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three multiagent agreement systems



® n opinions
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Hegselmann-Krause opinion dynamics



each opinion
averages itself

with similar opinions
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figure by Urbig—Lorenz—Herzberg



Kuramoto sync









all of these dynamical systems converge in time

ZO(n)

where n is the number of opinions, metronomes, fireflies, etc.



no previous convergence bound was known



let’s step back a little






P'x

predict behavior

for large ¢



X

spectral decomposition

!

dimension separation

!

independent 1-dim systems



that was was easy



what about?
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hopeless



attack
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old math

data analysis
classification
machine learning

statistics















rarely works




works if you redefine the meaning of “works”



relativity theory




relativity theory via data analysis
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relativity theory via data analysis




algorithm

what to do?







use to analyze algorithms



back to our 3 agreement systems




geometric framework






infinite graph sequence





















move vertex anywhere



repeat for each node









get second graph







get Srd graph, move vertices, repeat...



adversary chooses all graphs

and all moves nondeterministicaﬂy

does this thing converge?



yes



convergence

radius &
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Angeli, Bliman, andel, Cao, Cucker, Hendrickx,
Jadbabaie, Lin, Moreau, Morse, Olshevsky, o necessary COl’lditiOl’lS

Spielman, Tsitsiklis, Wang, etc. no convergence time



System always converges :

nontrivial

S min { g—lp—O(n) , (|Og 1/g)n—1p—n2(1+0(1)) }



main tool total s-energy



E(S) :Z (Z):GH X — X, HZ
t 1,])eGy



E(S)

Dirichlet series = inverse formula

(Mellin transform) = lossless encoding

Does it ever converge?



® converges for all S > O

® analytic for ms > O

® pole at S — O of order N _1



in general, no analytic continuation over whole plane

® con]ecture

for any n, has analytic

continuation with discrete poles at s=0






4 -0(n)

Jo,

if s=1

IN
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n-1 _—n*(1+0(1))

if s<1
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proof algorithmicized proofs of old math

flow algorithm

recurrences, etc.
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Schur’s Lemma

Every square matrix is unitarily similar to a

tn'angu]ar matrix
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proof is algorithmic



proof is algorithmic

flow algorithm

{

set up recurrence

relations

 —

extract algorithm

|
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convergence



use to analyze algorithms
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