Innovations in Computer Science 2010

Interactive Proofs For Quantum Computations

Dorit Aharonov Michael Ben-Or Elad Eban
School of Computer Science, The Hebrew University of Jerusalem, Israel
doria@cs.huji.ac.il benor@cs.huji.ac.il elade@cs.huji.ac.il

Abstract: The widely held belief that BQP strictly contains BPP raises fundamental questions: Upcoming generations
of quantum computers might already be too large to be simulated classically. Is it possible to experimentally test that these
systems perform as they should, if we cannot efficiently compute predictions for their behavior? Vazirani has asked [21]:
If computing predictions for Quantum Mechanics requires exponential resources, is Quantum Mechanics a falsifiable
theory? In cryptographic settings, an untrusted future company wants to sell a quantum computer or perform a delegated
quantum computation. Can the customer be convinced of correctness without the ability to compare results to predictions?
To provide answers to these questions, we define Quantum Prover Interactive Proofs (QPIP). Whereas in standard
Interactive Proofs [13] the prover is computationally unbounded, here our prover is in BQP, representing a quantum
computer. The verifier models our current computational capabilities: it is a BPP machine, with access to few qubits.
Our main theorem can be roughly stated as: ”Any language in BQP has a QPIP, and moreover, a fault tolerant one”
(providing a partial answer to a challenge posted in [1]). We provide two proofs. The simpler one uses a new (possibly
of independent interest) quantum authentication scheme (QAS) based on random Clifford elements. This QPIP however,
is not fault tolerant. Our second protocol uses polynomial codes QAS due to Ben-Or, Crépeau, Gottesman, Hassidim,
and Smith [8], combined with quantum fault tolerance and secure multiparty quantum computation techniques. A slight
modification of our constructions makes the protocol “blind”: the quantum computation and input remain unknown to the
prover.

Keywords: Interactive Proofs; Authentication

1 Introduction pects of quantum mechanics, namely those which cannot
1.1 Motivation be simulated efficiently classically.

The problem arises in cryptographic situations as well.
Consider for example, a company called O-Wave which is
trying to convince a certain potential customer that the sys-
tem it had managed to build is in fact a quantum computer
of 100 qubits. How can the customer, who cannot make
predictions of the outcomes of the computations made by
the machine, test that the machine is indeed a quantum
computer which does what it is claimed to do? Given
the amounts of grant money and prestige involved, the
possibility of dishonesty of experimentalists and experi-
mentalists’ bias inside the academia should not be ignored
either [19, 24].

As far as we know today, the quantum mechanical de-
scription of many-particle systems requires exponential re-
sources to simulate. This has the following fundamental
implication: the results of an experiment conducted on a
many-particle physical system described by quantum me-
chanics, cannot be predicted (in general) by classical com-
putational devices, in any reasonable amount of time. This
important realization (or belief), which stands at the heart
of the interest in quantum computation, led Vazirani to
ask [21]: Is quantum mechanics a falsifiable physical the-
ory? Assuming that small quantum systems obey quantum
mechanics to an extremely high accuracy, it is still possi-

ble that the physical description of large systems deviates Also, it is natural to expect that the first generations of
significantly from quantum mechanics. Since there is no quantum computers will be extremely expensive, and thus
efficient way to make the predictions of the experimental quantum computations would be delegated to untrusted
outcomes for most large quantum systems, there is no way companies. Is there any way for the costumer to trust the
to test or falsify this possibility experimentally, using the outcome provided by an untrusted company? And even if
usual scientific paradigm. the company is honest, can the costumer detect innocent
This question has practical implications. Experimental- errors in such a computation?
ists who attempt to realize quantum computers would like As Vazirani points out [21], a partial answer to these
to know how to test that their systems indeed perform the questions is already given in the form of Shor’s algorithm.
way they should. But most tests cannot be compared to Indeed, quantum mechanics does not seem to be falsifiable
any predictions! The tests whose predictions can in fact using the usual scientific paradigm, assuming that BQP is
be computed, do not actually test the more interesting as- strictly lager than BPP. However, Shor’s algorithm does

453

D. AHARONOV, M. BEN-OR AND E. EBAN

provide a way for falsification, by means of an experiment
which lies outside of the usual scientific paradigm: though
its result cannot be predicted and then compared to the
experimental outcome, it can be verified once the outcome
of the experiment is known (by simply multiplying the
factors and comparing to the input).

This, however, does not fully address the issues raised
above. Let us take for example the case of the company
trying to convince a costumer that the system it is trying
to sell is indeed a quantum computer of 100 qubits. Such
a system is already too big to simulate classically; How-
ever, any factoring algorithm that is run on a system of
100 qubits can be easily performed by today’s classical
technology. How about delegated quantum computations?
Here too it is unclear how the ability to verify the outcome
of Shor’s algorithm can help in the context of a costumer
who wishes to be convinced of correctness of computation
of other problems in BQP and in particular of BQP com-
plete problems (e.g., [4, 16, 25]). As for experimental re-
sults, it is difficult to rigorously state what exactly does the
ability to apply Shor’s algorithm successfully imply. There
is a fundamental difference between being convinced of
the ability to factor, and testing universal quantum evolu-
tion; it may even be the case that factoring is in BPP while
BQP is not.

We thus pose the following main question (this ques-
tion was also asked by Gottesman [1]): Can one be con-
vinced of the correctness of the computation of any poly-
nomial quantum circuit? Does a similar statement to the
one above regarding Shor’s algorithm, apply for univer-
sal quantum computation? A different way to pose this
question is: can one be convinced of the “correctness”
of the quantum mechanical description of any quantum
experiment that can be conducted in a reasonable amount
of time in the laboratory, even though one cannot compute
any predictions for the outcomes of this experiment?

In this paper we address the above fundamental ques-
tion in a rigorous way. We do this by taking a computa-
tional point of view on the interaction between the sup-
posed quantum computer, and the entity which attempts to
verify that it indeed computes what it should.

1.2 Quantum Prover Interactive Proofs (QPIP)

Interactive proof systems, defined by Goldwasser, Mi-
cali and Rackoff [13], play a crucial role in the theory
of computer science. Roughly, a language £ is said to
have an interactive proof if there exists a computationally
unbounded prover (denoted P) and a BPP verifier (V)
such that for any x € L, P convinces V of the fact that z €
L with probability > % (completeness). Otherwise, when
x ¢ L any prover fails to convince V with probability
higher than % (soundness).

Shor’s factoring algorithm [20] can be viewed as an

interactive proof of a very different kind: one between
a classical BPP verifier, and a quantum polynomial time
(BQP) prover, in which the prover convinces the veri-
fier of the factors of a given number (this can be easily
converted to the usual IP formalism of membership in a
language). Recall that quantum interactive proofs which
were studied previously in the literature (e.g., [23]) had an
unbounded quantum prover and a BQP verifier.

Clearly, such an interactive proof between a BQP
prover and a BPP verifier exists for any problem inside
NP whose witness can be found in BQP. However, it is
widely believed that BQP is not contained in NP (and in
fact not even in the polynomial hierarchy). The main idea
of the paper is to generalize the above interactive proof
point of view of Shor’s algorithm, and show that with this
generalization, a verifier can be convinced of the result of
any polynomial quantum circuit.

To this end we define a new model of quantum inter-
active proofs which we call quantum prover interactive
proofs (QPIP). The simplest definition would be an in-
teractive proof in which the prover is a BQP machine and
the verifier a BPP classical machine. In some sense, this
model captures the possible interaction between the quan-
tum world (for instance, quantum systems in the lab) and
the classical world. Indeed Gottesman [1] posed his ques-
tion in this model. Unfortunately we do not know how to
prove the results in this model. We therefore strengthen it
slightly and allow the verifier additional access to a con-
stant number of qubits and to a quantum channel. This
verifier can be viewed as modeling our current computa-
tional abilities.

Definition 1.1 Quantum Prover Interactive Proof (QPIP)
is an interactive proof system with the following proper-
ties:

e The prover is computationally restricted to BQP.

o The verifier is a hybrid quantum-classical machine.
Its classical part is a BPP machine. The quantum
part is a register of c qubits (for some constant c),
on which the prover can perform arbitrary quantum
operations. At any given time, the verifier is not al-
lowed to possess more than c qubits. The interaction
between the quantum and classical parts is the usual
one: the classical part controls which operations are
to be performed on the quantum register, and out-
comes of measurements of the quantum register can
be used as input to the classical machine.

o There are two communication channels: one quan-
tum and one classical.

The completeness and soundness conditions are identical
to the |P conditions.

Abusing notation, we denote the class of languages for
which such a proof exists also by QPIP.

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

1.3 Main Results

Definition 1.2 The promise problem Q-CIRCUIT
consists of a quantum circuit made of a sequence of gates,
U = Ur...Uy, acting on n input bits. The task is to
distinguish between two cases:

YES
NO

1((10) 0] ® Zn—1) U 10) |2

2
H[((10) (0] ® Zn—1) U 0) ||* <

W= WlN

Q-CIRCUIT is a BQP complete problem. This remains
true for any soundness and completeness parameters 0 <
s,e< lifc—s> #(n)' Our first result is:

Theorem 1.1 The language Q-CIRCUIT has a QPIP.

The proof is quite simple once the right definitions are
set, given the notion of quantum authentication schemes
(QAS). We explain the idea later in the introduction.

Since Q-CIRCUIT is BQP complete, and QPIP is triv-
ially inside BQP, we have as an immediate corollary:

Corollary 1.2 BQP = QPIP.

Thus, a BQP the prover can convince the verifier of any
language he can compute. We remark that our definition
of QPIP is asymmetric - the verifier is “convinced” only if
the quantum circuit outputs 1. This asymmetry seems ir-
relevant in our context of verifying correctness of quantum
computations. Indeed, it is possible to extend the result
to enable the verifier to be convinced of correctness of
the prover’s outcome (in both 0 and 1 cases) using sim-
ple arguments based on the fact that BQP is closed under
complement (see Section 7).

Importantly, the above results apply in a setting in which
the physical systems are subjected to noise:

Theorem 1.3 Theorem 1.1 holds also when the quantum
communication and computation devices are subjected to
the usual local noise model assumed in quantum fault tol-
erance settings.

Thus, our results apply also in physically realistic set-
ting; the prover, the verifier and the communication chan-
nel can all be noisy, as long as the noise satisfies the stan-
dard restrictions of quantum fault tolerance. The proof of
1.3, unlike that of 1.1, requires some technical effort.

In the works [6, 11] a related question was raised: in our
cryptographic setting, if we distrust the company perform-
ing the delegated quantum computation, we might want
to keep both the input and the function which is being
computed secret. Can this be done while maintaining the
confidence in the outcome? A simple modification of our
protocols gives

455

Theorem 1.4 Theorem 1.3 holds also in a blind setting,
namely, the prover does not get any information regard-
ing the function being computed, and its input, beyond an
upper bound on the size of the circuit.

An analogous result for NP-hard problems was shown
already in the late 80’s to be impossible unless the polyno-
mial hierarchy collapses [2].

1.4 Proofs Overview (and a new Quantum Authen-
tication Scheme)

Our main tool is quantum authentication schemes
(QAS) [7]. Roughly, a QAS allows two parties to
communicate in the following way: Alice sends an
encoded quantum state to Bob. The scheme is secure
if in case the state had been altered, Bob’s chances of
declaring valid a wrong state are small. The basic idea
of our QPIP protocols is to have the prover hold, at time
step t, the authenticated version of the state Uy - - - U7 |0).
We need to describe how the prover and the verifier can
together update this authenticated state, without the prover
knowing the authentication key, and using only a constant
number of qubits at the verifier’s end.

The basic QPIP. Our starting point is a very simple QPIP
protocol which works with any QAS (under the mild con-
dition that it maintains its security when it is applied in
parallel on several registers). Unfortunately this scheme is
not fault tolerant, but it serves well to explain how QAS
and QPIP are related. The idea is simple: use the prover
as an untrusted storage device. To do this, the verifier asks
the prover for the authenticated qubits on which he would
like to apply the next gate. He then decodes those qubits,
applies the gate, encodes them back and sends them to
the prover. The proof of security is quite straight forward
given the security of the QAS.

For concreteness, we apply this scheme using a new
simple and efficient QAS, based on random Clifford group
operations (it is reminiscent of Clifford based quantum 2-
designs [12]). To encode a state of m qubits, tensor the
state with d qubits in the state |0), and apply a random
Clifford operator on the m+-d qubits. To prove the security
proof of this QAS we use similar tools to that of the proof
of [12] of quantum unitary 2—designs, to show that any
attack of the prover is mapped by the random Clifford
operator to random Pauli operators. We then show that
those are detected with high probability. This QAS might
be interesting in its own right due to its simplicity, and
since it is extremely efficient: using d extra qubits we
get security 2~ and moreover this security is independent
of the dimension of the Hilbert space being authenticated
(unlike in other QASs, e.g., the second QAS we use in
this paper).

For fault tolerance, it seems necessary that the prover

D. AHARONOV, M. BEN-OR AND E. EBAN

will be able to apply quantum gates on the state by himself.
Due to the lack of structure of the authenticated states in
the general QAS we do not know how to do this without
revealing the authentication key. We thus focus on one
specific QAS which does exhibit enough structure to al-
low for fault tolerance. As a side benefit, this QPIP also
involves just one round of quantum communication, com-
pared to the basic QPIP in which all rounds are quantum.

Polynomial codes based QAS and its QPIP We recall
the QAS due to Ben-Or, Crépeau, Gottesman, Hassidim
and Smith [8]. This QAS is based on signed quantum
polynomial codes, which are quantum polynomial codes
[3] of degree at most d multiplied by some random sign (1
or —1) at every coordinate (this is called the sign key) and
a random Pauli at every coordinate (the Pauli key).

First, we present a security proof for this QAS; this
corrects an error in the security proof of the original paper
[8]. To do this we first prove that no Pauli attack can fool
more than a small fraction of the sign keys, and thus the
sign key suffices in order to protect the code from any
Pauli attack. Next, we need to show that the scheme is
secure against general attacks. This, surprisingly, does
not follow by linearity from the security against Pauli at-
tacks as is the case in quantum error correcting codes (this
is the missing link in the proof of [8]). Indeed, if one
omits the Pauli key from this QAS one gets an authen-
tication scheme which is secure against Pauli attacks but
not against general attacks. We proceed by showing, (with
some similarity to the Clifford based QAS proof), that the
random Pauli key effectively translates the prover’s attack
to a mixture (not necessarily uniform like in the Clifford
case) of Pauli operators acting on a state encoded by a
random signed polynomial code.

We note that the security parameter d is different and is
in fact slightly worse (though in an unimportant way) than
the d parameter in the Clifford based QAS (see Sec. 2.4
for more precise statements).

Due to its algebraic structure, the signed polynomial
code QAS allows applying gates without knowing the key.
This was used in [8] for secure multiparty quantum com-
putation; here we use it to allow the prover to perform
gates without knowing the authentication key.

The QPIP protocol goes as follows. The prover selects
an authenticated code, which encodes one qudit into m
qudits; m is a small constant. The verifier authenticated
the inputs to the circuit, as well as the magic states re-
quired to perform Toffoli gates (called Toffoli states), as
described in [8, 18]. With those authenticated states at
hand, the prover can perform universal computation using
only Clifford group operations and measurements (univer-
sality was proved for qubits in [9], and the extension to
higher dimensions was used in [8]). The prover sends
the verifier results of measurements and the verifier sends

456

information given those results, which enables the prover
to continue the computation. The communication is thus
classical except for the first round.

Fault Tolerance One is tempted to try and apply known
fault tolerance techniques (e.g., [3]) to achieve robustness
to local noise. However, a problem arises when attempting
to apply those techniques directly: since all states sent to
the prover must be authenticated, the verifier needs to send
the prover polynomially many authenticated qubits every
time step, so that the prover can perform error corrections
on all qubits simultaneously, as is required for fault tol-
erance. However, the verifier’s quantum register contains
only a constant number of qubits.

We bypass this problem as follows. At the first stage
of the protocol, the verifier authenticates as many zero
states and Toffoli states as would be required during the
entire protocol, and sends those to the prover. This is
done sequentially, state by state, so that the verifier only
uses a constant quantum register. As soon as the prover
receives a qudit, he protects it using his own concatenated
error correcting code; the result is that the effective error
in any of the authenticated states is also a constant. This
constant accuracy can be maintained for a long time by
the prover, by performing error correction with respect
to his error correcting code. Thus, polynomially many
such authenticated states can be passed to the prover in
sequence.

To proceed, we notice that the purity of the states can
now be amplified using purification [9]. Indeed, the prover
cannot perform purification on his own since the purifi-
cation compares authenticated qubits and the prover does
not know the authentication code. However, the verifier
can help the prover using classical communication (For
the purification of the Toffoli states, we use the methods
of [8]). This way the prover can reduce the effective error
on his encoded authenticated states; in fact, with polyloga-
rithmic work the error can be reduced all the way to inverse
polynomial. Effectively, the input at the prover’s hands
is now error free with very high probability; The prover
and verifier can now perform the polynomial-code based
QPIP on this input, to apply the desired circuit. During the
application of the protocol the prover performs his gates
fault tolerantly with respect to his error correcting codes,
and constantly correct errors; in other words, he follows
the standard quantum fault tolerance scheme on his side,
with respect to his codes.

Blind Quantum Computation To achieve Theorem 1.4,
we modify our construction so that the circuit that the
prover performs is a universal quantum circuit, i.e., a
fixed sequence of gates which gets as input a description
of a quantum circuit, plus an input string to that circuit,
and applies the input quantum circuit to the input string.

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

Since the universal quantum circuit is fixed, it reveals
nothing about the input quantum circuit or the input string
to it.

1.5 Interpretations of the Results

The corollaries below clarify how the QPIP protocols
designed here are used to address the motivating questions
from Sec. 1.1.

A natural question is how close the quantum state is to
the correct state, in case the verifier accepted. As usual, to
guarantee closeness to the correct state at the end, we need
to require that the probability to abort is small:

Corollary 1.5 For a QPIP protocol with security ¢, if the
verifier’s probability to abort is < 1 — ~ then the trace
distance between the final density matrix and that of the
correct state is at most %.

We would also like to interpret the results as a guarantee
that a prover that passed the test (for “hard” quantum
circuits) cannot be in BPP, assuming BQP # BPP.
To make this formal, we need a somewhat stronger
assumption which is still widely believed: we assume
that there is a language L € BQP and a polynomial time
samplable distribution D on which any BPP machine errs
with non negligible probability regarding membership in
L (e.g. the standard cryptographic assumptions about the
hardness of Factoring or Discrete Log). Given this, the
following corollary can be proven using Corollary 1.5.

Corollary 1.6 Fix such a language L. If the verifier in-
teracts with a given prover using the QPIP for L, and the
probability for abort is 1 — vy for some positive vy, (where
probability is taken also over an input sampled according
to D), then the QPIP cannot be simulated in BPP.

One might wonder whether it is possible to somehow
get convinced not only of the fact that the computation that
was performed by the prover is indeed the desired one, but
also that the prover must have had access to some quantum
computer, or at least to some quantum memory. We prove:

Claim 1.7 There exists a language L € BQP such that
even if the prover in our QPIP is replaced by one with
unbounded classical computational power, but only a con-
stant number of qubits, the prover will not be able to con-
vince the verifier to accept: V in this case aborts the com-
putation with high probability.

In fact, the proof of this claim does not require the ma-
chinery of QPIP, it is based on ideas that appeared al-
ready in the study bounded storage quantum models [22].
We thus see yet another setting in which quantum me-
chanics cannot be simulated by classical systems, regard-
less of how computationally powerful they are; In addition

457

to bounded storage models, this property emerges also in
other contexts, e.g., the EPR experiment.

We note that all our proofs are based on the assumption
that the system obeys the mathematical model of quantum
mechanics. It is thus assumed in all proofs that Nature be-
haves in a way which can be described in this framework.
Note that this does not implicitly assume that the system
is fully quantum mechanical (something which we might
want to check using these protocols): Classical systems or
decohered quantum systems can also be described in this
mathematical model. However, this assumption does put
restrictions on the possible models for which our security
proofs would hold, and in particular, it requires the system
to be linear and have some tensor product structure. Of
course, one cannot hope to prove security results without
any assumption on the mathematical model that describes
the physical system.

Finally, we remark that in the study of IP, a natural
question is whether a prover can prove any language it
can compute; The answer is known to be positive for
PSPACE, NP and #P provers, but is still open for cONP,
SZK and PH [5]. Our results imply that a BQP prover
can prove the entire class of BQP (albeit to a verifier who
is not entirely BPP).

1.6 Related Work and Open Questions

The two questions regarding the cryptographic angle
were asked by Childs in [11], and by Arrighi and Salvail
in [6], who proposed schemes to deal with such scenarios.
However [11] do not deal with a cheating prover, and [6]
deals only with a restricted set of functions which they
refer to as random verifiable.

Broadbent, Fitzsimons, and Kashefi [10] have proven
related results independently. Using measurement based
quantum computation, they construct a protocol for uni-
versal blind quantum computation, and moreover, the ver-
ifier’s register consists of a single qubit. These results
imply similar implications to ours, though they are not
presented using the language of QPIP and do not discuss
the more foundational motivations and implications.

Yi-Kai Liu suggested an alternative way to implement
the basic QPIP protocol, based on Kitaev’s circuit to
Hamiltonian construction [15], where the prover prepares
the history state of the circuit and sends the qubits of
this state to the verifier one by one. The verifier decides
randomly on one local term in the Hamiltonian, keeps
only the qubits in this term (Two qubits suffice using
[14]) and measures the energy of that term on those
qubits. This is repeated poly(n) times to amplify security.
Unfortunately, it is not clear how to make this scheme
fault tolerant.

An important and intriguing open question is whether it
is possible to make the verifier completely classical. This

D. AHARONOV, M. BEN-OR AND E. EBAN

would have interesting fundamental implications regard-
ing the ability of a completely classical system to learn
and test a quantum system.

Another interesting (perhaps related?) open question
is to study the model we have presented here of QPIP,
with more than one prover. Possibly, multiprover QPIP
might be strong enough even when restricted to classical
communication. In [10] this was shown assuming that
the two provers are entangled (but other than that cannot
communicate).

This work also raises some questions in the philosophy
of science. In particular, it suggests the possibility
of formalizing and studying the interaction between
physicists and Nature, using computational complexity
notions. Following discussions with us at preliminary
stages of this work, Jonathan Yaari is currently studying
“interactive proofs with Nature” from the philosophy of
science aspect [26].

Paper Organization We start with notations and back-
ground regarding the notions that appear in this paper, in
Sec. 2. Here we also present the polynomial codes based
QAS . Sec. 3 provides the basic protocol together with
the Clifford QAS. Sec. 4 we describe the QPIP based
on signed polynomial codes, and prove its fault tolerance;
Sec. 5 generalizes the result to the blind setting. Sec. 6
proves the corollaries regarding how the results can be
interpreted; Sec. 7 defines the symmetric version of QPIP
and proves its equivalence to Definition 1.1. We provide a
complete proof of security of the polynomial-codes-based
QAS in the appendix.

2 Background
2.1 Pauli and Clifford Group

Let P,, denote the n-qubits Pauli group. P = P; ®
Py®...QP, were P, € {Z,X,Y, Z}.

Definition 2.1 Generalized Pauli operator over Fy:
Xa) = |(a+1) modg), Zla) = wila), ¥ = XZ,
where wg = e2™/4 is the primitive g-root of the unity.

We note that ZX = w,XZ. We use the same notation,
P,,, for the standard and generalized Pauli groups, as it
will be clear by context which one is being used.

Definition 2.2 For vectors x, z in F qm, we denote by P, .
the Pauli operator Z** X1 Q.. .QZ*m X *m,

We denote the set of all unitary matrices over a vector
space A as U(A). The Pauli group P,, is a basis to the
matrices acting on n-qubits. In particular, we can write
any matrix U € U(A ® B) for A the space of n qubits, as
ZPGP” P ® Up with Up some matrix on B.

458

Let €,, denote the n-qubit Clifford group. Recall that it
is a finite subgroup of U(2"™) generated by the Hadamard
(1) (z) >, and by controlled-NOT.
The Clifford group is characterized by the property that
it maps the Pauli group P, to itself, up to a phase o €
{+£1, +i}. Thatis: VC € &,, P € P, : aCPCT € P,

matrix-H, by K =

Fact 2.1 A random element from the Clifford group on n
qubits can be sampled efficiently by choosing a string k
of poly(n) length uniformly at random. The map from k
to the group element represented as a product of Clifford
group generators can be computed in classical polynomial
time.

2.2 Polynomial Quantum Error Correction Codes
Definition 2.3 Polynomial error correction code [3].
Given m,d, q and {a; }* where «; are distinct non zero
values from F,, the encoding of a € Fy is |S,)

def 1

|Sa> = = Z

d
9" fideg(f)<d,
F(0)=a

|floa), ... flom)) (D)

We use here m = 2d + 1, in which case the code sub-
space is its own dual. It is easy to see that this code can
detect up to d errors [3].

We recall from [3] how to apply several useful gates on
states encoded by those codes, in a transversal manner.
The simplest gate is the generalized X:

X |Sa) = X¥™[8,) = [S(as1)))
Similarly for logical controlled-SUM (denoted SUM)

which is the generalization of CNOT, it is easy to check
that:

SUM|S,) |Ss) = SUME™ |S,) [Sp) = [Su) |Sass) (3)

The logical Fourier transform requires a little more
work. Recall the definition of the generalized Fourier
transform in F:

W, la) <)

1 rab
— > Wb
e

The logical Fourier operator F can be applied using the
interpolation coefficients c; for degree m — 1 polynomials:

fe def _ a
W Sa) < 7™y wib|9y) =
b

We, @ We,®...@We, |Sa) .

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

The Z operator can be seen as a product of Fourier and
X operators, and thus can also be applied. More directly,
it can be seen that

Z18.) = |(=1)%S,) = Z9F ®...@Zm* 8,) (5)
To complete this to a universal set of gates, we need to

add measurements, and Toffoli states. This is explained
further in Section 4.1, in the relevant context.

2.3 Signed Polynomial Codes

Definition 2.4 ([8]) The signed polynomial code with re-
spect to a string k € {£1}™ (denoted Cy,) is defined by:

>

f:deg(f)<d
f(0)=a

1
qi/2

5t) %

[k1f(ea), . km f(am)) (6)

Once again, we use m = 2d + 1. The code can detect d
errors. Also, Cy, is self dual [8], namely, the code subspace
is equal to the dual code subspace.

2.4 Quantum Authentication

Definition 2.5 (adapted from Barnum et. al. [7]). A
quantum authentication scheme (QAS) is a pair of poly-
nomial time quantum algorithms A and B together with a
set of classical keys IC such that:

o A takes as input an m-qubit message system M and
a key k € K and outputs a transmitted system T of
m + d qubits.
B takes as input the (possibly altered) transmitted
system T" and a classical key k € K and outputs two
systems: a m-qubit message state M, and a single
qubit V which indicate whether the state is consid-
ered valid or erroneous. The basis states of V are
called |V AL) ,|ABR). For a fixed k we denote the

corresponding super-operators by Ay, and By.

Given a pure state |1)), consider the following test on the
joint system M, V' : output a 1 if the first m qubits are in
state |¢) or if the last qubit is in state | ABR), otherwise,
output 0. The corresponding projections are:

P =)@l eIy +
(In — [4) (¥]) © |ABR) (ABR|
P = (In —) ()) ® [VAL) (VAL|

The scheme is secure if for all possible input states |1))
and for all possible interventions by the adversary, the ex-

pected fidelity of B’s output to the space defined by Pl‘w>
is high:

Definition 2.6 A QAS is secure with error € if for every
state |)) it holds:

459

o Completeness: Forall keysk € KC: By, (Ax(J2) (¢])) =
1) (¥l @ [VAL) (VAL
e Soundness: For any super-operator A (rep-
resenting a possible intervention by the ad-
versary), if pp is defined by defined by pp
151 S Be(A(A(9) (1), shen: TP) 2
—e

2.5 QAS based on Signed Quantum Polynomial
Codes

Protocol 2.1 Signed Polynomial Codes Authentication
protocol (due to [8]): Alice wishes to send the state |1))
of dimension q. She chooses a security parameter d, and
a code length m = 2d + 1. Encoding: Alice randomly
selects a pair of keys: a sign key k € {£1}™ and a Pauli
key (x,z) with ¢,z € F;™. She encodes |1) using the
signed quantum polynomial code C}, of polynomial degree
d (see Definition 2.4). She then applies the Pauli P,)
(i.e., for j € {1,..,m} she applies Z% X" on the j'th
qubit). Decoding Bob applies the inverse of P, ., and
performs the error detection procedure of the code Ci.
He aborts if any error is found and declares the message
valid otherwise.

The completeness of this protocol is trivial, while
soundness requires work:

Theorem 2.2 The polynomial authentication scheme is
secure against general attacks with security 24

We provide a complete proof in the appendix. We notice
that in this scheme a g-dimensional system is encoded into
a system of dimension ¢™ = ¢??*!. It is easy to see that
the scheme is secure when applied in parallel:

Theorem 2.3 The polynomial based QAS applied in par-
allel (with the same sign key for all registers), and with
degree d polynomial, has the same security as the individ-

ual QAS, that is: 2~ 4.

3 Basic QPIP
3.1 The QPIP Protocol

Protocol 3.1 Basic QPIP for Q-CIRCUIT: Fix a security
parameter €. Given is a quantum circuit consisting of two-
qubit gates, U = Ur.. .Uy, with error probability reduced
to < §. The verifier authenticates the input qubits of the
circuit one by one using any QAS with security parameter
d set such that the QAS is € secure. That is, every qubit is
authenticated using a constant number of auxiliary qubits,
which are all sent to P. For each i = 1 to m, the verifier
asks the prover for the authenticated qubits on which he
would like to apply the gate U, decodes them, aborts if any
error is found, applies the gate, authenticates the resulting
qubits using a new pair of authentication keys, and sends

D. AHARONOV, M. BEN-OR AND E. EBAN

the encoded qubits back to 'P. Finally, the verifier asks P
to send the output authenticated qubit, decodes and aborts
if any error is found; otherwise, measures the decoded
qubit and accepts or rejects accordingly. In any case that
V does not get the correct number of qubits he aborts.

We now prove Theorem 1.1 by proving:

Theorem 3.1 For any €¢,6 > 0 Protocol 3.1 is a QPIP
protocol with completeness 1 — 6 and soundness § + € for

Q-CIRCUIT.

Proof: If the prover is honest, the verifier will declare
valid with certainty. Since the error in the circuit is < 6,
(1 — 0) completeness follows. For soundness, we observe
that for the verifier to accept if x is not in the language,
means that he has not aborted, and also, answers YES. Let
us denote by Pj,q the projection on this subspace (Valid
on the first qubit, Accept on the second). To bound the
probability of this event, we observe that the correct state
at any given step is a state which is authenticated by the
QAS applied in parallel.

3.2 Clifford based QAS

We now present the new Clifford based QAS, which
is essentially adding zero states and applying a Clifford-
twirl, namely, conjugation by a random Clifford operator.

3.2.1 The Clifford Based QAS: the Protocol

Protocol 3.2 Clifford based QAS: Given is a state |1)) on
m qubits and d € N a security parameter. We denote n =
m ~+ d. The set of keys IC consists of succinct descriptions
of Clifford operations on n qubits (following Fact 2.1). We
denote by C = Cl the operator specified by a key k €
K. Encoding - Ay: Alice applies C}, on the state |)) ®
|O>®d. Decoding - By: Bob applies C}; to the received
state. Bob measures the auxiliary registers and declares
the state valid if they are all 0, otherwise Bob aborts.

3.2.2 Security
Theorem 3.2 The Clifford scheme applied ton = m + d

qubits is a QAS with security 2~%, where d is the number
of qubits added to a message on m qubits.

The proof relies on the fact that a Clifford twirl takes
any operator to a mixture of Paulies (which is uniform on
the non-identity ones), as stated in the following lemma.

Lemma 3.3 (Adapted from [12] Corollary 4.) For an ar-
bitrary trace-preserving completely positive map A(p)
Dk AkpAL, applying a Clifford-twirl to A is equivalent to
applying a Haar-twirl to A, that is for any density matrix

460

p on n qubits:
/dU > UTNUpUTALU
k

>N ctaCpctale

cee, k
1-s
U=9) 5~ Quql
QEP,,Q#T

(7

o+

where s =y, |Tr(Ag)|?.

We now prove the security of the Clifford QAS given
Lemma 3.3

Proof of Theorem 3.2: From Lemma 3.3 we know
what Bob’s state after Eve’s intervention is and we would
like to bound its projection on Pllw:

Tr(Pllw(spr 47: Z QPQT))
QEP,\{Z}
1—
= sTe(Pp) + 2= Y TPV QeQh))
QeP,
QA1

By definition of lej> we see that Tr(P1|¢>p) = 1. On

the other hand: Tr(PIWQpQT) = 1 when @ does not
flip any of the auxiliary qubit, and vanishes otherwise.
The Pauli operators that do not flip auxiliary qubits can be
written as Q' ® Q" where Q' € P,,, and Q" € {Z, Z}%1.
It follows that the total number of such operators is exactly
4m24 Omitting the identity Z,, we are left with 4m2¢ — 1
operators which are undetected by our scheme. We return
to Eq. 8:

qmod _ 1
-Zs+(1*5)(1*ﬁ)
4mod
1—s

The security follows from the fact that s > 0, and hence
the projection is bounded by 1 — .

3.2.3 Applying the Clifford based QAS in Parallel

Here we make rigorous the definition and correctness of
applying the a QAS on entangled registers in parallel. We
consider a QAS (for instance the Clifford QAS) which au-
thenticates m qubits. Given r blocks of m qubits each, we
can apply the QAS separately on each one of the r blocks.
B declares the state valid if all of the r registers are valid
according to the original QAS. We call this applying the
QAS in parallel. The completeness of the concatenated
protocol is trivial, for any QAS. For soundness we prove
the following theorem for the Clifford QAS.

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

Theorem 3.4 Applying the Clifford QAS in parallel has
the security of the individual Clifford with security param-
eter d, QAS, that is 2~ This holds regardless of the
number of blocks (r) that are authenticated.

Proof: From Lemma 3.3, we know that any attack by Eve
on an authenticated register is equivalent to an effect of
mixing operator M g:

1—
M) =0+ S S 0ot o)
QeP,
Q#L

on the unencoded message space. We denote M 4(p) = p,
we first deal with the case were r = 2

We are interested of the effect of a twirl from C,, ®C,, on
a state p; ® po. Itis fairly straight forward to notice (using
the same ideas as [12]) that the twirl on any A results in
the transformation:

p1® p2 =s(p1 ® p2) + h(p1 ® p2)

11
+r(p1 ® p2) + t(p1 @ p2) (h

for some scalars s, ¢, r,t which depend on A.

Bob does not abort, if both individual Clifford QAS are
valid that is: PY*®?* = P{* ® P§*. From the security of
the individual QAS we know that Tr((P}")B(p;)) < 274
where B is Bob’s cheat detecting procedure. Using this
observations on Eq. 11:

Tr(P 972 B (s (o1 @ p2) + h (71 @ p2)

+7 (o1 @ 2) + £ (71 @))
=50+ q2 "+ 727 (2792
<(1—s)27¢

(12)

Where the inequality holds since s +q +r 4+t = 1.
The claim for » > 2 follows the exact same lines and
therefore is omitted.

3.2.4 Analysis and Parameters

Using the Clifford QAS, the classical communication is
linear in the number of gates. For € = %, we getd = 1,
and so the verifier uses a register of 4 qubits. In fact 3
is enough, since each of the authenticated qubits can be
decoded (or encoded and sent) on its own before a new
authenticated qubit is handled.

4 Polynomial Codes Authentication Based
QPIP

The above described QPIP is not fault tolerant. We
therefore defer now to a different type of QPIP in which
the prover can perform the quantum gates (with the help

461

of classical communication with the verifier) despite the
fact that he does not know the authentication key. To this
end we use the QAS based on quantum signed polynomial
codes, described in Section 2.5, and show how the prover
can apply Clifford operations and measurements on the
states. Those operations, augmented with the prover hav-
ing access to authenticated Toffoli states, form a universal
set of gates [8].

4.1 Secure Application of Quantum Gates

We have seen in Sec. 2.3 how to perform operations
on states encoded by a polynomial code. In this section
we present a way (described in [8]) for the prover to ap-
ply these operations on a signed shifted Polynomial error
correcting code, without knowing the sign nor the Pauli
keys. Hence, this can be done without compromising the
security of the authentication scheme.

The main idea is that the prover applies the transitive
operations assuming no keys, since he doesn’t know the
correct authentication key. This will have the wrong effect
on the state, but the point is that the verifier can correct for
this by updating his key. Once this update is performed,
the prover’s action has the desired effect on the state.

We will first show the simple and elegant fact that if the
verifier wants a (generalized) Pauli applied to the state, he
does not need to ask the prover to do anything. The only
thing the verifier must do is change his Pauli keys. Then
we show how to perform other operations such as SUM,
Fourier and Measurement. _

e Pauli X: The logical X operator consists of an appli-

cation of X*1®, ... ® X% where k is the sign key.
We claim that the change (z, z) — (x — k, z) will in
fact change the interpretation the verifier assigns to
the state in the desired way.

st)

— Iik’zXf(xfk)Zszsz

Py,

si:> — Py P!

rz—k,z

Px,z

S§>

= Poso (XM, @ XP) [SE)
St)

Pauli Z: Similarly to the X operator, all that is
needed is a change of the Pauli key. We recall that
Z = Z9M®.. .@Z°kn We define the vector
t to be t; = c;k;. From the same argument as
above, it holds that the change of keys must be
(,2) = (z,z — t).

Controlled-Sum: In order to remotely apply the
SUM operation the prover perform transversely
Controlled-Sum (SUM) from register A to register
B on the authenticated states; as if the code was not
shifted by the Pauli masking. However, a change in
the Pauli keys is needed for the operation to have the

13)

xfk,zX

D. AHARONOV, M. BEN-OR AND E. EBAN

desired effect. It is easy to check that:

SUM(Z*A X4 @ 7?7 X"5)

=(Z7A7% B X4 @ 778 XTBHEA)SUM

Which implies that the same hold for the logical op-
eration SUM and the Pauli shift P, .y:

m(P(mA,ZA) ® P(vazB))

(15)
= (P(IA»ZA*ZB) ® P(zB+zA,ZB)) SUM

Hence, the verifier must change the pair of
keys (za,24),(xB,28) t0 (xa,24 — zp) and
(xp + xa,2p), for the SUM to have the desired
affect on the state.

Fourier: The prover performs Fourier transversely
on the authenticated state. We recall that the Fourier
operation swaps the roles of the X and Z Pauli oper-
ator. WX*WT = Z% and WZ*W' = X%, This is
true for each register separately and hence:

W-ZaX" @... ® 2 X"
=XTHZT Q... QX mZom .
~ZUX TR Q.. @ ZImX T

w
14

(16)

Where the last equality is up to a global phase.
Therefore the verifier must change the key (z, 2) to
(—z,x).

Measurement in the standard basis: The prover
measures the encoded state in the standard basis, and
sends the result to the verifier. Using the x part of
Pauli key, and the knowledge of &, the verifier in-
terpolates the polynomial according to values in the
received set of points. If the polynomial is indeed a
polynomial of low degree (which is always the case
if the prover is honest) the verifier sends the encoded
value to the prover. Otherwise, the prover is caught
cheating and the verifier aborts.

Toffoli: The (generalized) Toffoli gate is applied
using Clifford group operations on the Toffoli state
éZa,b |a, b,ab) ([8, 18]). Changes to the keys are
made with respect to the actual operations that were
performed.

4.2 Polynomial Based QPIP .

Protocol 4.1 Polynomial based Interactive Proof for
Q-CIRCUIT Fix a security parameter €. Given is a
quantum circuit on n qubits consisting gates from the
above universal set, U = Ur...U;. We assume the circuit
has error probability < §. The verifier sets d = [log 5
and uses 3 registers of m = 2d + 1 qudits each, where
each qudit is of dimensionality ¢ > m. The verifier uses
concatenated polynomial QAS with security parameter d

462

to authenticate n input qudits and the necessary number
of Toffoli states. This is done sequentially using 3m qudits
at a time. Then, the prover and verifier perform the gates
of the circuit as described above. Finally, if the final
measurement does not yield an authenticated answer, the
verifier aborts, otherwise, he accepts or rejects according
to the measurement outcome.

Theorem 4.1 Protocol 4.1 is a QPIP protocol with com-
pleteness 1 — § and soundness 0 + € for Q-CIRCUIT.

This theorem implies a second proof for Theorem 1.1.
The size of the verifier’s register is naively 3m, but using
the same idea as in the Clifford case, m + 2 suffice. With
e = 1/2, this gives a register of 5 qutrits.

Proof: The completeness is trivial, similarly to the basic
QPIP case. To prove the soundness of the protocol we first
prove the following lemma, originally stated in [8]:

Lemma 4.2 At any stage of the protocol the verifier’s set
of keys, k and {(x, z);}} are distributed uniformly and
independently.

Proof: Before any gate is applied the claim holds. All
that needs to be done it to check that all changes keep this
desired property.

The sign key k does not change during the protocol so in
this case the claim is trivial. Atevery step at most two pairs
of Pauli keys change. Let us review the possible changes
(see Section 4.1) and verify that the claim holds:

e Changes from the Pauli operators and Fourier trans-
form induces shift, swap or negation changes to the
keys; all of them preserve the uniform independent
distribution trivially.

The SUM operation involves two set of keys
(xa,z4), (xp,zp) which change to (v 4,24 — 2B)
and (xp + x4, 2p). The sum zp + x4, 18 mod ¢
hence it is distributed uniformly, in addition it is not
hard to see that is independent of z 4. The same
holds for z4 — zp and zp.

When the prover measures in the standard basis an
authenticated qubit the outcome of the measurement
is distributed uniformly at random in F;". Specifi-
cally, the outcome does not depend on the sign key
or the information that is authenticated. Therefore,
even when the prover has the interpretation of his
measurement outcome, he does not gain any infor-
mation about the sign key & or the Pauli keys of other
registers.

This implies that at any stage of the computation the
set of authentication keys that the verifier holds is uniform
and independent of the communication it had so far with
the prover. Therefore, if the prover is honest, the state that
the prover holds at any given moment should be the correct

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

state of the quantum circuit, authenticated by the QASwith
respect to the current set of keys. The rest of the argument
of the proof follows that of the proof of Theorem 1.1.

4.3 Fault Tolerant QPIP

We now prove Theorem 1.3, which implies our main

result, namely a fault tolerant QPIP for BQP.
Proof: Our proof combines several known fault-tolerant
quantum computation techniques. However, fault toler-
ance does not follow straight-forwardly, since care must
be given to the fact that the verifier is the only one who
can authenticate qubits, while he cannot authenticate many
qubits in parallel.

The proof can be divided into three stages.

In the first stage, the prover receives authenticated qu-
dits from the verifier, one by one. Each qudit is authen-
ticated on m qudits. The prover ignores the authentica-
tion structure and begins encoding each qudit out of the
m qudits separately using a concatenated error correction
code, with total length which is polylogarithmic (in n- the
number of input qudits and also in m - which is a constant),
as is required for the fault tolerance scheme in [3]. From
the work of [3, 17] (and others) we know that this encoding
can be done in a fault tolerant way, such that if the error
probability was less than some threshold 7, then the en-
coded qudit is faulty (namely, has an effective error) with
probability at most 1;’, where 7’ is a constant that depends
on 7 and other parameters of the encoding scheme, but not
on n. We denote this concatenated encoding procedure by
S.

Since each authenticated qudit sent to the prover is en-
coded using a constant number (m) of qudits, it follows
that with a constant probability, " all these qudits are
effectively correctly authenticated. In other words, the en-
coding of |S¥), (S®...®S5) |S¥), has no effective faults
with probability n"'.

Once a qudit has been encoded by the prover, he can
keep applying error corrections on that qudit, and thus, can
keep its effective error below some constant for a polyno-
mially long time. Polynomially many authenticated qudits
are sent this way to the prover.

In the second stage a purification procedure is
performed on the authenticated messages, which are
now protected from noise by the prover’s concatenated
error correction code. Since the purification is of the
authenticated qudits, it is done according to instructions
from the verifier. As explained in Section 4.1 the verifier
can also interpret measurements outcomes for the prover,
which are needed for the purification procedure. We
need to purify both input qubits which are without
loss of generality |0), and Toffoli states. Any standard
purification procedure (for example, that of [8]) would
work for the |0) states. In order to purify the Toffoli states

we use the purification described in [8]. The purification
procedure uses polylogarithmically many qubits in order
to provide a total error of at most ﬁ(nﬂ’ where T is the
number of gates in the circuit U that will be computed by
the prover. This means (using the union bound) that with
probability at most A all purified states are effectively
correct.

Finally, having with high probability effectively correct
input states, the polynomial QPIP (Protocol 4.1) is exe-
cuted. To do this the prover uses fault tolerant techniques
on his side, (with respect to his QECC) to apply any gate
he needs to apply. Moreover, the prover keeps correcting
his state with respect to his QECC, as in the standard fault
tolerant schemes. At the end, a logical measurement of the
output bit of the computation is executed by the prover.
The result is sent to the verifier who subsequently inter-
prets it according to his secret key.

The soundness of the this fault tolerant QPIP is the
same as that of the standard QPIP. In fact, in this scheme,
the verifier ignores the prover’s overhead of encoding the
input in an error correcting code, and performing encoded
operations. The verifier can be thought as performing Pro-
tocol 4.1 for a purification circuit followed by the circuit he
is interested in computing. Therefore, the security proof of
Theorem 4.1 proves in fact that applying the purification
and computation circuits, has the same soundness param-
eter as the standard QPIP.

Regarding completeness, the fact that the prover’s com-
putation is noisy changes the error probability only very
slightly. There is a probability A that one of the input
authenticated states is effectively incorrect; Once they are
all correct, the fault tolerance proof implies that they re-
main correct the entire computation with all but an inverse
polynomial probability. Therefore, if the standard QPIP
protocol has completeness 1 — § — € the completeness of
this scheme is bounded by 1 — § — € — 2A.

5 Blind QPIP

Definition 5.1 /6, 10, 11] Secure blind quantum compu-
tation is a process where a server computes a function for
a client and the following properties hold:

e Blindness: The prover gets no information beyond an
upper bound on the size of the circuit. Formally, in a
blind computation scheme for a set of function § ,, the
prover’s reduced density matrix is identical for every
fE€Fn.

e Security: Completeness and soundness hold the same
way as in QAS (Definition 2.5).

We would now like to prove Theorem 1.4, namely, that
the protocols described so far can be made blind. We use
the simple observation that the input is completely hidden
from the prover. This holds since in both QASs presented

D. AHARONOV, M. BEN-OR AND E. EBAN

the density matrix that describes the prover’s state does
not depend on the input to the circuit. Specifically, due to
the randomized selection of an authentication, the prover’s
state is the completely mixed state. We also use the notion
of a universal circuit. Roughly, a universal circuit acts on
input bits and control bits. The control bits can be thought
of, as a description of a circuit that should be applied to
the input bits. Constructions of such universal circuits are
left as an easy exercise to the reader.

Having mentioned the above observations, a blind com-
putation protocol is not hard to devise. The verifier will,
regardless of the input, compute, with the prover’s help,
the result of the universal circuit acting on input and con-
trol bits.

For completeness we first formally define a universal
circuit:

Definition 5.2 The universal circuit 3, j, acts in the fol-
lowing way:

Uk |0) ® |c(U)) — Ulg) c(U)) (17)

Where c(U) is the canonical (classical) description of the
circuit U.

Proof of Theorem 1.4: We prove that both the Clif-
ford based QPIP and the Polynomial QPIP can be used
to create a blind computation protocol. We claim that the
state of the prover through the protocols is described by
the completely mixed state. This is true in the Polynomial
scheme since the Pauli randomization does exactly that.
Averaging over all possible Pauli keys, it is easy to check
that the state of the prover is described by Z/2™. Further-
more, the prover gains no information regarding the Pauli
key during the protocol, therefore, the description of the
state does not change during the protocol as claimed.

Since the above holds for any initial state, it follows that
the prover has no information about the initial, intermedi-
ate or final state of the system.

To see that the same argument holds for the Clifford
QAS, it suffices to notice that applying a random Clifford
operator “includes” the application of a random Pauli:

= & L Qe ay

cel,

1
T 2 O
n ced,

Equality holds for any () € &, since it is nothing but a
change of order of summation.

464

(19)

6 Interpretation of Results

We will now prove the various corollaries, having to do
with how the results can be interpreted. We start with the
proof of Corollary 1.5 which provides a guarantee on the
closeness of the final output state to the correct state, given
that the verifier did not abort.

Proof of Corollary 1.5: Let us first deal with the Clif-
ford based QPIP. We assume that the soundness of the
scheme is ¢ and that the prover applies a strategy on which
the verifier does not abort with probability v. The final
state of the protocol before the verifier’s cheat detection
can be written as (see Eq. 7):

(1-5s)

t
Y- (QrQ")

D

QEP\{Z}

Spe + (20)

Where p. is the correct final state of the protocol. After
the verifier applies the cheat detection procedure 3 (which
checks that the control registers are indeed in the |0) state):

spe @ |VAL)Y (VAL| +
OrejPrej @ |ABR> <ABR| +
QbadPbad @ |VAL) (VAL|

Assume the verifier declares the computation valid, then
his state is:

2

SPc + QbadPbad
1— Qrej

® |VAL) (VAL (22)

then the trace distance to the correct state p. is bounded
by:

S 2abad

Qpad
1-— Qrej

20

1-— Qrej

1- < (23)

1-— Qrej

Were the inequality follows from the security of the QPIP
protocol: apeq < 4, and the fact that the non-aborting
probability v is equal to arpeq + S.

The proof that the Polynomial based QPIP has the same
property follows the exact same lines.

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

Next we prove Corollary 1.6, which states that if the
QPIP system passes sufficiently difficult tests, is cannot
be simulated efficiently by a BPP machine.

Proof of Corollary 1.6 :: (sketch) We assume there is
a language L which is € hard to compute with respect to
some samplable distribution D = D; (where [is the size of
the input). Namely for any classical algorithm A it holds
that

Pr(A(z) =Zp(z)) <1-—¢

P (24)

where Z7, is the indicator function of L. (we need only the
inequality to hold for all |z| > [for some [y € N). Alter-
natively, if we consider the distributions induced by D on
pairs of inputs and answers: {0, 1}!x {0, 1} (we denote for
example A ~ (z, A (x))) we can say that <ﬁ,ﬂ>TVD >
2¢, where T'V D denotes the total variation distance.

Let us fix some interaction between the verifier an a
prover (not neccesarly honest) in which the verifier with
probability at least 1 — the verifier does not abort. Let
us consider the quantum algorithm @ ; which computes
71, with probability > 1 — §. By the same argument as
before we have <f;, @DTV 5 < 26. Now finally, if we
assume that A can simulate the interaction between the
prover and the verifier which computes () 1, then we know
from Corollary 1.5 that <E, QNL>TVD < 2 since A can
always answer according to the probability distribution
resulting from the interaction, that is the density matrix,
which is in turn close to Q) r..

Some simple algebra shows that A is 2 3(1+7)

5
Ty, therefore we deduce that if € > § HTV then no such

algorithm A can exist.
Finally, we sketch the proof of Claim 1.7:

Proof of Claim 1.7: We first notice that our security
proofs regarding a cheating prover do not assume any
computational restriction on the prover. We would like
to show that a prover with only a constant number of
qubits (but computationally unbounded) can’t convince
the verifier of even a true statement.

Let us consider the following challenge. The verifier
selects a random string r € {0, 1}", and prepares the state
|r). At each location the verifier applies a Hadamard with
probability % and in either case he authenticates the result-
ing qubit, using the polynomial codes QAS and sends it to
the prover. After sending all the qubits to the prover the
verifier asks the prover to measure all qubits in the correct
basis. The prover passes the challenge if all measure-
ment outcomes are correctly authenticated and are com-
patible with the states that were initially sent by the veri-
fier. To transform this challenge into a language in BQP
one can think of the language f(z1, ...2p, i1, ..., izcg(n)) =
Tiy .. namely the language in which the input is

close to

llog(n)?

465

a string of bits followed by log(n) bits that provide an
index 7 out of n; the output is ;. The fact that a bounded
memory prover can pass the challenge with only a negli-
gible probability better than a guess follows from bounded
storage results.

7 Symmetric Definition of QPIP

The definitions and results presented so far are asym-
metric. They refer to a setting where the provers wishes
to convince the verifier solely of YES instances (of prob-
lems in BQP). This asymmetry does not seem relevant
to our motivations. We provide a symmetric definition of
quantum prover interactive proofs, and show that the two
definitions are equivalent. Essentially, this follows from
the trivial observation that the class BQP is closed under
complement, thatis, £ € BQP <= L£¢ € BQP. We first
provide a symmetric definition for QPIP, and then prove
the equivalence.

Definition 7.1 A language L is in the class symmetric
quantum prover interactive proof (QPIP™™) if there
exists an interactive protocol with the following
properties:

e The prover and verifier computational power,
and communication, is exactly the same as in the
definition of QPIP (Definition 1.1).

o The verifier has three possible outcomes: YES, NO,
and ABORT:

— YES: The verifier is convinced that x € L.

— NO: The verifier is convinced that x ¢ L.

— ABORT: The verifier caught the prover cheat-
ing.

o Completeness: There exists a prover P such that
Ve € {0,1}* the verifier is correct with high
probability:

Pr([V,P|(z,r) = 1) >

[SVRN)

where 1. is the indicator function of L.

e Soundness: For any prover P’ and for any
x € {0,1}*, the verifier is mistaken with bounded
probability, that is:

Pr(V,P](z,r)=1-1p) <

Wl

Theorem 7.1 For any language L: If L, L¢ are both in
QPIP then L, L¢ € QPIPY™

Proof: Let V., P, denote the QPIP verifier and prover
for the language £. By the assumption, there exists such
a pair for both £ and £¢. We define the pair P and V to
be QPIP*¥" verifier and prover in the following way: On
the first round the prover P sends to V “yes” if x € L

D. AHARONOV, M. BEN-OR AND E. EBAN

and “no” otherwise. Now, both P and V behave according
to V¢, P if “yes” was sent or according to Ve, Pre oth-
erwise. Soundness and completeness follows immediately
from the definition.

Since BQP is closed under complement, we get:

Corollary 7.2 BQP = QPIP*™

Acknowledgements

D.A. thanks Oded Goldreich, Madhu sudan and
Guy Rothblum for exciting and inspiring conversations
that eventually led to this work. E.E. thanks Avinatan
Hassidim for stimulating and refining ideas, particularly
about fault tolerance. We also thank Gil Kalai, David
DiVincenzo and Ari Mizel, for stimulating questions and
clarifications, and Daniel Gottesman for many helpful
ideas and remarks, and in particular, for his help in
proving Theorem 3.2.

References

[1] S. Aaronson. Shtetl-Optimized: The Aaronson 25.00 Prize.
http://scottaaronson.com/blog/?p=284, 2007. [Online; ac-
cessed 13-Feb-2009].

[2] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding infor-
mation from an oracle. In Proceedings of the nineteenth
annual ACM conference on Theory of computing, pages
195-203. ACM New York, NY, USA, 1987.

[3] D. Aharonov and M. Ben-Or. Fault-tolerant quantum com-
putation with constant error. Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing,
pages 176-188, 1997.

[4] D. Aharonov, V. Jones, and Z. Landau. A polynomial quan-
tum algorithm for approximating the Jones polynomial. In
Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 427-436. ACM New York,
NY, USA, 2006.

[5]1 S. Arora and B. Barak. Computational Complexity: A
Modern Approach. to appear: http://www.cs.princeton.edu/
theory/complexity.

[6] P. Arrighi and L. Salvail. Blind Quantum Computation.
International Journal of Quantum Information, 4(5):883—
898, 2006.

[71 H. Barnum, C. Crépeau, D. Gottesman, A. Smith, and
A. Tapp. Authentication of Quantum Messages. Proceed-
ings of the 43rd Symposium on Foundations of Computer
Science, pages 449-458, 2002.

[8] M. Ben-Or, C. Crépeau, D. Gottesman, A. Hassidim, and
A. Smith. Secure Multiparty Quantum Computation with
(Only) a Strict Honest Majority. Foundations of Computer
Science, 2006. FOCS’05. 47th Annual IEEE Symposium
on, pages 249-260, 2006.

[9] S. Bravyi and A. Kitaev. Universal quantum computation
with ideal Clifford gates and noisy ancillas. Physical
Review A, 71(2):22316, 2005.

[10] A. Broadbent, J. Fitzsimons, and E. Kashefi. Uni-
versal blind quantum computation. Arxiv preprint
arXiv:0807.4154, 2008.

[11] A. Childs. Secure assisted quantum computation. Arxiv
preprint quant-ph/0111046, 2001.

[12] C. Dankert, R. Cleve, J. Emerson, and E. Livine. Exact
and Approximate Unitary 2-Designs: Constructions and
Applications. Arxiv preprint quant-ph/0606161, 2006.

[13] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. In Proceedings
of the seventeenth annual ACM symposium on Theory of
computing, pages 291-304. ACM New York, NY, USA,
1985.

[14] J. Kempe, A. Kitaev, and O. Regev. The Complexity of
the Local Hamiltonian Problem. SIAM JOURNAL ON
COMPUTING, 35(5):1070, 2006.

[15] A.Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum
Computation. American Mathematical Society, 2002.

[16] E. Knill and R. Laflamme. Quantum computing and
quadratically signed weight enumerators. Information Pro-
cessing Letters, 79(4):173-179, 2001.

[17] E. Knill, R. Laflamme, and W. Zurek. Resilient Quantum
Computation. Science, 279(5349):342, 1998.

[18] M. Nielsen, I. Chuang, and L. Grover. Quantum Compu-
tation and Quantum Information. Cambridge Univ. Press,
2000.

[19] A. Roodman. Blind Analysis in Particle Physics. In
Statistical Problems in Particle Physics, Astrophysics, and
Cosmology, Proceedings of the PHYSTAT 2003 Conference
held 8-11 September, 2003 at the Stanford Linear Ac-
celerator Center. SLAC eConf C030908. http://www.slac.
stanford.edu/econf/ C030908., p. 166, 2003.

[20] P.Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM
Journal on computing(Print), 26(5):1484-1509, 1997.

[21] U. Vazirani. Computational constraints on scientific
theories: insights from quantum computing.
http://www.cs.caltech.edu/~schulman/Workshops/
CS-Lens-2/cs-lens-2.html, 2007.

[22] J. Watrous. Space-Bounded Quantum Complexity. Journal
of Computer and System Sciences, 59(2):281-326, 1999.

[23] J. Watrous. PSPACE has constant-round quantum in-
teractive proof systems. Theoretical Computer Science,
292(3):575-588, 2003.

[24] Wikipedia. Blind experiment — Wikipedia, the free ency-
clopedia, 2008. [Online; accessed 20-Oct-2008].

[25] P. Wocjan and S. Zhang. Several natural BQP-complete
problems arXiv: quant-ph/0606179. 2006.

[26] J. Yaari. Preprint: Interactive Proofs as a Theory of Confir-
mation. PhD thesis, The Hebrew University of Jerusalem,
2008.

A Security Proof of Polynomial QAS
A.1 Security Against Pauli Attacks

Lemma A.1 The polynomial QAS is secure against (gen-
eralized) Pauli attacks, that is, in the case where the adver-

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

sary applies a Pauli operator. In this case the projection
of Bob’s state on the space spanned by Py 1) is at least
1—2714

Proof: Let us consider the effect of a Pauli () operator
on the signed polynomial code Cj,. We first show that with
probability 1 — 2~¢ over the sign key k, the effect of Q is
detected by the error detection procedure.

Let Q. # Z be a Pauli operator @, = X*®... X*m
where z € FJ". The effect of (), on the code is an
addition of x; to the i’th qubit. This addition passes the
error detection step only if coincides with the values of a
signed polynomial of degree at most d. We consider two
cases depending on the weight of z:

e If |x| < d: let us denote by g the polynomial that

satisfies V;k;g(a;) = a;, since Q, # Z we know
that g # 0. then g has at least m — d zeros. Since g is
nonzero it must have degree at of least: m—d = d+1.
Such an attack will be detected with certainty by the
error detection procedure.
Otherwise, assume without loss of generality that
x; # 0 for i < |z|. There is exactly one polynomial
f of degree at most d such that V;> 441 ki f (o) = ;.
For the attack of Eve to be undetected x must agree
with f on the remaining coordinates as well:

I?Cr(vigd z; = kif (o))

f[I‘

=1

flaw)) (25

Equality holds since: k; are independent, k; = £, 1
and x; # 0 fori < d. Since k; = ¢ with probability at
most half we conclude that the probability that Eve’s
attack is undetected is at most 2.
Now that we have proved the claim for operators of the
form @, we handle the general case. Pauli Z are mapped
in the dual code to X operators. Since the signed poly-
nomial code is self dual, @), attacks will be caught with
probability 1 — 27¢ as well. To conclude the proof we
notice that detection @, attacks do not depend on the exis-
tence (), attacks, therefore, a non identity operator Q) . =
P, P, will be detected with the correct probability since
either x or z must be non trivial.

What remains is to notice that the Pauli randomization
P, . simply shifts any attack () on the authenticated
message to a different Pauli. That is the effect on the
signed polynomial code is P;,ZQPQC,Z. We conclude
that any Pauli operator acting on the polynomial QAS is
detected with a probability of at least 1 — 2~ as claimed.

A.2 Security Against General Attacks
We start with a simple lemma about pauli operators.

467

Lemma A.2 Let P # P’ be generalized Pauli operators.
Then: 3" ocp,, QTPQPQRTPTQ =0

Proof of Lemma A.2: Let P # P’ be generalized
Pauli operator P = X“Z% and P’ = X® Z". We use
the fact that Z9X¢ = wch ¢Z% and some algebra:

> QTPQQTPQ

QeP;
q—1
— Z wg(afa’)qLc(bfb’)Xaprsz’Xfa' 26)
d,c=0
g—1 q—1
_ Xaprsz’Xfa’ Z w;(bfb’) Z wg(afa’)

c=0 d=0

To conclude the proof we recall that a # a’ or b # ¥V,
hence one of the above sums vanishes. The claim for
system in higher dimension follows immediately.

In addition we need one more simple lemma:

Lemma A.3 For any generalized Pauli operator P:

> Q'PQQ'P'Q = PpP!

QEeP,,

27
|Pm| @7

Proof of Lemma A.3: From the observation about
generalized Pauli operators in Sec. 2 we know that for any
two generalized Pauli operators P, Q) PQ)Q = aQ P where
« is some phase dependent on P and Q.

| Z QTPQQPIQ
QGIP’

> Q(aQP)p(a*PIQNQ

QeP,,

Z aPpa* PT
QEP,,

= PppPt

|Pm| (28)

IPmI

Proof of Theorem 2.2: In order to prove this theorem
we essentially analyze the effect of the (generalized) Pauli-
twirl on signed polynomial code word. We will show that
for any attack the effect is as a mixture of Pauli operators
which is in turn detected with hight probability as shown in
Lemma A.1. For clarity, we omit the normalization factor
|P,,|- In addition we denote Q = Q ® Zg. We start by
decomposing any attack V' € U(M ® F) made by Eve to
V= ZPer P ® Up. Bob’s state prior to applying the

D. AHARONOV, M. BEN-OR AND E. EBAN

error detection procedure is:

PBob = TrE(Z Qv (@P ® PE©T> VT@)

QEPr,

Z Z @TP®UP

P,P'eP,, QeP,,

(@00 pe0") P U1,0)

- TrE< (29)

Writing @ explicitly and regrouping elements operating on
M and on E we have:

=t Y Y (@TPQQTPQ) e
P,P’'€P,, QEPm,
UrpsU}) (30)
- ¥ Tr(UppEUL,)-(QTPQpQTP’Q)
P,P',Q€Pp,
We use Lemma A.2 and are left only with P = P’
= Y (Urpst}) - (QTPQEQTPQ) (1)
P,QEP,,
Now we use Lemma A.3 :
=y Tr(UILUPpE) - |Pu| PpPt 32)

PeP,,

We set ap = Tr(U};UppE) and we rewrite Bob’s state
after normalization:

az-p+ Z

PeP, \{Z}

ap - PpPt (33)

Recall that we are interested in the projection of p g, On
the subspace spanned by the operator Pllw.

Tr(Pl‘w> (az-p+ Z ap - PpPT))
PeP,\{T}

(34
—az+ > a pTr<P1|w>PpPT)
PeP, \{ZT}
We use the bound from Lemma A.1:
.2 ar+ Z Ozp(].f27d)
PeP,, \{T} (35)
1— (0%

Which concludes the proof. Similarly to the random Clif-
ford authentication scheme, the further Eve’s intervention
is closer to the identity, that is — Eve does almost nothing,
then the projection on the good subspace is closer to 1.

468

A.3 Polynomial QAS Applied in Parallel

When authenticating multiple registers, it may seem at
first glance that Eve has the advantage of being able to
tamper with the state by applying some transformation on
the entire space. In the Clifford authentication protocol
applied in p, the intervention of Eve is broken down to
individual attacks on each register by the fact random Clif-
ford operators are applied to each register independently.

The main idea for the concatenated polynomial authen-
tication is to use an independent Pauli key (z, z) for each
register, while maintaining the sign key k equal between
registers. This idea will suffice to brake up the attack of
Eve to a sequence of attacks on each register separately.

Protocol A.1 Concatenated polynomial Authentication
protocol:

Alice wishes to send a state |p) € (C)®" that is r
q-dimensional systems. For a security parameter d, set
m = 2d + 1. Alice randomly selects a single sign key
k e {£1}™, furthermore, Alice selects r independent
Pauli keys (x;, z;).

To encode 1)) Alice encodes each q-dimensional system
using the signed polynomial code specified by k. Addition-
ally, Alice shifts the j’th encoded message by P,).

Bob decodes each message separately, if all messages
are correctly authenticated Bob declares as valid the con-
catenated message, otherwise Bob aborts.

We now prove Theorem 2.3.

Proof of Theorem 2.3: We notice that all the reason-
ing in Theorem 2.2 till Eq. 35 holds in this case as well.
So we have that the projection on the good subspace Pl‘w>
is equal to:

ar + apTr (PllepPT) (36)

PePr.m\{Z}

We start by writing Tr(P)¥’ PpPt) = 1 — Tr(P\¥) PpP?).
We recall that P here is a Pauli operator from the group
P,,..,- so we write: P = P1)®...@Fq4.

Lemma A.4 The probability for Bob to be fooled by the
application of P # T is at most 2~

Proof: For PpP' tobein P(‘)d)> it must be the case that for
all j such that P;) # Z Eve escapes detection (Bob does
not abort although the register is “corrupted”). We note
that Bob declares as valid the remaining registers (where
Py = 1) with certainty. We assume without loss of
generality that P(;) # Z, we write the probability that Bob

INTERACTIVE PROOFS FOR QUANTUM COMPUTATIONS

is fooled:
Pr (Bob is fooled by P)
=Pr (V;.p, #zBob is fooled by P;))
< Pr(Bob is fooled by P(1y)
<274

(37

Where the last inequality holds by Lemma A.1.
Plugging this result into Eq. 35 we have:

=zt Y ap (1 - Tr(PgWPpPT))
PeP,., \{Z}

>ar+ Y ap(1-279) (38)
PeP,., \{Z}

].7051'
- %)

Which concludes the proof.

469

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

