encodes its state after each invocation, where,
if the decoding gives ⊥, the re-encoded value is
set to a dummy all-zero string. For functionali-
ties G(., .) which do not update their state, this
requirement imposes some overhead as memory
must be written to.
It would be desirable to have a transformation
achieving tamper-proof security w.r.t. to some
class F from codes which are non-malleable w.r.t.
F (or some similar notion), where also the trans-
formed system is stateless. We leave this prob-
lem for future work. Here, we would only like to
mention that our construction of non-malleable
codes for bit-wise independent tampering (FBIT)
has some particular properties6 which allow us to

6Informally, given some history f1, . . . , fi−1 of tampering
functios that were applied to some unknown codeword, we can
compute (assuming the codeword is still valid) the probabili-
ties that applying a tampering function fi will (1) produce an

438

NON-MALLEABLE CODES

prove that our transformation (applied to state-
less functionalities) remains tamper-proof even if
we simply omitt updating the sate. (We then
need an explicit self-destruct as described above.)

Comparison to [19]. Ishai et al. [19] build a
general circuit compiler where an adversary, who can
tamper with the wires of a compiled circuit, does not
learn any more information than an adversary that
only has black-box access to the original circuit. The
transformation uses techniques from multi-party com-
putation and is quite delicate. The model considered
in that work is stronger as ours as it allows tamper-
ing of the “circuit” and “memory” (essentially, mem-
ory corresponds to a subset of the wires associated
with the state), whereas we only consider tamper-
ing of “memory” but assume the circuit is tamper-
proof. However, in this very general setting, the
work of [19] only considers a very limited tampering-
function family that modifies a bounded subset of the
wires between each invocation (to tolerate tamper-
ing of t wires per invocaton, the compiler will blow
up the cirucit size by a factor of at least t). When
restricted to memory, this would be analogous to
standard error-correcting codes which provide secu-
rity against a bounded number of individual bit mod-
ification. In contrast, we achieve security for much
richer families F of tampering functions. It is an inter-
esting open problem to combine the two approaches
and achieve tamper-proof security for circuits as [19],
but for larger families F , and, ideally for all families
for which there exist non-malleable codes.

2 Preliminaries & Notation
For a randomized function g, we write g(x; r) to

denote the value of g on input x using randomness r.
Sometimes we don’t want to make the randomness ex-
plicit and only write g(x) to denote the random vari-
able g(x;R) for a uniformly randomR. The Hamming
weight of a binary string x ∈ {0, 1}n, denoted wH(x)
is the number of 1’s in x. The Hamming distance
of two strings x, x′, denoted dH(x, x′) def= wH(x − x′)
is the number of positions in which they differ. The
Statistical Distance of two random variables X0, X1
with support X is SD(X0, X1) def= 1/2

∑
x∈X |PX0 (x)−

PX1 (x)|. If the statistical distance between X0 and
X1 is negligible, we say that X0 and X1 are statisti-
cally indistinguishable and write X0 ≈ X1. We write
X0 ≡ X1 if they are identically distributed.

invalid codeword (2) leave the encoded message unchanged or
(3) produce an encoding of a different message. In the lats case
we can also output a codeword having the right distribution.

3 Non-Malleable Codes
Definition 3.1 (Coding Scheme). A coding
scheme consists of two functions: a randomized en-
coding function Enc : {0, 1}k → {0, 1}n, and deter-
ministic decoding function Dec : {0, 1}n → {0, 1}k ∪
{⊥} such that, for each s ∈ {0, 1}k, Pr[Dec(Enc(s)) =
s] = 1 (over the randomness of the encoding algo-
rithm).

We can also talk about coding-scheme ensembles,
parametrized by a message length k ∈ ℕ and security-
parameter λ ∈ ℕ, so that, for each choice of k, λ, the
ensemble contains an efficient code with n = n(k, λ).
We will often assume such ensembles implicitly, but
will try not to complicate the exposition with addi-
tional notation.

We now define non-malleability w.r.t. some fam-
ily F of tampering functions. We want to say that a
code is non-malleable, if the result of tampering with
a codeword is independent of the encoded message.
To do so, we require that for each f ∈ F there is a
universal distribution Df which, for all s, indicates
what the likely outcomes are when applying a tam-
pering function f to a (random) encoding of s. The
distribution Df only gets (black-box) access to f(.),
but does not get s. We allow Df to output a spe-
cial same� symbol, to indicate that tampering via f
does not change the initial encoded message (without
needing to commit to what that message is).

Definition 3.2 (Non-Malleability). Let F be
some family of tampering functions. For each f ∈ F
and s ∈ {0, 1}k, define the tampering-experiment

Tamperfs
def=

⎧⎨
⎩
c← Enc(s), c̃← f(c)
s̃ = Dec(c̃)
Output: s̃.

⎫⎬
⎭

which is a random-variable over the randomness of
the encoding function Enc. We say that a coding
scheme (Enc,Dec) is non-malleable w.r.t. F if for
each f ∈ F , there exists a distribution Df over
{0, 1}k ∪ {⊥, same�}, such that, for all s ∈ {0, 1}k,
we have:

Tamperfs ≈
⎧⎨
⎩
s̃← Df
If s̃ = same� output s,
else output s̃.

⎫⎬
⎭ (1)

and Df is efficiently samplable given oracle access to
f(·). Here “≈” can refer to statistical or computa-
tional indistinguishability. In case of statistical indis-
tinguishability, we say the scheme has exact-security
ε, if the statistical distance above is at most ε.

439

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

We also define a slightly stronger notion, called
strong non-malleability, which essentially says that,
whenever the codeword is actually modified to c̃ �= c,
the decoded-message s̃ is independent of s. This is
in contrast to the plain notion of non-malleability
where some modifications of the codeword c could
preserve the value of the contained message s̃ = s.
The stronger notion of non-malleability is somewhat
simple to define.

Definition 3.3 (Strong Non-Malleability). Let
F be a family of functions. We say that an coding
scheme (Enc,Dec) is strongly non-malleable w.r.t. F
if for any s0, s1 ∈ {0, 1}k and any f ∈ F , we have:

StrongNMfs0 ≈ StrongNMfs1 (2)

where

StrongNMfs
def=

⎧⎪⎪⎨
⎪⎪⎩
c← Enc(s), c̃← f(c)
s̃ = Dec(c̃)

If c̃ = c output same�,
eslse output s̃.

⎫⎪⎪⎬
⎪⎪⎭

Here “≈” can refer to statistical, or computational in-
distinguishability. In case of statistical indistinguisha-
bility, we say the scheme has exact-security ε, if the
statistical distance is at most ε.

Theorem 3.1. If a coding scheme (Enc,Dec) is
strongly non-malleable w.r.t. to some family F , then
it is non-malleable w.r.t. F with the same exact se-
curity.

Proof. Set Df = StrongNMfs0 for some constant s0 ∈
{0, 1}k. Then, for each s ∈ {0, 1}k, Df ≈ StrongNMfs
and so{

s̃← Df
Output s if s̃ = same�, and s̃ otherwise.

}
≈{

s̃← StrongNMfs
Output s if s̃ = same�, and s̃ otherwise.

}
≡{

c← Enc(s), c̃← f(c), s̃ = Dec(c̃)
Output: s̃.

}
.

4 Bit-Wise Independent Tampering
With FBIT we denote the family which contains

all tampering functions that tamper every bit inde-
pendently. Formally, this family contains all func-
tions f : {0, 1}n → {0, 1}n that are defined by n
functions fi : {0, 1} → {0, 1} (for i = 1, . . . , n) as
f(c1, . . . , cn) = (f1(c1), . . . , fn(cn)). Note that there

are only 4 possible choices for each fi (i.e. how to
modify a particular bit) and we name these “set to 0”,
“set to 1”, “flip”, “keep” where the meanings should
be intuitive. We call the above family the bit-wise
independent tampering family.

As discussed in the introduction, standard notions
of “error correction” and “error detection” trivially
cannot be achieved against this class. Note that the
family Ferr of constant-error functions which was stud-
ied in the context of AMD codes is a subset of FBIT.7
Bitwise independent tampering is interesting in the
context of tamper-proof security, as most practical
attacks tamper with each bit in the computing cir-
cuit and/or the memory individually. In Section Sec-
tion 6 we’ll show how non-malleable codes can be used
to protect any functionality against tampering of the
memory.

4.1 Construction
Before proceeding with the construction, we first

define two primitives which are interesting in their
own right: a type of secret sharing scheme over bits
that also has a large distance, and AMD codes which
we mentioned previously in the introduction.

Definition 4.1 (LECSS Schemes). Let (E,D) be a
coding scheme with source-messages s ∈ {0, 1}k and
codewords c ∈ {0, 1}n. We say that the scheme is
a (d, t)-linear error-correcting secret-sharing (LECSS)
scheme if the following properties hold:
• Linearity: For all c ∈ {0, 1}n, such that D(c) �=
⊥, all ∆ ∈ {0, 1}n, we have

D(c+ ∆) =
{ ⊥ if D(∆) = ⊥

D(c) + D(∆) otherwise

• Distance d: For all non-zero c̃ ∈ {0, 1}n with
hamming-weight wH(c̃) < d, we have D(c̃) = ⊥.
• Secrecy t: For any fixed s ∈ {0, 1}k, we de-

fine the random variables C = (C1, . . . , Cn) =
E(s), where Ci denotes the bit of C in position i
(and where the randomness comes from the en-
coding procedure). Then the random variables
{Ci}1≤i≤n, are individually uniform over {0, 1}
and t-wise independent.

Definition 4.2 (AMD Codes [11]). Let (A,V) be a
coding scheme with A : {0, 1}k → {0, 1}n. We say that
(A,V) is a ρ-secure algebraic manipulation detection
(AMD) code if for all s ∈ {0, 1}k and all non-zero
∆ ∈ {0, 1}n we have Pr[V(A(m) + ∆) �= ⊥] ≤ ρ,
where the probability is over the randomness of the
encoding.

7They are defined as the functions in FBIT, but where the
fi can only be “keep” or “flip”, but not “set to 0” or “set to 1”.

440

NON-MALLEABLE CODES

Our main theorem of this section shows that, by
composing an AMD code with a LECSS scheme, we
get a non-malleable code for the bit-wise independent
tampering family FBIT.

Theorem 4.1. Let (E,D) be a (d, t)-LECSS with

E : {0, 1}k → {0, 1}n′

having distance d > n/4.
Let (A,V) be a ρ-secure AMD code where

A : {0, 1}k′ → {0, 1}n

and k′ = n′. Define the composed code (Enc,Dec) by

Enc(s) def= E(A(s))

Dec(c) def=
{ ⊥ if D(c) = ⊥

V(D(c)) otherwise

Then (Enc,Dec) is non-malleable with respect to the
family FBIT with exact security

ε ≤ max
(
ρ , 2−Ω(t)

)
.

The proof of the theorem appears in Appendix A,
and is fairly delicate. Below, we sketch only the high-
level idea. To prove the theorem, we must show that
for each f ∈ FBIT, there is a distribution Df which
satisfies Definition 3.2. To do so, we look at how many
of the component function fi that make up f , are of
the form “set to 0” or “set to 1”. If this number is
too small (less than t) then tampering via f is really
equivalent to adding some offset ∆ to A(s), from a
distribution which is independent of A(s). Therefore,
there is some universal probability with which ∆ = 0
(in which case Df should output same�) and ∆ �= 0
(in which case Df should output ⊥ since the security
of the AMD codes ensure that such modifications are
likely to be detected). On the other hand, if the num-
ber of fi that are “set to 0”/“set to 1” is too high
(more than n− t) then the values in the positions of
c̃ = f(Enc(s)) that are not “set” are uniformly ran-
dom. ThereforeDf can sample the value of c̃ indepen-
dently of s. Lastly, we show that when the number
of fi that are “set to 0”/“set to 1” is in between t
and n − t, then the erroneous codeword decodes to
⊥ with overwhelming probability. This is where we
need the distance of the LECSS to be d > n/4.8 Es-
sentially, we show that in this case there exists some

8Interestingly, the requirement that d > n/4 is not an arti-
fact of the proof-technique but an optimal bound at this level
of generality. In particular, there are examples of LECSS con-
structions with d < n/4 for which our construction would not
be secure.

codeword c∗ such that the tampered value c̃ is neither
likely to math c∗ exactly nor is it likely to be be far-
away enough from it to be a valid codeword under the
LECSS scheme.

We note that the idea of composing AMD codes
together with linear secret-sharing schemes also ap-
peared explicitly in [11] (and implicitly in [6, 27, 28])
in the context of “robust secret sharing”, but the ap-
plication in this work and the main ideas behind our
proof are very different.

4.2 Instantiating the Construction
To actually instantiate a construction of the non-

malleable code defined above, we need constructions
of AMD codes and of LECSS-schemes. For the for-
mer, very efficient constructions of AMD codes were
given by [11] where, to achieve security ρ ≤ 2−λ, the
encoding has an additive overhead of roughly 2λ bits.
On the other hand, LECSS-schemes have not been
explicitly defined or constructed in literature. We
note that there is a clear connection between LECSS-
schemes, linear ramp secret-sharing schemes, and
error-correcting codes. Ramp secret-sharing schemes
have mostly been considered for larger alphabet sizes
(e.g. Shamir Secret Sharing [32]) and not over bits, an
exception is the work of Pueyo et al. [30]. However, no
known constructions of ramp secret-sharing schemes
over bits achieve distance d > n/4 over bits, as re-
quired for our application. In Appendix B, we show
how to instantiate LECSS schemes with large d, t effi-
ciently, based on random linear error-correcting codes
(recall, that our construction does not require efficient
error-decoding). The main ideas for this construction
are based on the work of Chen et al. [8], which shows
how to relate the secrecy t of a LECSS to the dual-
distance of an underlying error correcting code. In ad-
dition, it shows that a random linear error-correcting
code will (with overwhelming probability) achieve a
large distance d and a large dual distance yielding a
large t. Combining the analysis in Appendix B with
Theorem 4.1 we get the following parameters.

Theorem 4.2. For any constant δ > 0, any n ∈
ℕ, there exist efficient non-malleable codes w.r.t. the
family FBIT, with codeword size n, message size

k ≥ (1−H(1/4)− δ)n
and security

ε = 2−Ω(n)

where

H(x) def= −x log2(x)− (1− x) log2(1 − x)
is the Shannon entropy function.

441

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

In particular, the rate of the code can be made to
approach k/n ≈ (1 − H(1/4)) ≈ .1887. Moreover,
there is an efficient procedure which, given k and n,
outputs a description of such a code with probability
1− 2−Ω(n).

4.3 Improving Efficiency
One issue with our construction is that the rate
k/n of the scheme is less than 1/5 and therefore rel-
atively poor. We now address this issue by showing
that any non-malleable code w.r.t FBIT, with any con-
stant rate k/n, can be converted into computationally
secure non-malleable code w.r.t FBIT, where the new
rate k′/n′ asymptotically approaches 1. The main
idea is to combine an encoding scheme (Enc,Dec) from
the previous sections with an authenticated encryp-
tion scheme (AuthEncrypt,AuthDecrypt) in the follow-
ing way: to encode a message s we take a random
key key and store (Enc(key),AuthEncryptkey(s)). The
decoding of (c0, c1) is straightforward: first compute
key′ = Dec(c0), and then output AuthDecryptkey′(c1).
Security of this construction is shown in the proof of
the following theorem (which appears in Appendix C).

Theorem 4.3. Assuming the existence of one-way
functions, there are efficient computational non-
malleable codes w.r.t the family FBIT, where the rate
k/n asymptotically approaches 1.

5 A General Result for Tampering-
Function Families of Bounded Size

5.1 A Probabilistic Method Approach
We now show that, for any “small enough” func-

tion family F , there exists a (possibly inefficient) cod-
ing scheme which is non-malleable w.r.t. F . More-
over, we show that for a fixed “small enough” func-
tion family F , a random coding scheme is likely
to be non-malleable w.r.t. F with overwhelming
probability. Unfortunately, random coding schemes
cannot be efficiently represented, nor is the encod-
ing/decoding function likely to be efficient. Therefore,
this result should merely be thought of as showing
“possibility” and providing a target that we should
then strive to match constructively. Moreover, this
result also highlights the difference between “error-
correction//detection” and “non-malleability” since a
result of this form could not be true for the former
notions.

Let us now clarify what we mean by “small enough”.
The family Fall of all functions f : {0, 1}n → {0, 1}n
has size log(log(|Fall|)) = n+ log(n). Clearly, no code
is non-malleable w.r.t. the family Fall, since this fam-
ily includes e.g. the function that decodes the code-

word, flips the last bit of the source message, and re-
encodes it. However, we show that for any function
family F of slightly smaller size log(log(|F|)) < n,
there exist codes that are non-malleable w.r.t. F .

Lastly, let us clarify what we mean by “random”
coding scheme. We can define a coding scheme
completely by only specifying the decoding function
Dec : {0, 1}n → {0, 1}k ∪ ⊥, which then implic-
itly defines an encoding function Enc that maps a
source message s uniformly at random into the set
{c ∈ {0, 1}n|Dec(c) = s}. For us, a random coding
scheme is a scheme of this type, where the decoding
function is chosen uniformly at random from all func-
tion Dec : {0, 1}n → {0, 1}k; that is, we specify the
decoding function by taking each value c ∈ {0, 1}n
and letting it decode to a uniformly random source
message s ∈ {0, 1}k. Note that there are no invalid
values c ∈ {0, 1}n that decode to ⊥. See Appendix D
for a proof of the following theorem.

Theorem 5.1. Let F be any function family con-
sisting of functions f : {0, 1}n → {0, 1}n. Let ε, ρ > 0
be arbitrary values and k, n > 0 be integers such that

n > log(log(|F|)) + 3k + log(k)
+2 log (1/ε) + log (log (1/ρ)) + 9.

Then there exists a strongly non-malleable code w.r.t.
F , with k-bit source-messages and n-bit codewords,
and exact security ε. Moreover, a uniformly random
decoding function Dec : {0, 1}n → {0, 1}k gives rise to
such a code with probability ≥ 1− ρ.
5.2 Constructions in the Random Oracle

Model
It is not clear what the bound from Theorem 5.1

actually implies. For example it does tell us that non-
malleable codes exist with respect to all efficient func-
tions, but this is misleading as we know that efficient
non-malleable codes (and ultimately we are only in-
terested in such) cannot be non-malleable w.r.t. this
class.

Nonetheless, as we’ll explain below, the result by
the probabilistic method method does give us codes
which are non-malleable w.r.t. very general classes
of functions in the random oracle model. By Theo-
rem 5.1, a random decoding Dec : {0, 1}n → {0, 1}k
will be non-malleable, thus we could instantiate Dec
with a random oracle, but then it is ont obvious how
to implement the corresponding encoding Enc effi-
ciently.

Coron et al. [10] show how to construct a per-
mutation (which can be queried from both sides)
form a random oracle which is indifferentiable from

442

NON-MALLEABLE CODES

a uniformly random permutation. Thus, instead of
a random oracle, we can assume (cf. Proposition 2
in [22]) that we have a uniformly random permuta-
tion P over {0, 1}n. We then define the encoding
Enc(x; r) def= P(x, r) for messages x ∈ {0, 1}k and ran-
domness r ∈ {0, 1}n−k. The decoding of c ∈ {0, 1}n
are simply the first k bits of P−1(c).9

Thus, we can get a non-malleable code w.r.t. any
F as in Theorem 5.1 relative to a random oracle. It is
important to note that here the tampering functions
f ∈ F cannot have access to the random permutation
P .10 For this reason, this should not be considered a
result in the random oracle model, where one usually
assumes that the oracle is accessible by all parties.11

To get a result in the random oracle model, we must
give all parties, including the tampering functions, ac-
cess to the random oracle.

Definition 5.1 (Closed Class of Tampering
Functions.). Consider a class F of oracle tampering
functions, that is, a function f ∈ F can have special
oracle gates. With fO we denote f where the oracle
queries are answered by an oracle O. For some (com-
patible) oracle O, FO denotes the class of functions
fO where f ∈ F . We say F is closed, if for every or-
acle O and every fO ∈ FO, there exists an f ′ ∈ FO
(where f ′ has no oracle gates) such that f ′ and fO
are the same function.

Clearly, if F is closed, then the subset F̂ ⊂ F of
functions with no oracle gates makes up the entire
class, i.e. F̂ = FO for any O. So when considering
a code that is non-malleable w.r.t. to a closed class
F relative to a random oracle model, it doesn’t make
a difference whether we give the tampering functions
access to the random oracle or not. Summarizing the
above discussion, we get the following theorem.

Theorem 5.2. Let F , ε, δ, n, k be as in Theorem 5.1,
but where f ∈ F can have oracle gates. If F is closed,
then there exists an efficient non-malleable code w.r.t.
to F in the random oracle model with exact security
ε + δ + O(q16/2n). (where q is the number of oracle
queries made by the adevrsary.)

9The distribution on Dec is not exactly the distribution of
a random decoding function as analyzed in Theorem 5.1, as
now we are using a random permutation instead of a random
function. But when considering efficient adversaries that only
make a polynomial (in n) number of queries, this is irrelevant
as the distance in the distributions will be exponentially small.

10Otherwise e.g. the class F containing the single function f ,
where fP (c) decodes c and then re-encodes the message with
the last bit flipped, is a counterexample.

11Security proofs in the random oracle model only exploit the
fact that an exponential amount of uniform randomness is effi-
ciently accessible by all parties, not that some entities (like, in
our case, tampering functions) cannot access this randomness.

The extra O(q16/2n) error term comes from the
bound proven in [10], it can be avoided if we directly
assume access to a uniformly random permutation
(this is called the ideal-cipher model). The distance
in the distributions as mentioned in footnote 9 is also
captured by this term.

1) Examples of Closed Classes.
An interesting and natural closed family consists

of functions that tamper each half of the codeword
independently: that is f ∈ Fhalf if we can write
f : {0, 1}n → {0, 1}n as f(c1, c2) def= (f1(c1), f2(c2))
for f1, f2 : {0, 1}n/2 → {0, 1}n/2. This family has
size log(log(|Fhalf |)) = n/2 + log(n) as required by
Theorem 5.1, and thus by Theorem 5.2, there exist
non-malleable codes for Fhalf with rate k/n ≈ 1/6.

More generally, for any δ < 1 we can consider the
class Fδ where f ∈ Fδ if every bit of f(c) depends
only on a subset of at most �δn� bits of c. (Fhalf just
discussed is thus a subset of F0.5.) The size of this
class is log(log(|Fδ|) ≤ δ · n+ 2 log(n) as required by
Theorem 5.1.

6 Tamper-Resilient Security
In this section, we formally define the notion of

tamper-resilient security as outlined in the introduc-
tion. We consider some interactive stateful system
〈G, s〉 consisting of a pubic (possibly randomized)
functionality G : {0, 1}u×{0, 1}n → {0, 1}v× {0, 1}n
and secret initial state s ∈ {0, 1}n. We consider two
ways of interacting with the system:
Execute(x): A user can provide the system with

Execute(x) queries, for x ∈ {0, 1}u, in which case
the system computes (y, s′) ← G(x, s), updates
the state of the system to s := s′ and outputs y.

Tamper(f): We also consider tampering attacks
against the system, modeled by Tamper(f) com-
mands, for functions f : {0, 1}n → {0, 1}n. Upon
receiving such command, the system state is set
to s := f(s).

Honest users only interact with a system via
Execute queries. As we discussed in the introduction,
an attacker that can also interact with the system
via Tamper queries can potentially learn significantly
more about the secret state, even recover it entirely.
Therefore, we would like to have a general method for
securing systems against tampering attacks, so that
the ability to issue Tamper queries (at least for func-
tions f in some large family F) cannot provide the
attacker with additional information. We show how
to use non-malleable codes for this purpose. First, we
define what it means to harden a functionality G via
a code (Enc,Dec).

443

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

Definition 6.1. Let (Enc,Dec) be any coding scheme
with k-bit messages and n-bit codewords. Let G :
{0, 1}u × {0, 1}k → {0, 1}v × {0, 1}k be an arbitrary
functionality with k-bit state. We define the hard-
ened functionality GEnc,Dec : {0, 1}u × {0, 1}n →
{0, 1}v × {0, 1}n to be the functionality (with n-bit
state) which, on input (x, c) ∈ {0, 1}u×{0, 1}n, com-
putes s ← Dec(c) and checks if s ?= ⊥. If so, it out-
puts a dummy-value (0u, 0n). Otherwise it computes
(y, s′)← G(x, s) and outputs (y,Enc(s′)).

It is easy to see that the original system 〈G, s〉
and the hardened system 〈GEnc,Dec,Enc(s)〉 always be-
have exactly the same with respect to any series of
Execute commands. Of course, they do not act the
same with respect to Tamper commands, and that’s
the point; we wish to show that the hardened sys-
tem 〈GEnc,Dec,Enc(s)〉 is tamper-resilient and renders
tampering attacks useless. We formally define this
property next, as essentially saying that for any ad-
versary A that interacts with the hardened system
〈GEnc,Dec,Enc(s)〉 via Execute and Tamper queries,
there is a simulator S that interacts with the origi-
nal system 〈G, s〉 only via Execute queries and learns
the same information as A. In particular we say that
a coding scheme (Enc,Dec) is tamper simulatable if it
can be used to securely harden any system 〈G, s〉 into
a tamper-resilient system 〈GEnc,Dec,Enc(s)〉.

Definition 6.2 (Tamper-Simulatability). A cod-
ing scheme (Enc,Dec) with k-bit messages and n-bit
codewords is tamper-simulatable w.r.t. a function
family F , if there exists a simulator S such that, for
any functionality G with k bit state, any adversary A,
and any initial state s ∈ {0, 1}k we have

TamperInteract(A,F , 〈GEnc,Dec,Enc(s)〉)
≈

BBInteract(S, 〈G, s〉)

where TamperInteract and BBInteract are defined as
follows.
TamperInteract(A,F , 〈G, s〉): The adversary A inter-

acts with the system 〈G, s〉 for arbitrarily many
rounds of interactions where, in each round:

1. The adversary can “tamper” by executing a
Tamper(f) command against the system, for
some f ∈ F .

2. The adversary runs an Execute(x) query for
some x ∈ {0, 1}u, and receives the output y.

The output of the game consists of the output of
the adversary A at the end of the interaction,
along with all of the execute queries x1, x2, . . .

BBInteract(S, 〈G, s〉): The simulator interacts with
the system 〈G, s〉 for arbitrarily many rounds
of interaction where, in each round, it runs an
Execute(x) query for some x ∈ {0, 1}u and re-
ceives the output y. The output of the game con-
sists of the output of the simulator S at the end
of the interaction, along with all of the execute-
query inputs x.

The simulator S gets black-box access to the adversary
A, the functionality G(·, ·), and any tampering func-
tions f(·) produced by A (but does not get the state
s). Here ≈ can refer to statistical, or computational
indistinguishability.

Note that the TamperInteract and BBInteract games
include all of the “execute” queries submitted by A
and S in their outputs. This prevents the simu-
lator from submitting queries which A would not
have asked: e.g. if A performs tampering attacks
but only queries the system on some three inputs
x1, x2, x3 then S must simulate this without tamper-
ing queries by only querying its system on the same
inputs x1, x2, x3. Also, note that in the definition of
the TamperInteract game, we only allow the adversary
to submit one tampering query Tamper(f) in each
round. For families F which are closed under compo-
sition (i.e. for any f1, f2 ∈ F , we have f1 ◦ f2 ∈ F)
this is without loss of generality, as submitting several
tamper queries in a row can always be subsumed via
a single query. We now show that a code (Enc,Dec)
is tamper-simulatable w.r.t. F if it is non-malleable
w.r.t. F . See Appendix D for a proof of the following
theorem.

Theorem 6.1. Let (Enc,Dec) be any coding scheme
which is non-malleable w.r.t. F . Then (Enc,Dec) is
also tamper-simulatable w.r.t. F .

7 Conclusions
In this work, we introduce and explore the notion

of non-malleable codes and present several construc-
tions. We show the application of such codes to the
problem of tamper-resilience. There are several inter-
esting open problems left by this work. Firstly, we
would like to design efficient non-malleable codes for
more function families F . For example, we would like
to build such codes for the families as discussed in
Section 5.2 without relying on random oracles. An-
other interesting open problem would be to figure out
the optimal rates of such codes for various families.
For example, even our existential result only achieved
a rate of at most 1/3 (for even small function families
F) and our efficient construction for bit-wise indepen-
dent tampering only achieved a rate of at most .1887.

444

NON-MALLEABLE CODES

It would be interesting to see if these can be improved
or if there are some inherent lower bounds.

Acknowledgments
We would like to thank Ronald Cramer, Yevgeniy

Dodis, Eike Kiltz, Swastik Kopparty, Ignacio Cascudo
Pueyo and Madhu Sudan for the many helpful discus-
sions and comments they provided for this project.

References
[1] Adi Akavia, Shafi Goldwasser, and Vinod Vaikun-

tanathan. Simultaneous hardcore bits and cryp-
tography against memory attacks. In TCC 2009,
LNCS, pages 474–495. Springer-Verlag, Berlin, Ger-
many, 2009.

[2] Joël Alwen, Yevgeniy Dodis, and Daniel Wichs.
Leakage-resilient public-key cryptography in the
bounded-retrieval model. In Shai Halevi, editor,
CRYPTO 2009, LNCS, pages 36–54. Springer-Verlag,
Berlin, Germany, August 2009.

[3] Mihir Bellare and Chanathip Namprempre. Authen-
ticated encryption: Relations among notions and
analysis of the generic composition paradigm. In
Tatsuaki Okamoto, editor, ASIACRYPT 2000, vol-
ume 1976 of LNCS, pages 531–545. Springer-Verlag,
Berlin, Germany, December 2000.

[4] Mihir Bellare and John Rompel. Randomness-
efficient oblivious sampling. In 35th FOCS, pages
276–287. IEEE Computer Society Press, November
1994.

[5] Dan Boneh, Richard A. DeMillo, and Richard J. Lip-
ton. On the importance of checking cryptographic
protocols for faults (extended abstract). In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of
LNCS, pages 37–51. Springer-Verlag, Berlin, Ger-
many, May 1997.

[6] Sergio Cabello, Carles Padró, and Germán Sáez. Se-
cret sharing schemes with detection of cheaters for a
general access structure. Des. Codes Cryptography,
25(2):175–188, 2002.

[7] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and
Pankaj Rohatgi. Towards sound approaches to coun-
teract power-analysis attacks. In Michael J. Wiener,
editor, CRYPTO’99, volume 1666 of LNCS, pages
398–412. Springer-Verlag, Berlin, Germany, August
1999.

[8] Hao Chen, Ronald Cramer, Shafi Goldwasser, Rob-
bert de Haan, and Vinod Vaikuntanathan. Secure
computation from random error correcting codes. In
Moni Naor, editor, EUROCRYPT 2007, volume 4515
of LNCS, pages 291–310. Springer-Verlag, Berlin,
Germany, May 2007.

[9] Jean-Sébastien Coron and Louis Goubin. On Boolean
and arithmetic masking against differential power
analysis. In Çetin Kaya Koç and Christof Paar, edi-

tors, CHES 2000, volume 1965 of LNCS, pages 231–
237. Springer-Verlag, Berlin, Germany, August 2000.

[10] Jean-Sébastien Coron, Jacques Patarin, and Yannick
Seurin. The random oracle model and the ideal ci-
pher model are equivalent. In David Wagner, editor,
CRYPTO 2008, LNCS, pages 1–20. Springer-Verlag,
Berlin, Germany, August 2008.

[11] Ronald Cramer, Yevgeniy Dodis, Serge Fehr, Carles
Padró, and Daniel Wichs. Detection of algebraic ma-
nipulation with applications to robust secret sharing
and fuzzy extractors. In Nigel P. Smart, editor, EU-
ROCRYPT 2008, LNCS, pages 471–488. Springer-
Verlag, Berlin, Germany, April 2008.

[12] Yevgeniy Dodis, Yael Tauman Kalai, and Shachar
Lovett. On cryptography with auxiliary input. In
41st ACM STOC, pages 621–630. ACM Press, 2009.

[13] Stefan Dziembowski and Krzysztof Pietrzak.
Leakage-resilient cryptography. In 49th FOCS, pages
293–302. IEEE Computer Society Press, 2008.

[14] Sebastian Faust, Eike Kiltz, Krzysztof Pietrzak, and
Guy Rothblum. Leakage-resilient signatures. In
TCC 2010, LNCS. Springer-Verlag, Berlin, Germany,
2010.

[15] Sebastian Faust, Leonid Reyzin, and Eran Tromer.
Protecting circuits from computationally-bounded
leakage. Cryptology ePrint Archive, Report
2009/379, 2009. http://eprint.iacr.org/.

[16] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin,
Silvio Micali, and Tal Rabin. Algorithmic tamper-
proof (atp) security: Theoretical foundations for se-
curity against hardware tampering. In Moni Naor,
editor, TCC 2004, volume 2951 of LNCS, pages
258–277. Springer-Verlag, Berlin, Germany, February
2004.

[17] Louis Goubin and Jacques Patarin. DES and differ-
ential power analysis (the “duplication” method). In
Çetin Kaya Koç and Christof Paar, editors, CHES’99,
volume 1717 of LNCS, pages 158–172. Springer-
Verlag, Berlin, Germany, August 1999.

[18] Richard W. Hamming. Error detecting and error cor-
recting codes. Bell System Technical Journal, 29:147–
160, 1950.

[19] Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and
David Wagner. Private circuits II: Keeping secrets in
tamperable circuits. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 308–
327. Springer-Verlag, Berlin, Germany, May / June
2006.

[20] Yuval Ishai, Amit Sahai, and David Wagner. Pri-
vate circuits: Securing hardware against probing at-
tacks. In Dan Boneh, editor, CRYPTO 2003, vol-
ume 2729 of LNCS, pages 463–481. Springer-Verlag,
Berlin, Germany, August 2003.

[21] Jonathan Katz and Vinod Vaikuntanathan. Signa-
ture schemes with bounded leakage resilience. In
ASIACRYPT 2009, LNCS. Springer-Verlag, Berlin,
Germany, December 2009.

[22] Ueli M. Maurer, Renato Renner, and Clemens Holen-

445

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

stein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle
methodology. In Moni Naor, editor, TCC 2004, vol-
ume 2951 of LNCS, pages 21–39. Springer-Verlag,
Berlin, Germany, February 2004.

[23] Thomas S. Messerges. Securing the AES finalists
against power analysis attacks. In Bruce Schneier,
editor, FSE 2000, volume 1978 of LNCS, pages 150–
164. Springer-Verlag, Berlin, Germany, April 2000.

[24] Silvio Micali and Leonid Reyzin. Physically ob-
servable cryptography (extended abstract). In Moni
Naor, editor, TCC 2004, volume 2951 of LNCS, pages
278–296. Springer-Verlag, Berlin, Germany, February
2004.

[25] Michael Mitzenmacher. A survey of results for dele-
tion channels and related synchronization channels.
In SWAT, pages 1–3, 2008.

[26] Moni Naor and Gil Segev. Public-key cryptosys-
tems resilient to key leakage. In Shai Halevi, edi-
tor, CRYPTO 2009, LNCS. Springer-Verlag, Berlin,
Germany, August 2009.

[27] Wakaha Ogata and Kaoru Kurosawa. Optimum
secret sharing scheme secure against cheating. In
Ueli M. Maurer, editor, EUROCRYPT’96, vol-
ume 1070 of LNCS, pages 200–211. Springer-Verlag,
Berlin, Germany, May 1996.

[28] Wakaha Ogata, Kaoru Kurosawa, Douglas R. Stin-
son, and Hajime Saido. New combinatorial designs
and their applications to authentication codes and
secret sharing schemes. Discrete Mathematics, 279(1-
3):383–405, 2004.

[29] Krzysztof Pietrzak. A leakage-resilient mode of oper-
ation. In Antoine Joux, editor, EUROCRYPT 2009,
LNCS, pages 462–482. Springer-Verlag, Berlin, Ger-
many, April 2009.

[30] Ignacio Cascudo Pueyo, Hao Chen, Ronald Cramer,
and Chaoping Xing. Asymptotically good ideal linear
secret sharing with strong multiplication over ny fixed
finite field. In CRYPTO, pages 466–486, 2009.

[31] Jeanette P. Schmidt, Alan Siegel, and Aravind Srini-
vasan. Chernoff-hoeffding bounds for applications
with limited independence. In SODA, pages 331–340,
1993.

[32] Adi Shamir. How to share a secret. Communica-
tions of the Association for Computing Machinery,
22(11):612–613, November 1979.

[33] Claude E. Shannon. Communication theory of se-
crecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

A Proof of Theorem 4.1
We prove the following exact security. For every

even t > 6,

ε ≤ max

(
ρ ,

1
2t

+
(

t

n(d/n− 1/4)2

)t/2)
.

Proof of Theorem 4.1. Fix any tampering function
f = (f1, . . . , fn) ∈ F . We show that there exists a
distribution Df which satisfies the definition of non-
malleability. To help with notation, for every s ∈
{0, 1}k, we define the random variables:

Cs
def= Enc(s) , C̃s def= f(Cs)

∆s def= C̃s − Cs , S̃s def= Dec(C̃s).

We use the notation Csi (resp. C̃si , ∆si) to denote the
bit of Cs (resp. C̃s, ∆s) in position i ∈ {1, . . . , n}.
We also define the distribution Patch(Df , s) which
samples s̃ ← Df and outputs s if s̃ = same�
and s̃ otherwise. To prove the theorem, we must
show that there exists a distribution Df such that
SD(S̃s , Patch(Df , s)) ≤ ε for all s ∈ {0, 1}k. Let q
be the number of positions i ∈ {1, . . . , n} for which fi
is one of the functions “set to 0”/“set to 1”. We split
the rest of the proof into 4 cases based on the value
of q.
2) Case 1, q ≤ t:

In this case, the distribution of ∆s is the same for
all s. In particular:
• For i such that fi =“keep”, ∆si = 0. For i such

that fi=“flip”, ∆si = 1.
• Let A be the set of i for which fi =“set to 0”

or fi =“set to 1”. For i ∈ A, ∆si are uniformly
random over {0, 1} and independent.
Since |A| = q ≤ t, we rely on the t-secrecy of
the LECSS, which tells us that the random vari-
ables {Csi }i∈A are independent and uniform over
{0, 1}. Since {fi(Csi)}i∈A are constants, we see
that {∆si = Csi − fi(Csi)}i∈A are uniformly ran-
dom and independent variables for all s.

Therefore, there is a universal distribution ∆ such
that ∆ ≡ ∆s for all s and so:

S̃s ≡ Dec(C̃s) ≡ V(D(Cs + ∆s))
≡ V(D(Cs) + D(∆s))
≡ V(A(s) + D(∆s)) (3)
≡ V(A(s) + D(∆))

where (3) follows by the linearity property of the
LECSS. Therefore:

1. Conditioned on D(∆) �= 0, Pr[S̃s = ⊥] ≥ (1− ρ).
This follows by the security of the AMD code,
and the fact that D(∆) is independents of the
randomness of the AMD encoding.

2. Conditioned on D(∆) = 0, Pr[S̃s = s] = 1.
We define the distribution Df which samples δ ← ∆
and outputs same� if D(δ) = 0 and ⊥ otherwise. By
conditions 1,2 it is easy to see that, for all s ∈ {0, 1}k,

SD(S̃s,Patch(Df , s)) ≤ ρ
446

NON-MALLEABLE CODES

which concludes the proof of Case 1.
Case 2, q ≥ n − t: In this case, the distribution of
C̃s is the same for all s. In particular:
• For fi =“set to 0”, C̃si = 0. For fi=“set to 1”,
C̃si = 1.
• Let B be the set of i for which fi =“keep” or
fi =“flip”. For i ∈ B, C̃si are uniformly random
over {0, 1} and independent.
This is because |B| = n− q ≤ t. By the t-secrecy
of the LECSS, the random variables {Csi }i∈B are
uniformly random and independent and hence so
are the variables {C̃si = fi(Csi)}i∈B.

Therefore, there is a universal distribution C̃ such
that C̃ ≡ C̃s for all s and so S̃s ≡ Dec(C̃s) ≡ Dec(C̃).
We define the distribution Df which samples C̃ as
above, and computes Dec(C̃). It is clear that, for all
s ∈ {0, 1}k,

SD(S̃s,Patch(Df , s)) ≤ SD(S̃s, Df) = 0.

which concludes the proof of Case 2.
Case 3, t < q ≤ n/2: In this case, the distribution
Df just outputs ⊥. Fix any s ∈ {0, 1}k. It is easy to
see that

Pr[S̃s �= ⊥] ≤ Pr[Dec(C̃s) �= ⊥]
≤ Pr[D(∆s) �= ⊥].

We are now only left to show that Pr[D(∆s) �= ⊥] is
small. Define A be the set of indices i for which fi
is of the form “set to 0”/“set to 1”, so that |A| = q.
Note that {∆si}i�∈A are completely fixed by f to some
constants (∆si is fixed to 0 if fi is “keep” and fixed
to 1 if fi is “flip”). Let δ∗ ∈ {0, 1}n be any value
which is consistent with the fixed bits of ∆ so that
{∆si = δ∗i }i�∈A, and for which D(δ∗) �= ⊥. If no such
value exists then we are done since D(∆s) = ⊥ with
probability 1, so let’s assume that some such value
exists.

It is easy to see that Pr[∆s = δ∗] ≤ 1
2t since the ran-

dom variables {∆si}i∈A are uniform over {0, 1} and
t-wise independent. So ∆s is unlikely to match δ∗
exactly. On the other hand, we show that the Ham-
ming distance dH(∆s, δ∗) is unlikely to be too large.
In particular the expected value of this distance is:

E[dH(∆s, δ∗)] = E
[
n∑
i=1
dH(∆si , δ∗i)

]

= E
[∑
i∈A
dH(∆si , δ∗i)

]

=
∑
i∈A

E [dH(∆si , δ∗i)] = q
2
.

where the second equality follows by the fact that
∆si = δ∗i for i �∈ A, the third equality follows by
the linearity of expectation and and the fourth equal-
ity follows since, each ∆si for i ∈ A is individu-
ally uniform. We now wish to bound the proba-
bility that dH(∆s, δ∗) =

∑
i∈A dH(∆si , δ∗i) is greater

than the distance d of the LECSS scheme. Since
{dH(∆si , δ∗i)}i∈A are t-wise independent random vari-
ables, we can use (Chernoff-Hoeffding type) tail in-
equalities for bounded independence (see [4, 31]) to
bound the above probability. In particular:

Pr [dH(∆s, δ∗) ≥ d]
≤ Pr

[∣∣∣dH(∆s, δ∗)− q
2

∣∣∣ ≥ d− q2
]

≤
(

nt

(d− q/2)2

)t/2
(4)

≤
(

nt

(d− n/4)2

)t/2

≤
(

t

n(d/n− 1/4)2

)t/2
where (4) follows by the tail inequality of Bellare and
Rompel [4], Lemma 2.2. Finally, we see that

Pr[D(∆s) �= ⊥]
≤ Pr[∆s = δ∗ ∨ dH(∆s, δ∗) ≥ d]

≤ 1
2t

+
(

t

n(d/n− 1/4)2

)t/2
which concludes the analysis of Case 3.
Case 4, n/2 < q < n− t: In this case, the distribu-
tion Df just outputs ⊥. Fix any s ∈ {0, 1}k. It is easy
to see that Pr[S̃s �= ⊥] ≤ Pr[D(C̃s) �= ⊥] and so we
are left to show that this last probability is small. To
show this, we essentially re-use the analysis of Case
3 and note the symmetry between the distribution of
C̃s in this case and ∆s in Case 3. In particular, define
B be the set of indices i for which fi =“keep”/“flip”,
so |B| = n − q and hence t ≤ |B| ≤ n/2. Note that
{C̃si }i�∈B are completely fixed by f . Let c̃∗ ∈ {0, 1}n
be any value which is consistent with the fixed por-
tion of C̃s so that {C̃si = c̃∗i }i�∈B. Again, if no such
value exists then we are done. Otherwise, we re-use
the exact same analysis as in Case 3 to argue that

Pr[D(C̃s) �= ⊥]
≤ Pr[C̃s = c̃∗ ∨ dH(C̃s, c̃∗) ≥ d]

≤ 1
2t

+
(

t

n(d/n− 1/4)2

)t/2
which concludes the analysis of Case 4. Since these
are the only possible cases for q, this concludes the
proof of the theorem.

447

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

B Construction of Linear Error-
Correcting Secret Sharing

Recently, Chen et al. [8] formalized the connection
between secret-sharing schemes and error-correcting
codes with large dual distance. Since our terminology
and exact construction differ slightly, we state and
prove the following lemma, which is essentially equiv-
alent to the result of [8].

Lemma B.1 (Based on [8]). Let G be a (k+�)×n
generator matrix over some field 𝔽, generating a code
C ⊆ 𝔽

n with distance d. Let Ĝ be the sub-matrix
consisting of the last � rows of G, let Ĉ ⊆ C be the
sub-code generated by Ĝ and let Ĉ⊥ be the dual-code
to Ĉ. Let d̂⊥ be the distance of Ĉ⊥.

We define the coding scheme (E,D), with source
messages s ∈ 𝔽

k. The encoding algorithm computes
E(s) def= (s, r)G for a uniformly random r ∈ 𝔽

�. The
decoding algorithm Dec(c) checks if c is a codeword in
C: if so, it decodes c to (s′, r′) ∈ 𝔽

k×𝔽� and outputs s′;
otherwise, it outputs ⊥.Then (E,D) is a (d, t)-LECSS
scheme where t = d̂⊥ − 1.

Proof. The linearity and distance d of the LECSS
follows directly from the linearity and distance of C.
To analyze privacy, note that for any s ∈ 𝔽

k, we have
E(s) = (s, r)G = (s, 0)G + rĜ and so we just need
show that the components of ĉ = rĜ are individ-
ually uniform and t-wise independent for a random
r. To show this, we use a well-known fact from cod-
ing theory that, if the distance of Ĉ⊥ is d̂⊥ then any
t = d̂⊥−1 columns of Ĝmust be linearly independent.
Therefore, for any fixed set of indices A ⊆ {1, . . . , n}
of size |A| = t, multiplication by Ĝ is a surjective lin-
ear function when restricted to the columns i ∈ A and
so the components of ĉ = rĜ in positions i ∈ A are
uniformly random and independent.

Unfortunately, it is unclear how to construct an
error-correcting code C which has a good distance
d > n/4 and having a sub-code Ĉ with large dual-
distance d̂⊥, over a binary alphabet. For example, we
can explicitly get codes with large distance (approach-
ing 1

2) using concatenated codes (such as Forney or
Justesen codes), but the dual-distance of a concate-
nated code may only be equal to the dual-distance
of the inner code, which is usually small. Therefore,
we do not know of any explicit constructions of such
codes, and it remains as an interesting open prob-
lem. However, it is relatively easy to show that a ran-
dom linear error-correcting code is likely (with over-
whelming probability) to simultaneously achieve very

high distance d for C and high dual-distance d̂⊥ for
Ĉ⊥ as defined in Lemma B.1. We note that, in our
context, using random linear error-correcting codes
is very efficient, since the representation size of such
code, the encoding procedure, checking if a value c
is a codeword, and decoding a codeword without er-
rors are all very efficient. In particular, the construc-
tion in Lemma B.1 does not require the ability to
efficiently correct errors, which is believed to be hard
for random linear codes. The following result, ex-
plicitly shown by Chen et. al. [8] (see Theorem 4
and Corollary 1), follows from a Gilbert-Varshamov
type of argument showing that random linear error-
correcting codes achieve good distance and also good
dual-distance.

Lemma B.2 ([8]). Let G be a uniformly random
generator matrix from the space of (k+�)×n matrices
over 𝔽2 with linearly-independent rows. Let C, Ĉ, Ĉ⊥,
d and d̂⊥ be defined as in Lemma B.1. Then for any
0 < α, α̂ < 1

2 ,

Pr[(d > αn) and (d̂⊥ > α̂n)]
> 1− 2k+�−n(1−H(α)) − 2�−nH(α̂)

where the probability is taken (only) over the choice
of G, and

H(x) def= −x log2(x) − (1− x) log2(1− x).

B.1 Proof of Theorem 4.2
Using the above two lemmas, we are now ready to
prove Theorem 4.2

Proof of Theorem 4.2. First, given δ > 0 there are
constants δ0 > 0, δ1 > 0 such that

(1 −H(1/4)− δ) = (1−H(1/4 + δ0)− δ1).

Let k′ = (1−H(1/4 + δ0) − δ1/4)n and � = (δ1/4)n.
Let α̂ be a constant such that H(α̂) ≤ δ1/8. If we
choose a random (k′ + �) × n matrix G over 𝔽2, and
define C, Ĉ, Ĉ⊥, d, d̂⊥ as in Lemma B.1, then using the
bounds of Lemma B.2, we will get d ≥ (1/4 + δ0)n
and d̂⊥ ≥ α̂n with probability

1− 2k
′+�−n(1−H(1/4+δ0)) − 2�−nH(α̂)

= 1− 2−(δ1/2)n − 2−(δ1/8)n

= 1− 2−Ω(n).

Assuming this is the case, we now show how to in-
stantiate our non-malleable code using G, so that we
achieve the claimed parameters.

448

NON-MALLEABLE CODES

1. Using Lemma B.1, we see that G gives rise to an
efficient (d, t)-LECSS scheme with message size
k′ and codeword size n, and with d ≥ (1/4+δ0)n
and t = d̂⊥ − 1 ≥ δ2n for some constant δ2 <
δ20/2.

2. Using the result of [11], there exist AMD codes
with message size k, codeword size k′ and security

ρ ≤ k

2(k′−k)/2 ≤
n

2(δ1/4)n = 2−Ω(n).

Now we use Theorem 4.1 to combine (1) and (2)
above, yielding a non-malleable code with message
size k, codeword size n and security

ε ≤ max

(
ρ ,

1
2δ2n

+
(
δ2n

n(δ0)2

)(δ2n)/2
)

≤ 2−Ω(n)

C Proof of Theorem 4.3

As a tool we use a symmetric-key authenticated-
encryption scheme that we construct using an en-
cryption scheme (Encrypt,Decrypt) with key-size
k0, and a message authentication code (MAC)
(Tag,Verify) with key-size k1. The encryption scheme
(Encrypt,Decrypt) has to always satisfy the follow-
ing: Decrypt(key0,Encrypt(key0,m)) = m. Security of
(Encrypt,Decrypt) is defined as follows: for every two
messagesm andm′ of equal length, and a random key0
we have that Encrypt(key0,m) and Encrypt(key0,m

′)
are computationally indistinguishable.

The authentication scheme (Tag,Verify) has always
to satisfy: Verify(key1,m,Tag(key1,m)) = yes. Secu-
rity of (Tag,Verify) is defined as follows: for every
message m and for a random key1 no poly-time ad-
versary A, after seeing (m,Tag(key,m)), can output
(t,m′) such that Verify(key1,m

′, t) = yes andm �= m′,
except with a negligible probability.

An authenticated encryption scheme that we use
has a key (k0, k1). On a messagem it outputs Tag(k1,
Encrypt(k0,m)) (cf. [3] for a general discussion on how
to combine authentication with encryption).

Theorem C.1. Assume that (Enc,Dec) is a non-
malleable code w.r.t. the family F of bit-wise in-
dependent tampering functions with message-size k
and codeword-size n. Let (Encrypt,Decrypt) and

(Tag,Verify) be as above. Define:

Enc′(s) def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(key0, key1)← Uk0+k1 ,
x← Encrypt(key0, s),
t← Tag(key1, x),
c← Enc(key0||key1)
Output: c = (c, x, t)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Dec′(c, x, t) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

˜key0|| ˜key1 = Dec(c),
If ˜key0|| ˜key1 = ⊥
or
Verify(key1, x, t) �= yes

output ⊥,
else output

Decrypt(key0, x).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Then (Enc′,Dec′) is a computational non-malleable
code w.r.t F .

Proof of C.1. Intuitively, the reason why the theo-
rem holds is that the adversary has a choice to either
(1) make the key encoding (key0, key1) decode to ⊥
— in this case the whole encoding decodes to ⊥ not
matter what the encoded message was; or (2) do not
change the encoded key (key0, key1) — in this case
the adversary cannot substitute the encode message s
with any other s′ without breaking the MAC, more-
over the security of the encryption scheme guaran-
tees the probability that the decoding yields ⊥ has to
be (almost) the same for every message s; finally he
can (3) change the encoded key to some random key
(˜key0,

˜key1) (that has a distribution that is indepen-
dent on (key0, key1))— in this case it follows from the
security of the encryption scheme that the decoded
message cannot depend on the encoded message s,
as otherwise one could construct a distinguisher that
breaks the encryption scheme by sampling (˜key0,

˜key1)
himself.

Let f ′ be a function that is tampering the output of
(Enc′,Dec′). We will construct a distributionD′f ′ such
that for every s (1) is satisfied. Since the output of
Enc′ has a form (c, x, t), and since f ′ only modifies the
individual bits, we can think of f ′ as of three functions
f ′0, f

′
1, and f ′2, where f ′(c, x, t) = (f ′0(c), f ′1(x), f ′2(t)).

The distribution D′f ′ is constructed as follows. First,
we take an arbitrary message s and a random pair
(key0, key1). Then, we let xs ← Encrypt(key0, s)
and ts ← Tag(key1, x),. Form the assumption that
(Enc,Dec) is a non-malleable code there exists a dis-
tribution Df ′0 such that (1) holds. We sample c̃ from
this distribution. If c̃ = same� we let (˜key0,

˜key1) :=
(key0, key1), and otherwise we let (˜key0,

˜key1) := c̃.
We then output

outs :=

⎧⎨
⎩
⊥ if (1)
same� if (2)
Dec(˜key0, f

′
1(xs)) otherwise.

449

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

where condition (1) holds if
Verify(˜key1, f

′
1(xs), f ′2(ts)) �= yes or c̃ = ⊥,

and condition (2) holds if f ′1(xs) = xs and
Verify(˜key1, f

′
1(xs), f ′2(ts)) = yes and c̃ = same�.

To prove that this construction is correct we need to
show that for every s0 and s1 the distributions outs0

and outs0 are computationally-indistinguishable. Af-
ter showing this we will be done, since this will mean
that the result of our simulation (with an arbitrary
value s) is computationally indistinguishable from a
result of the simulation with any other s, and outs
with same� substituted with s is simply distributed
identically to the output of the experiment of the
left hand side of (1). Obviously, the distribution of
c̃ does not depend on s. Therefore we can consider
separately the following cases.
• c̃ = ⊥ — in this case obviously outs is always

equal to ⊥, no matter what s is,
• c̃ = same� — in this case first observe that

|P (outs
0

= ⊥)− P (outs
1

= ⊥)| is negligible.

This is because otherwise one could construct an
adversary that breaks the security of the encryp-
tion scheme (Encrypt,Decrypt) by distinguishing
if x is an encryption of s0 and s1 in the following
way: generate a random key1 and output 1 if and
only if Verify(key1, f

′
1(x), f ′2(Tag(key1, x))).

On the other hand if outs �= ⊥ and f ′1(xs) �= xs
then we can break the security of the MAC in
the following way: after seeing a tag ts on xs an
adversary can output a message f ′1(xs) with a tag
f ′1(xs).
• c̃ = (˜key0,

˜key1) — if in this case outs0 can be dis-
tinguished from outs1 by some poly-time machine
A then one easily distinguish if x is an encryption
of s0 and s1 in the following way.

1. if Verify(˜key1, f
′
1(x), f ′2(Tag(˜key1, x))) = ⊥ then

output ⊥,
2. otherwise output A(Dec(˜key0, f

′
1(x)).

This is because for both i ∈ {0, 1} we have
outsi = Dec(˜key0, f

′
1(xsi)).

D Proof of Theorem 5.1

Proof of Theorem 5.1. Let K = 2k, N = 2n. It will
be useful for us to think of a function f : {0, 1}n →
{0, 1}n as a directed graph Gf = (V,Ef) with vertex
set V = {0, 1}v and edges Ef = {(v, ṽ)|v ∈ V, f(v) =
ṽ}. Notice that the out-degree is 1 and that there
may be some self-loops in G. Notice that a randomly
chosen decoding function, essentially labels each ver-
tex v ∈ V with a uniformly random value s ∈ {0, 1}k.

For any s, s̃ ∈ {0, 1}k, we define the following ran-
dom variables (over the choice of the decoding func-
tion Dec):
• Let V (s) be the set of vertices v ∈ V = {0, 1}n

such that Dec(v) = s.
• Let Ef (s → s̃) be the set of edges (v, ṽ) where
v �= ṽ and Dec(v) = s,Dec(ṽ) = s̃
• Let Ef (s → same�) be the set of self-loop edges

(v, v) for which Dec(v) = s.
• Let Ef (∗ → s̃) def=

⋃
s∈{0,1}k Ef (s → s̃). (we will

also use this notation for s̃ = same�).
• For A ⊆ V ∪ {same�}, define Ef (s →
A) def=

⋃
s̃∈AEf (s → s̃), and Ef (∗ → A) def=⋃

s̃∈AEf (∗ → s̃).
We use these variables to define a density-function
Df : {0, 1}k ∪ {same�} → [0, 1] by Df(s) = |Ef (∗ →
s)|/N . Then, for any function f and any s ∈ {0, 1}k,
we have

SD(StrongNMfs , Df)

= max
A

|Ef [s→ A]|
|V (s)| − |Ef (∗ → A)|

N
(5)

Therefore, taking probabilities (only) over the
choice of the decoding function Dec, let E be the event
that (Enc,Dec) is not an ε-secure non-malleable code
w.r.t. F . Then:

Pr[E] (6)

≤ Pr

⎡
⎣ ∃f ∈ F , s ∈ {0, 1}ks.t.

SD(StrongNMfs , Df) > ε

⎤
⎦

= Pr

⎡
⎢⎢⎣
∃f ∈ F , s ∈ {0, 1}k
∃A ⊆ {0, 1}k ∪ {same�}
s.t.
|Ef [s→A]|
|V (s)| − |Ef (∗→A)|

N > ε

⎤
⎥⎥⎦

≤
∑
f∈F

∑
s∈{0,1}k

∑
A⊆{0,1}k∪{same�}

Pr
[|Ef [s→ A]|
|V (s)| − |Ef (∗ → A)|

N
> ε

]

We now fix some f ∈ F , s ∈ {0, 1}k, A ⊆ {0, 1}k ∪
{same�} and our goal it to upper bound:

Pr
[|Ef [s→ A]|
|V (s)| − |Ef (∗ → A)|

N
> ε

]
(7)

Let δ = ε/4, t = (ε/4)(N/K) and assume that:

|V (s)| ≥ (1− δ)N
K

(8)

|Ef (s→ A)| − |Ef (∗ → A)|
K

≤ t (9)

450

NON-MALLEABLE CODES

then:

|Ef [s→ A]|
|V (s)| − |Ef (∗ → A)|

N

≤ |Ef [∗ → A]|/K + t
(1− δ)N/K − |Ef (∗ → A)|

N

≤ δ|Ef [∗ → A]|+ tK
N(1− δ)

≤ 2δ + 2tK/N ≤ ε

where the inequality on the last line follows since
|Ef [∗ → A]| ≤ N . Therefore we show:

(7)
≤ Pr[(8) does not hold]

≤ Pr
[
|V (s)| < (1− δ)N

K

]

+ Pr
[
|Ef (s→ A)| − |Ef (∗ → A)|

K
> t

]

≤ e−δ
2 N

2K + 2e−t
2/8N (10)

≤ e−
ε2N
32K + 2e−

ε2N
128K2 ≤ 3e−

ε2N
128K2

where we rely on the bounds from Lemma D.1 and
Lemma D.2 (presented after this proof) for (10). Now,
continuing from (6), we have

Pr[E] ≤
∑
f∈F

∑
s∈{0,1}k

∑
A⊆{0,1}k∪{same�}

3e−
ε2N

128K2

≤ 2log(|F|)+k+K+3− ε2N
128K2 (11)

We now bound (11) by ρ by setting

log(|F|) + k +K + 3 + log(1/ρ) < ε2N/128K2

which is achieved by

n > log(log(|F|)) + 3k + log(k) + 2 log
(1
ε

)
+ log

(
log

(
1
ρ

))
+ 9

where the last inequality is the assumption of our
theorem. Therefore, with probability 1−ρ, E does not
occur and the random function Dec gives rise to a non-
malleable code w.r.t. F with security ε. In particular,
some such codes with the above bound exist for any
ρ < 1. This concludes the proof, up to the bounds
from Lemma D.1 and Lemma D.2, which are shown
next.

Lemma D.1. For any δ > 0,
Pr

[|V (s)| < (1− δ)NK
] ≤ e−δ2 N

2K .

Proof. Follows directly by the (multiplicative) Cher-
noff bound, since each vertex v ∈ V is labeled with a
uniformly random value from {0, 1}k.
Lemma D.2. Let

W
def= |Ef (s→ A)| − |Ef (∗ → A)|

K
.

Then for any t ≥ 0, Pr[W ≥ t] ≤ 2e−t2/8N .

Proof. For each edge e = (v, ṽ), we define a random
variable

Ce =

⎧⎨
⎩

0 if e �∈ Ef (∗ → A)
1− 1/K if e ∈ Ef (s→ A)
(−1/K) otherwise

(12)

Then W =
∑
e∈E Ce. We wish to prove that W is

closely centered around 0. Unfortunately, the vari-
ables Ce are not independent. Our analysis is broken
up into three claims. First we show that in any sub-
set U ⊆ E which doesn’t contain non-trivial cycles
(cycles with more than 1 edge), the sum of Ce over
U forms a martingale. Second, we show that E can
be partitioned into two such subsets E = U1 ∪ U2.
Lastly we show that these two properties imply that
W is closely centered at 0, using Azuma’s inequality
on martingales.

Claim D.1. For any subset U ⊆ E of edges which
does not contain a non-trivial cycle (i.e. a cycle con-
sisting of more than 1 edge), there is an ordering
e1, . . . , e|U| of the edges in U such that the random
variables Wi =

∑i
j=1 Cej form a Martingale.

Proof. We can define a topological sort v1, . . . , v|V |
on the vertices V so that, for all edges e = (vi, vj) ∈
U , i ≥ j. We can extend the ordering on vertices to
one on edges by identifying each edge with its start-
ing vertex (this is unique since the out-degree is 1).
Think of the function Dec as being chosen by assign-
ing the values Dec(v1),Dec(v2), . . . ,Dec(v|V |) in or-
der, uniformly at random. Let ek = (vi, vj) be some
edge in U . Then, the choice of Dec(v1), . . . ,Dec(vi−1)
completely determines the values Ce1 , . . . , Cek−1 and
hence also the values of W1, . . . ,Wk−1. We consider
two cases.
vi = vj: In this case, if same� �∈ A then Cek is al-

ways 0. If same� ∈ A then ek is always in
Ef (∗ → A), and is also in Ef (s→ A) iff Dec(vi)
is labeled with s, which occurs with probability
1/K. Therefore, E[Cek | Ce1 , . . . , Cek−1] = 0.

vi �= vj: In this case, the value Dec(vj) is completely
determined at this point since i > j. If Dec(vj) �∈
A then Cek is always 0. Otherwise, it takes on the

451

S. DZIEMBOWSKI, K. PIETRZAK AND D. WICHS

value 1−1/K with probability 1/K (the probabil-
ity the Dec(vi) = s) and −1/K with probability
(1−1/K). Therefore E[Cek | Ce1 , . . . , Cek−1] = 0.

So, in both cases E[Cek | Ce1 , . . . , Cek−1] = 0 and
E[Wk|W1, . . . ,Wk−1] =Wk−1 as we wanted to show.

Claim D.2. For any directed graph G = (V,E)
where each vertex has out-degree one, there is a parti-
tion of E into to components U1, U2 such that neither
component contains a non-trivial cycle.

Proof. Since the out-degree is one, each edge par-
ticipates in at most one non-trivial cycle. Therefore,
we can break up each non-trivial cycle separately, by
placing half the edges into U1 and the other half into
U2.

(continuing the proof of Lemma D.2) Let U1, U2
be a partition of E as in Claim D.2. Let
W1 =

∑
e∈U1
Ce, W2 =

∑
e∈U2
Ce so that

W = W1 + W2. Then, by Claim D.1 we have
the martingales W (1)

1 ,W
(2)
1 , . . . ,W

(|U1|)
1 = W1 and

W
(1)
2 ,W

(2)
2 . . . ,W

(|U2|)
2 =W2. So

Pr[W ≥ t] ≤ Pr[W1 ≥ t/2] + Pr[W2 ≥ t/2]
≤ e−t

2/8|U1| + e−t
2/8|U2|

≤ 2e−t
2/8N

where we use Azuma’s inequality to bound the two
probabilities (and note that |U1|, |U2| ≤ N).

E Proof of Theorem 6.1
Proof of Theorem 6.1. By the definition of non-
malleability, for each f ∈ F there exists a distribution
Df such that there exists a{

c← Enc(s), c̃← f(c), s̃ = Dec(c̃)
Output: s̃.

}
≈{

s̃← Df
Output s if s̃ = same�, and s̃ otherwise.

}

We use these distributions to define the simulator S
for the tamper simulatability definition. Recall that S
has black-box access to the adversaryA, the function-
ality G(·, ·) and the tampering function f(·) queried
by A. The simulation proceeds by running A where,
in each round:

1. When the adversaryA issues a Tamper command
with function f ∈ F the simulator samples s̃ ←
Df (this can be done efficiently give oracle access
to f(·), by the definition to non-malleability).

2. When the adversary issues an Execute command
with input x:

• If s̃ = same�, then the simulator S forwards
the Execute(x) query to its system 〈G, s〉
and forwards the output y to A.
• If s̃ �= same� the simulator S goes into

“Overwritten Mode” (step 3).
3. “Overwritten Mode”: The simulator S uses the

modified state s̃ to perfectly simulate the sys-
tem 〈GEnc,Dec,Enc(s̃)〉 for all Tamper and Execute
queries in all future rounds. Note that this is
possible, using oracle access to G(·, ·) and to the
tampering functions f(·).

To show the indistinguishability of simulation, we
notice that, in each round prior to and including
the round where the simulation enters “overwritten
mode”, if the starting state in that round is s, the
modification function is f and the the input queried
by the adversary is x then (by the definition of non-
malleability):{

c← Enc(s), c̃← f(c), s̃ = Dec(c̃)
Output: G(x, s̃).

}
≈⎧⎨

⎩
s̃← Df

Output: G(x, s) if s̃ = same�
and G(x, s̃) otherwise.

⎫⎬
⎭

where the distributions represent the output y seen
by the adversary, and the updated “effective state” s
of the system in the TamperInteract game (on the left-
hand side) and in the simulation within the BBInteract
game (on the right hand side). Also, in each round
after the simulation enters “overwritten mode” it acts
exactly the same as the TamperInteract game. These
two facts, together with a hybrid argument over the
number of rounds, prove the indistinguishability of
the simulation.

452

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

