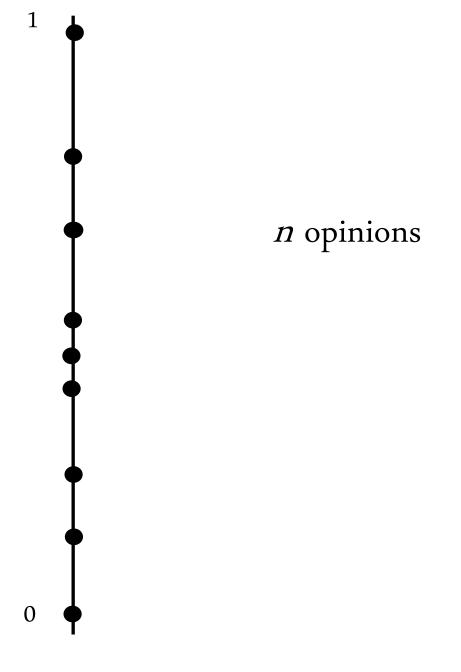
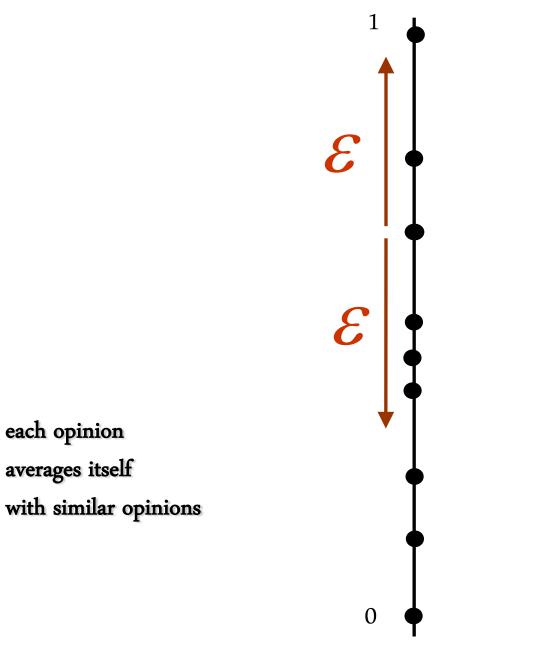
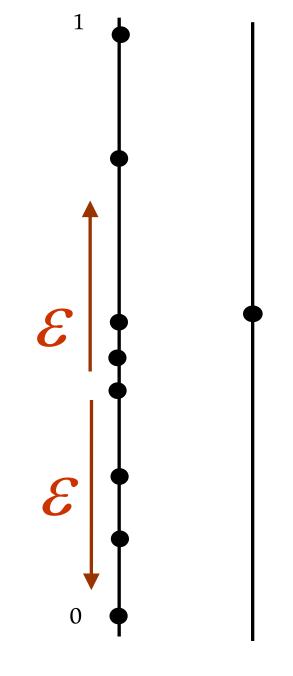
Analytical Tools for Natural Algorithms

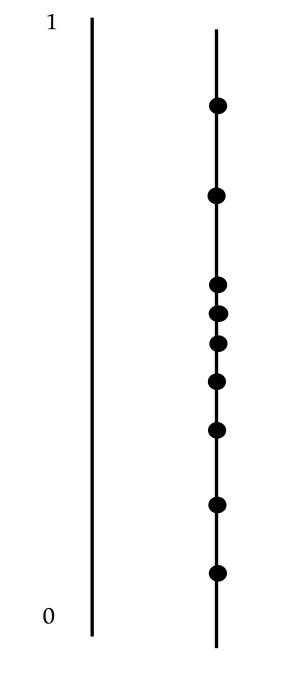
Bernard Chazelle Princeton University three multiagent agreement systems



Hegselmann-Krause opinion dynamics







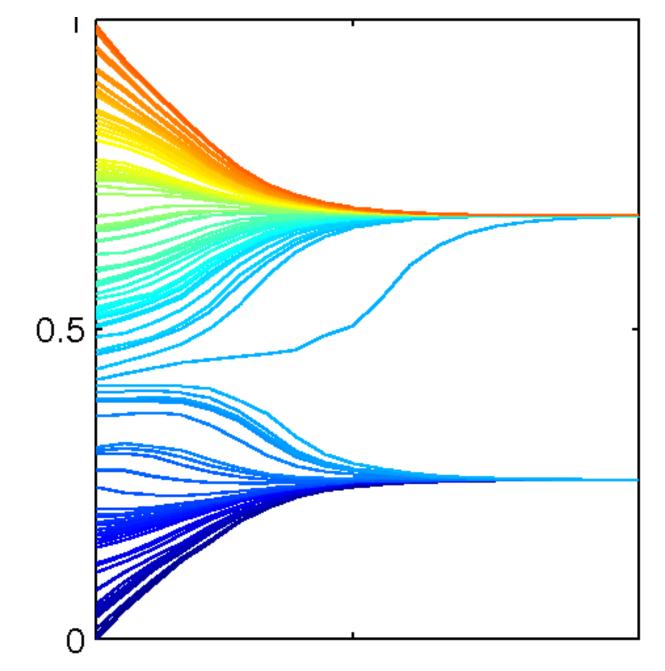
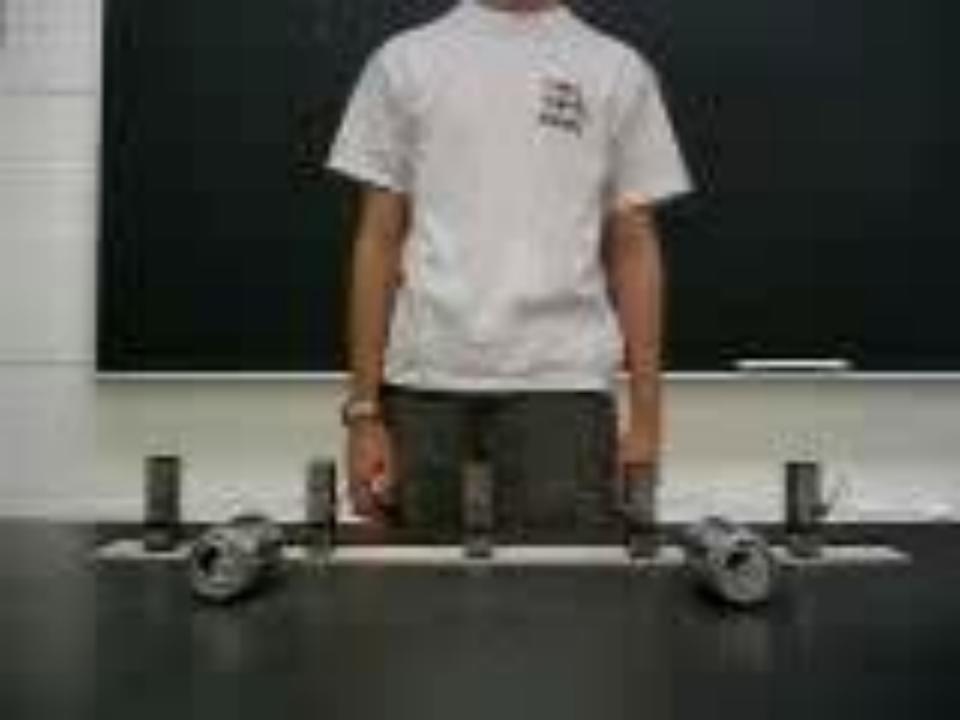


figure by Urbig-Lorenz-Herzberg

?

Kuramoto sync



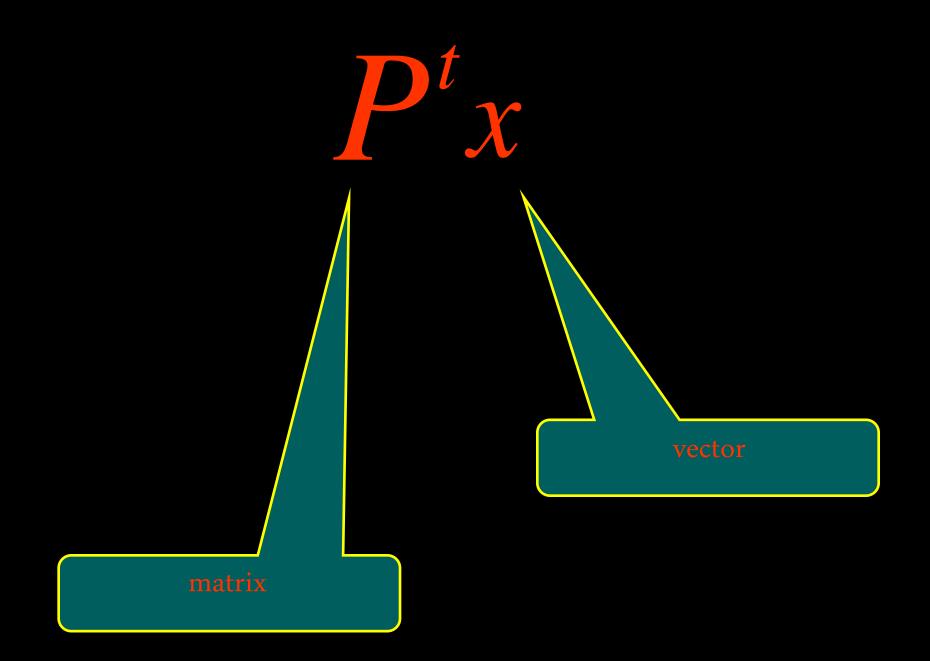
all of these dynamical systems converge in time

 $2^{O(n)}$

where n is the number of opinions, metronomes, fireflies, etc.

no previous convergence bound was known

let's step back a little



predict behavior for large *t*

dimension separation

independent 1-dim systems

that was was easy

what about?

 $P_t \cdots P_2 P_1 X$

where

 $P_{t} = f(x, P_{1}, \cdots, P_{t-1})$

nonlinear dynamics

hopeless

attack

$P_t \cdots P_2 P_1 X$

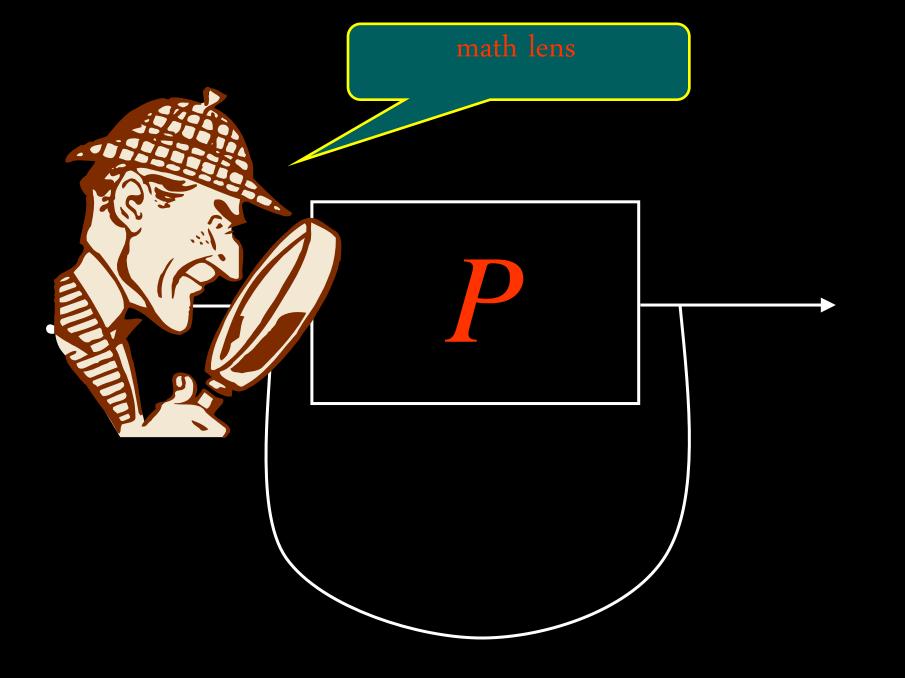
as

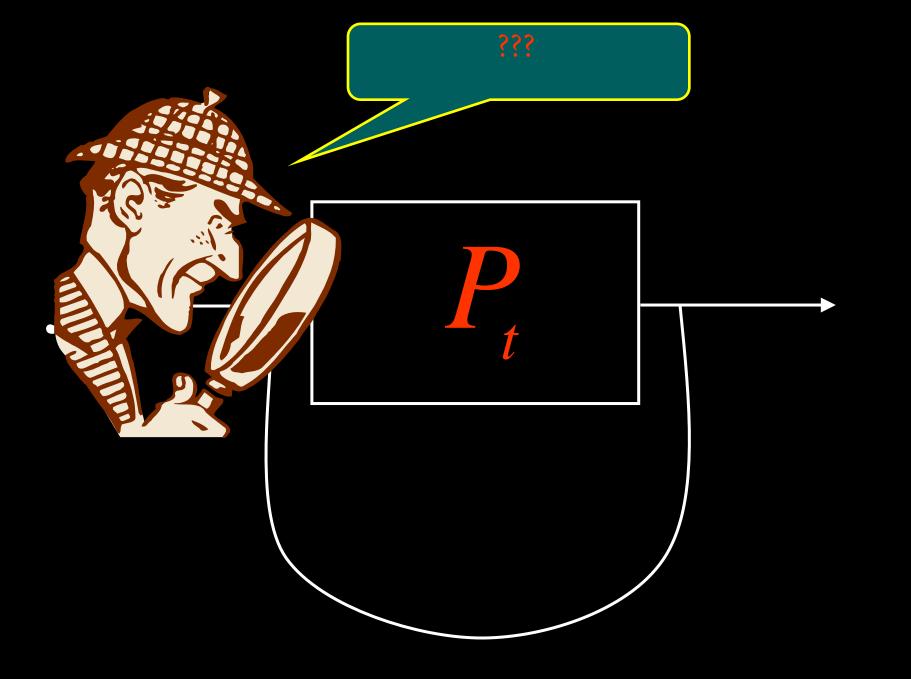
 $P_t(\cdots(P_2(P_1x)))$

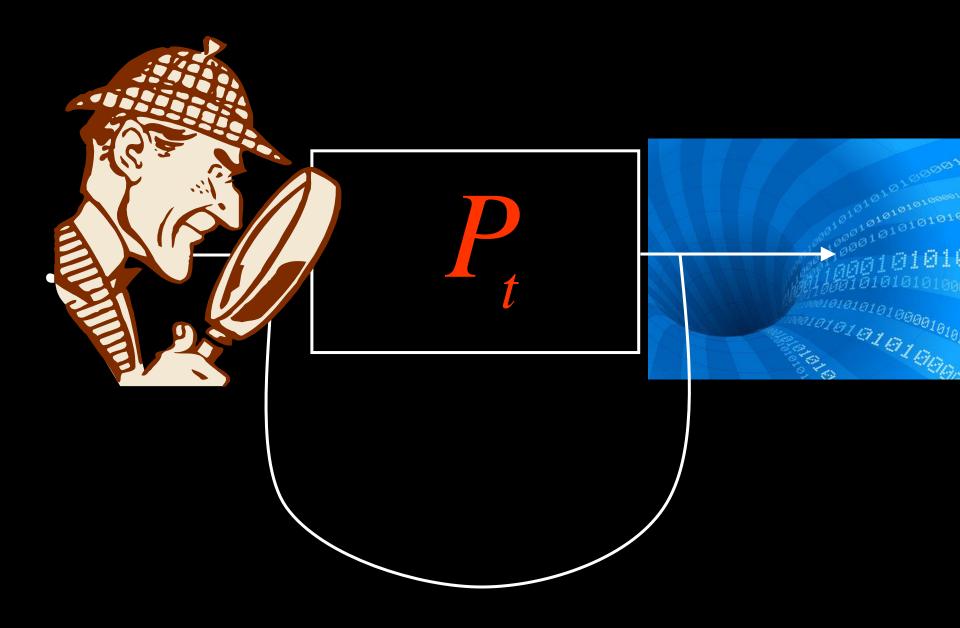
bye-bye old math

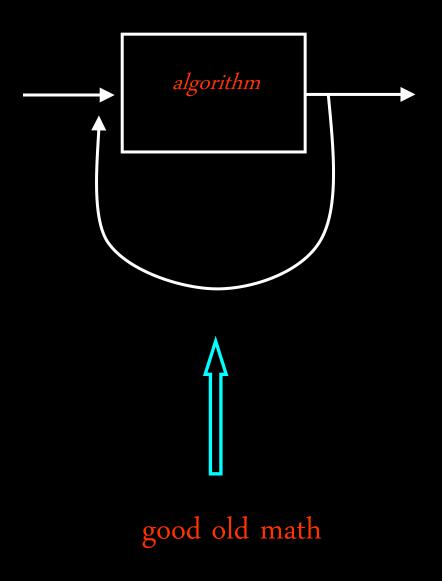
hello data analysis classification machine learning statistics

$$\frac{\partial \Theta}{\partial \theta} \operatorname{MT}(\xi) = \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{T} (x) f(x, \theta) dx = \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \frac{1}{f(x)} dx = \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \frac{1}{f(x)} dx = \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \frac{1}{f(x)} dx = \int_{\mathbb{R}_{n}}^{T} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} (x) \cdot \frac{\partial}{\partial \theta} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} (x) \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} f(x) \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} f(x) \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} f(x) \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}_{n}}^{T} \int_{\mathbb{R}_{n}}^{\frac{\partial}{\partial \theta}} \int_{\mathbb{R}$$

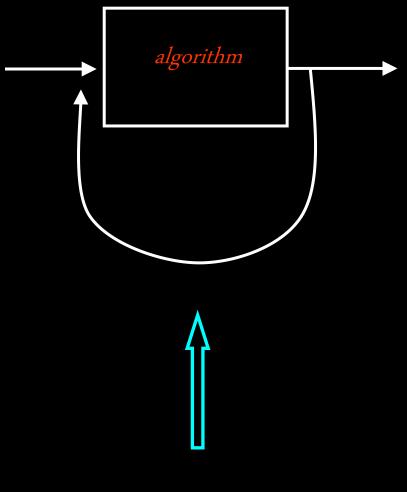








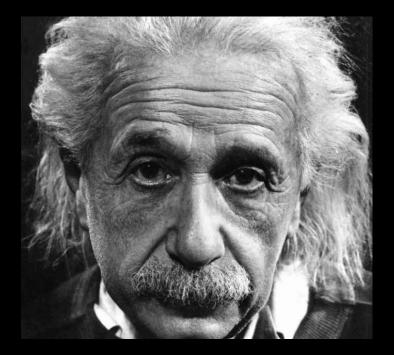
rarely works



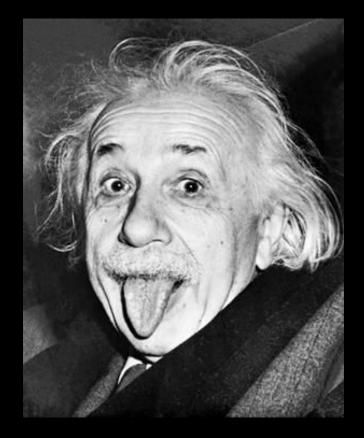
data analysis

works if you redefine the meaning of "works"

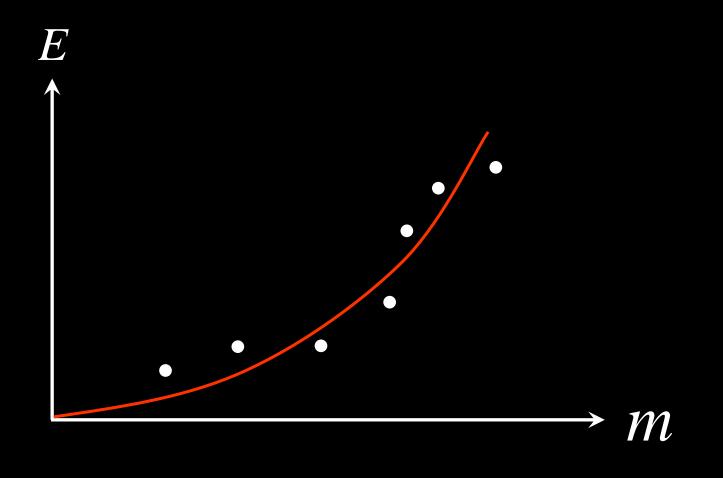
relativity theory



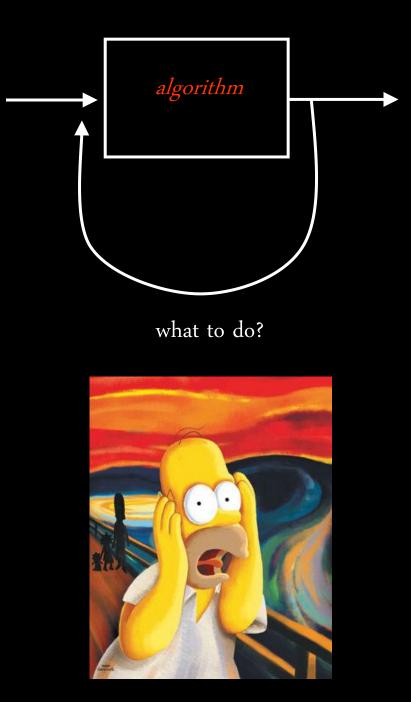
relativity theory via data analysis

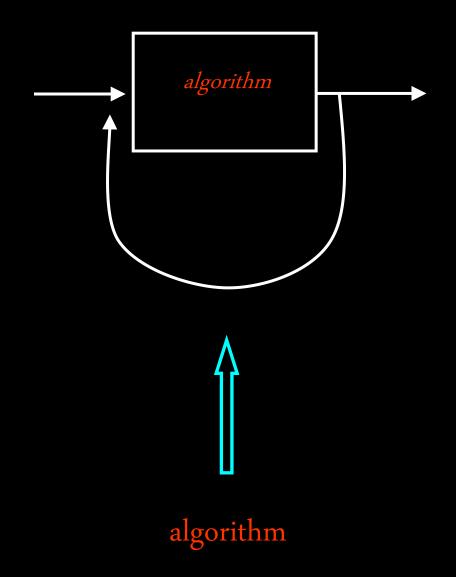


relativity theory via data analysis



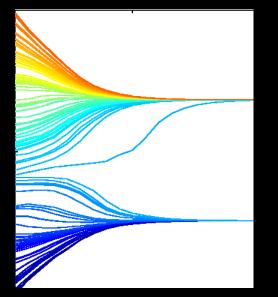
 $E = m^{0.92} c^{2.03}$

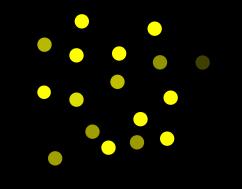




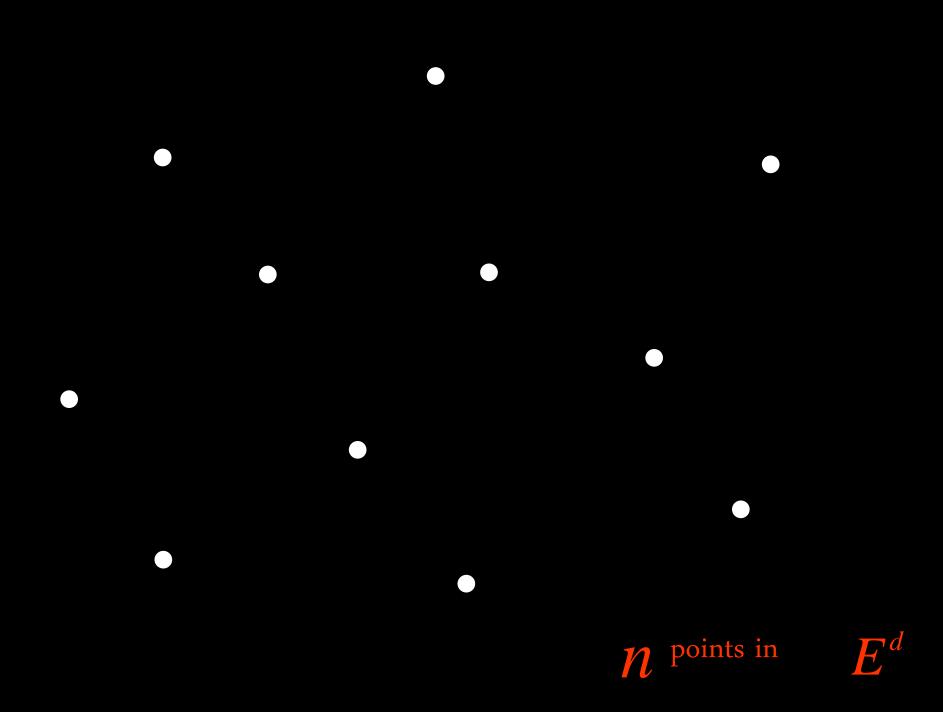
use algorithms to analyze algorithms

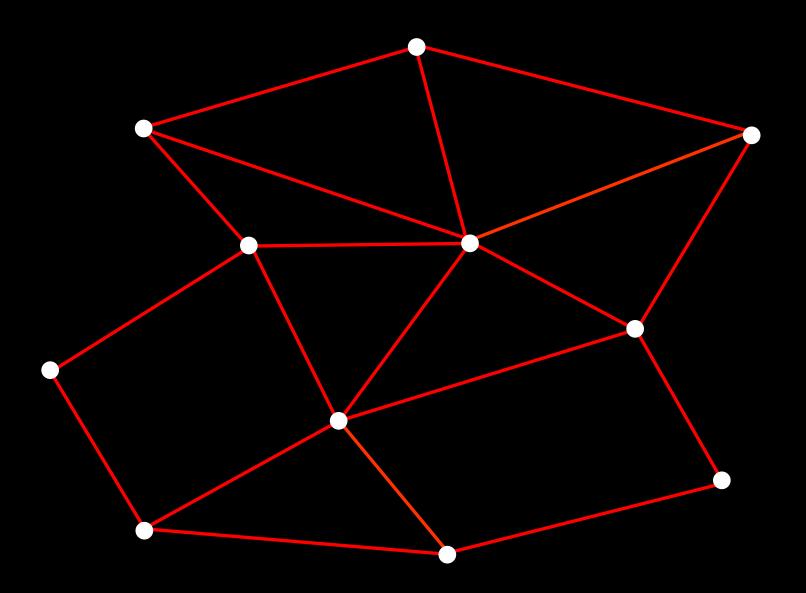
back to our 3 agreement systems



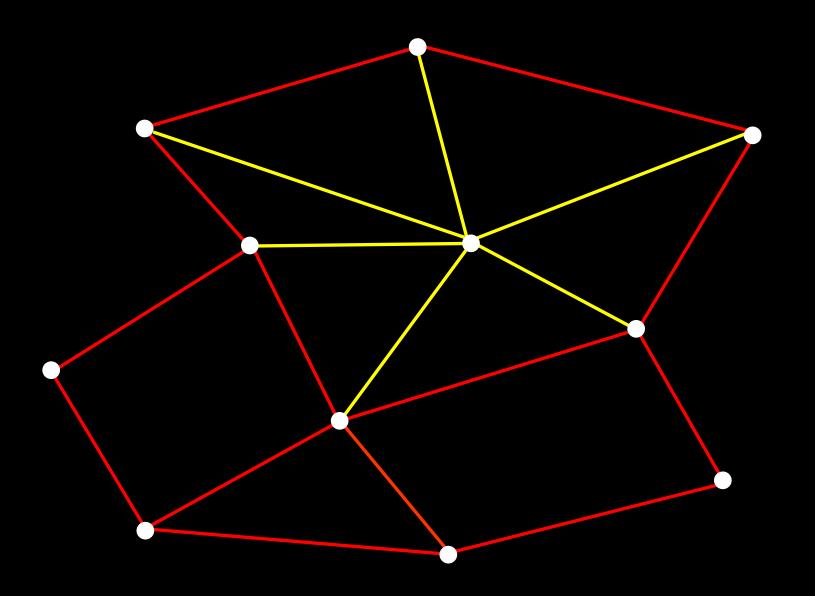


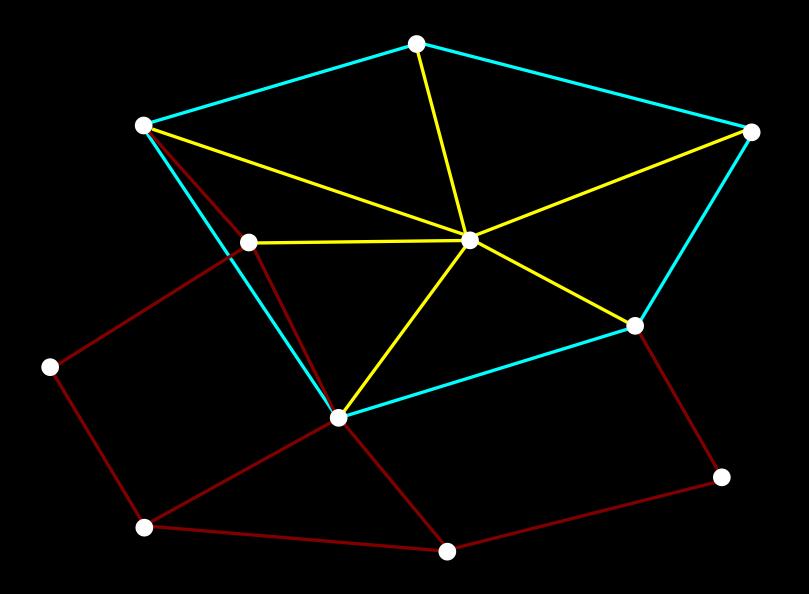
a common geometric framework

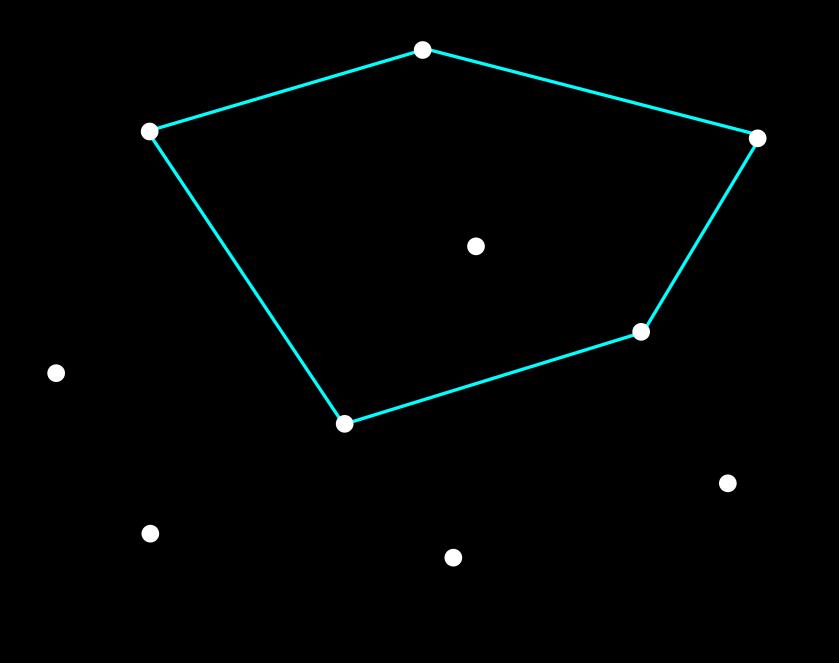


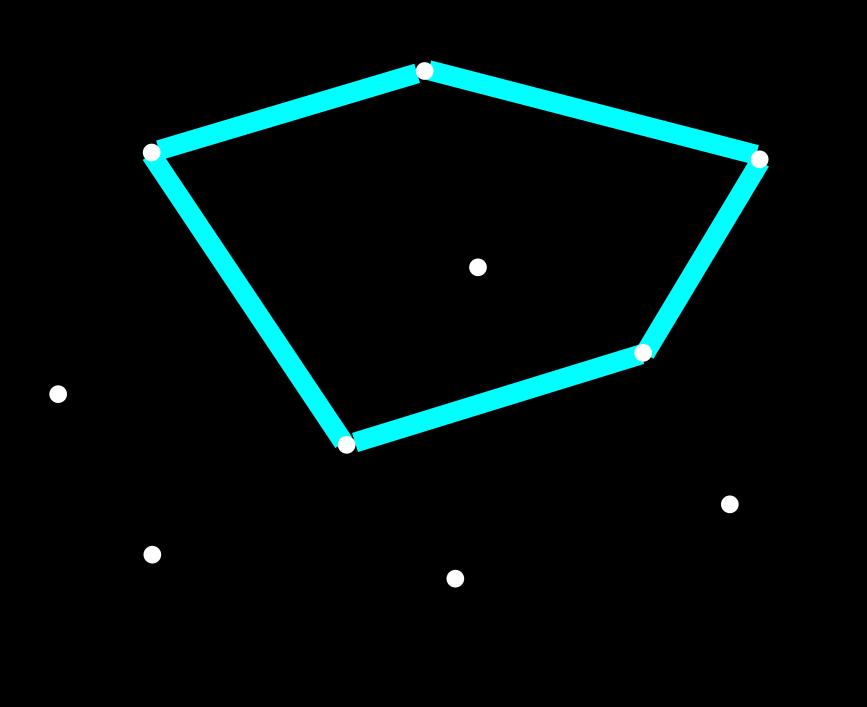


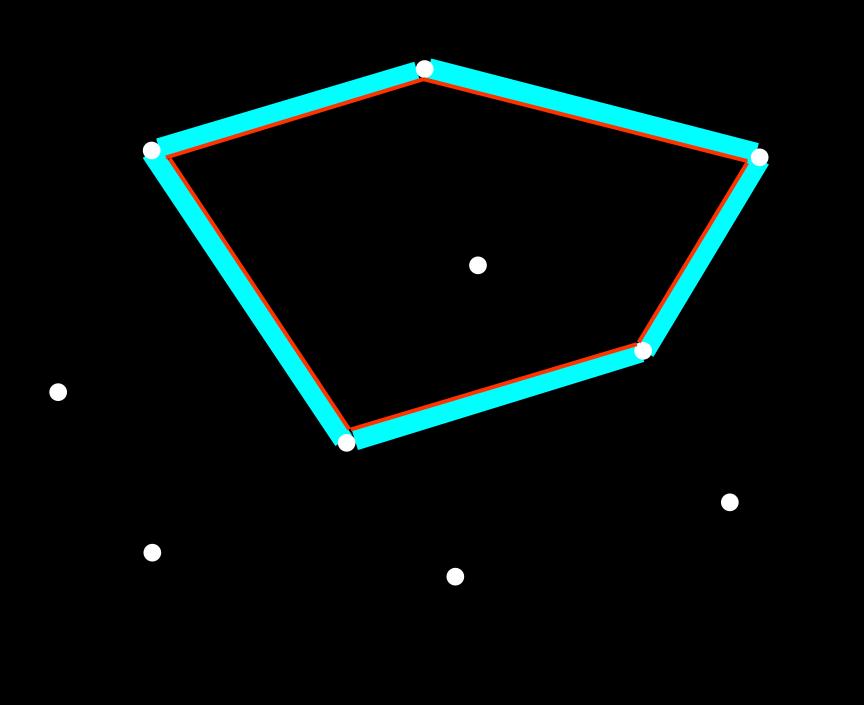
infinite graph sequence

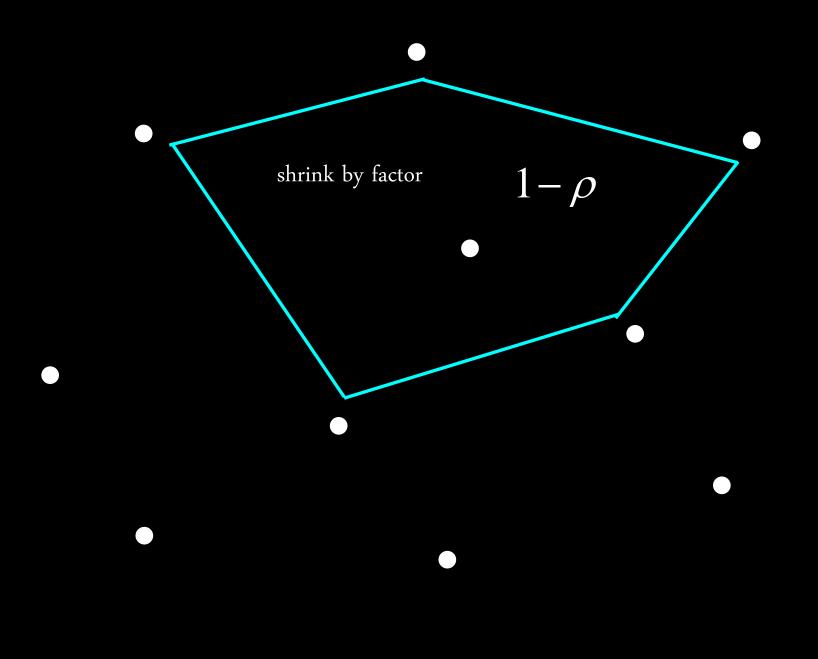


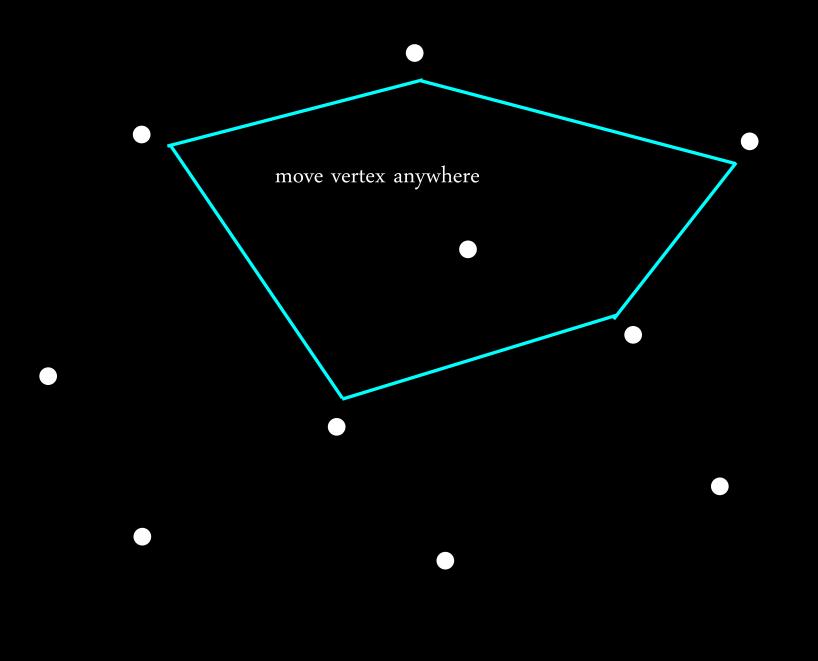


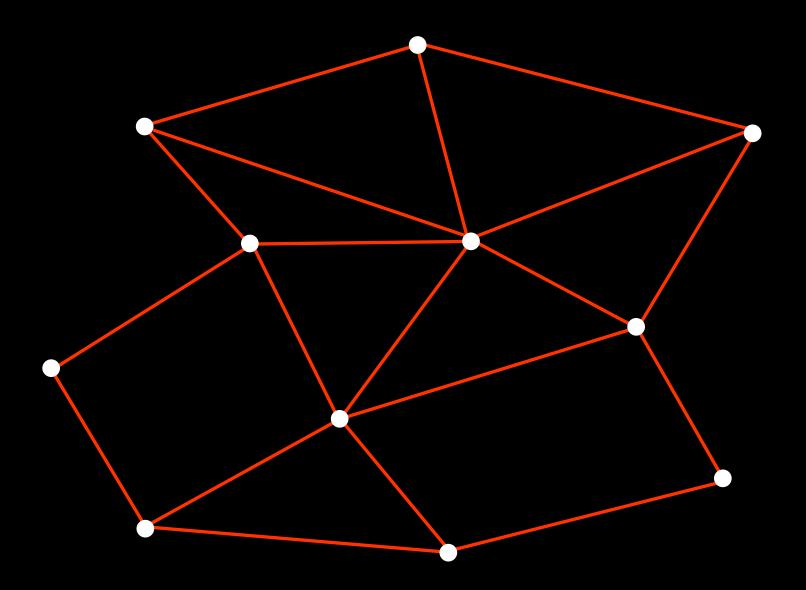




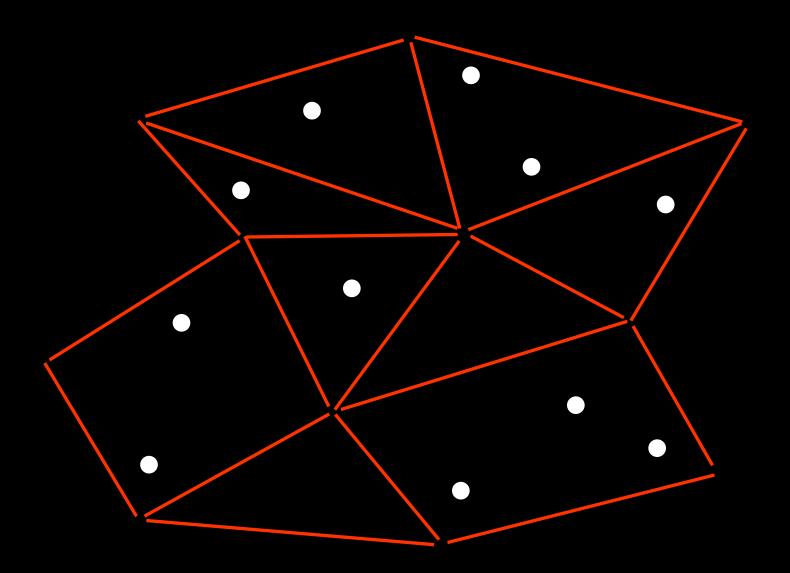






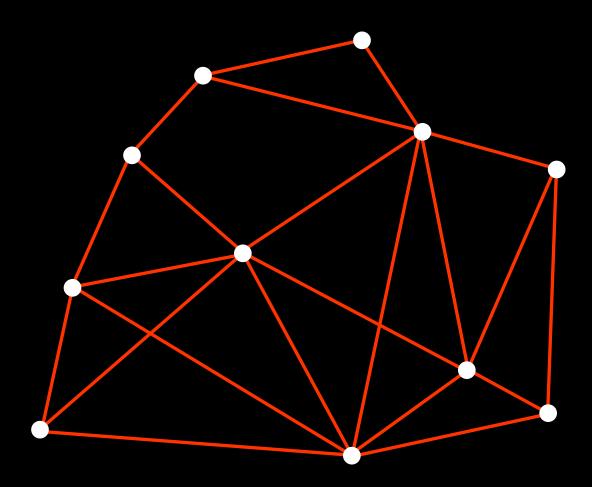


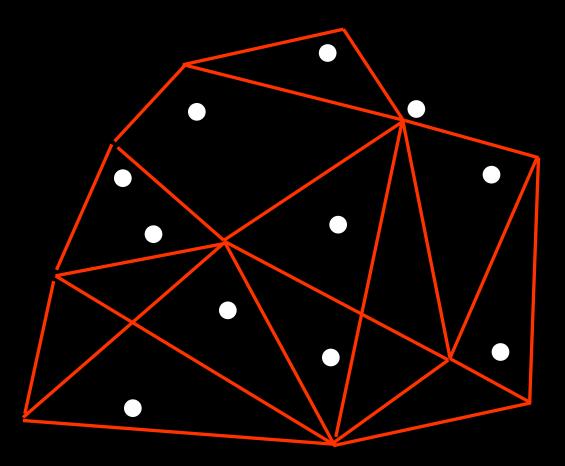
repeat for each node



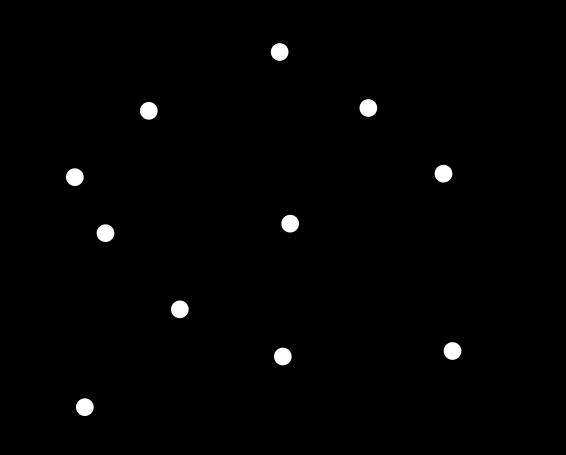
()()()

get second graph





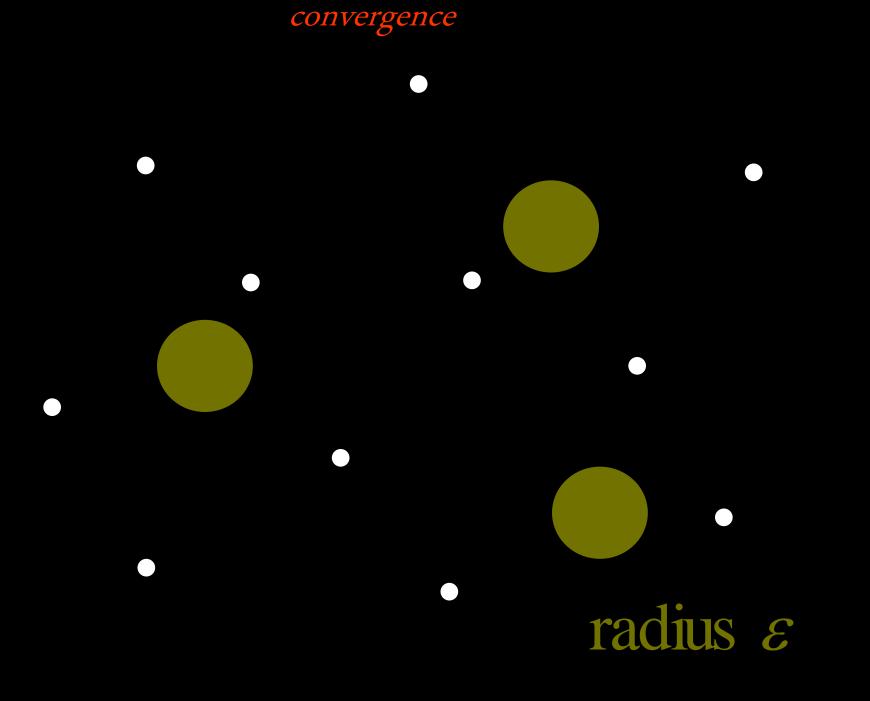
move all the vertices

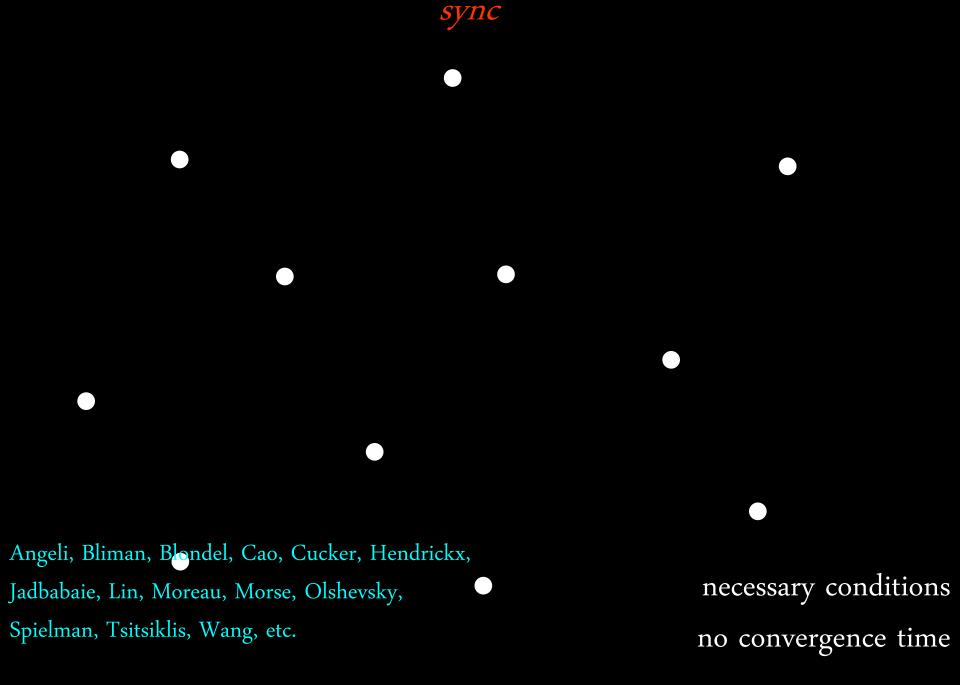


get 3rd graph, move vertices, repeat...

adversary chooses all graphs and all moves nondeterministically

does this thing always converge?





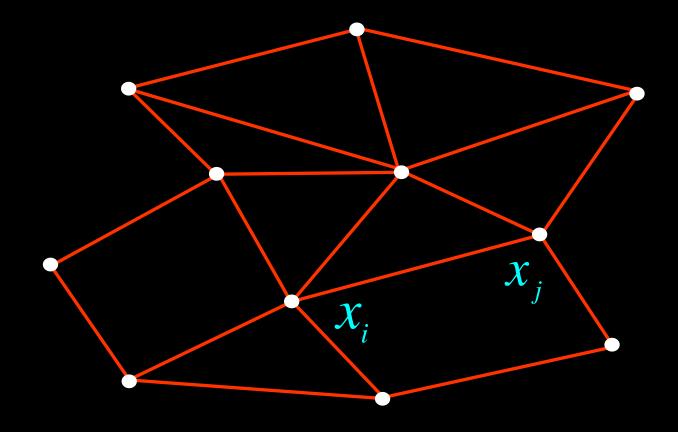
System always converges :

(i) number of moves is infinite

(ii) number of nontrivial moves

$$\leq \min \left\{ \varepsilon^{-1} \rho^{-O(n)}, (\log 1/\varepsilon)^{n-1} \rho^{-n^2(1+o(1))} \right\}$$

main tool total s-energy



$E(s) = \sum_{t} \sum_{(i,j)\in G_t} \|x_i - x_j\|_2^s$

Dirichlet series \rightarrow inverse formula (Mellin transform) \rightarrow lossless encoding

Does it ever converge?

E(s)

converges for all S > 0

• analytic for $\Re s > 0$

• pole at s = 0 of order n-1

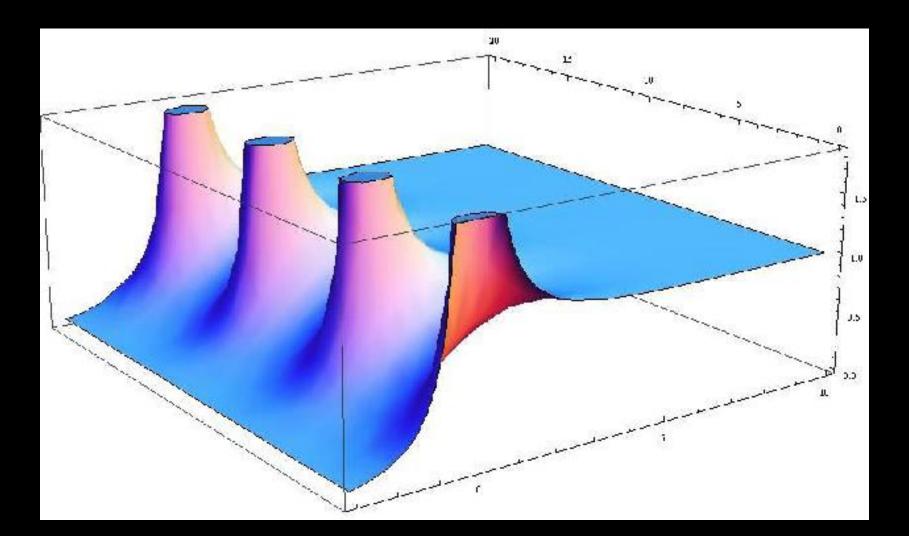
E(s)

in general, no analytic continuation over whole plane

conjecture

for any *n*, max E(s) has analytic continuation with discrete poles at *s*=0

true for n = 2



$$E(S) \leq \begin{cases} \rho^{-O(n)} & \text{if } s = 1 \\ \\ S^{n-1}\rho^{-n^2(1+o(1))} & \text{if } s < 1 \end{cases}$$

proof algorithmicized proofs of old math flow algorithm recurrences, etc.



Schur's Lemma

Every square matrix is unitarily similar to a triangular matrix

Unitary equivalence and normal matrices

of C*. Apply the Gram-Schmidt orthonormalization procedure mad to this basis to produce an orthonormal basis

of C". Array these orthonormal vectors left to right as the column of unitary matrix U_1 . Since the first column of AU_2 is $\lambda_1 x^{(0)}$, a calculate reveals that $U_1^*(AU_1)$ has the form

$$U_{1}^{*}AU_{2} = \begin{bmatrix} -\frac{\lambda_{2}}{0} & \bullet \\ \bullet & \downarrow & A_{2} \end{bmatrix}$$

The matrix $A_1 \in M_{n-1}$ has eigenvalues $\lambda_2, ..., \lambda_n$. Let $x^{1/2} \in \mathbb{C}^{n-1}$ by normalized eigenvector of A_1 corresponding to λ_2 , and do it all or again. Determine a unitary $U_2 \in M_{n-1}$ such that

$$U_2^*\mathcal{A}_1U_2 = \left[\begin{array}{c|c} \lambda_2 & \vdots & \bullet \\ \hline 0 & \vdots & A_2 \end{array}\right]$$

and ler

20

$$V_{2} \approx \left[\begin{array}{c} 1 \\ 0 \end{array} \middle| \begin{array}{c} 0 \\ U_{2} \end{array} \right]$$

The matrices V_2 and U_1V_2 are then unitary, and $V_2^*U_1^*AU_2V_2$ has the form

$$V_2^* U_1^* A U_1 V_2 = \begin{bmatrix} \lambda_1 & * & \\ 0 & \lambda_2 & * \\ 0 & A_2 & \end{bmatrix}$$

ontinue this reduction to produce unitary matrices $U_i \in M_{n-1+1}$, is, N = 1 and unitary matrices $V_i \in M_{i+1} = 2$. The matrix

$$U = U_1 V_2 V_1 \dots V_n$$

unitary and U*AU yields the desired form.

If all eigenvalues of $A \in M_{*}(\mathbb{R})$ happen to be real, then the correanding eigenvectors can be chosen to be real and all the above stepwhe carried out in real arithmetic, verifying the final assertion. Remark: Follow the proof of (2.3.1) to see that "upper triangular" dd be replaced by "lower triangular" in the statement of the theorem b, of course, a different unitary equivalence U.

2 Example. Neither the unitary matrix U nor the triangular matrix. Theorem (2.3.1) is unique. Not only may the diagonal entries of T

2.5 Schue's unitary triangularization theorem

ate cionvalues of (4) appear in any order, but unitarily equivalent upp magniat matrices may appear very different above the diagonal. I asampte.

	11	1.	-47			2	-1	3/2
	0	2	2	and	$T_2 \approx$	0	1	√2
			3					3

are mitarily equivalent via

	1	1	0	1
11=-1-	I	-1	0	
126.	0	0	v2	

In general, many different upper triangular matrices can be in the same mitary equivalence class.

Remark: Notice that the technique of the proof (2.3.1) is simply the of sequential deflation, as outlined in Problem 8 in Section (1.4).

Foreige, If A c Ma is unitarily equivalent to an upper triangular man $T = [t_i] \in M_{s_i}$ the entries t_{ij} are not uniquely determined, but the quarter try $\sum_{i=1}^{n} |t_{ij}|^2$ is uniquely determined. Determine the value of $\sum_{i=1}^{n} |t_{ij}|^2$ in forms of the entries and eigenvalues of A. Hint: Use (2.2.2).

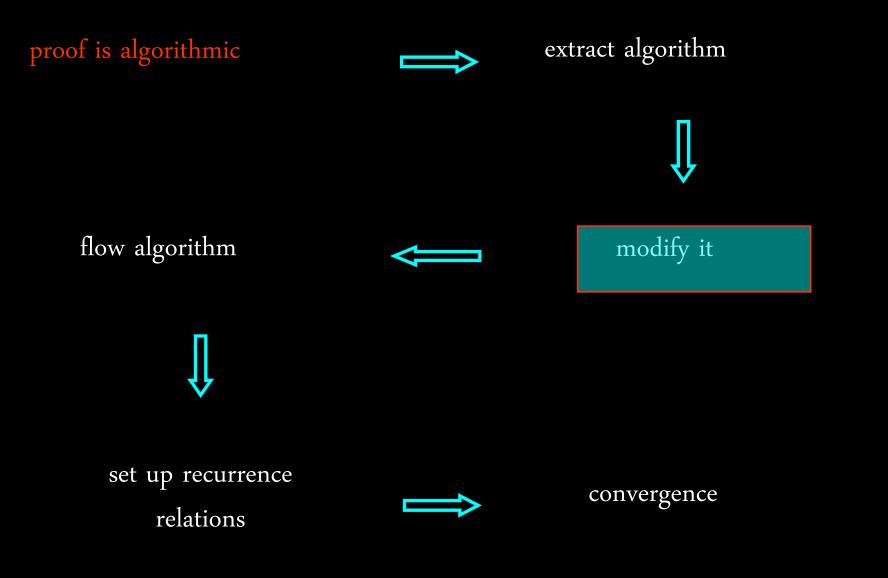
Exercise. If $A = \{a_{ij}\}$ and $B = \{b_{ij}\} \in M_2$ are similar and if $\sum_{i=1}^{n} \|a_{ij}\|^2$ 5. (b, 1, show that A and B are unitarily equivalent. Show by example that this is not the case in higher dimensions. Hint: Notice that if A and are anitarily equivalent, then so are $A + A^*$ and $B + B^*$. Consider

1000	1	3	0]			11	Φ.	0	F
A =	0	2	4	and	B =	0	2	.5	Ľ
		0						-3	

It is a useful adjunct to (2.3,1) that a commuting family of matrice may be simultaneously upper triangularized.

23,3 Theorem, I, et $\Im \subseteq M_n$ be a commuting family. There is a unitar matrix $U \in M_n$ such that U^*AU is upper triangular for every $A \in \mathbb{F}$.

Proof: Return to the proof of (2.3.1). Exploiting (1.3.17) at each ste of the proof in which a choice of an eigenvector (and unitary matrix is made, the same eigenvector (and unitary matrix) may be chosen for every A e 3, Moreover, unitary equivalence preserves commutativity proof is algorithmic



use algorithms to analyze algorithms

