
Cryptography by Cellular Automata

or

How Fast Can Complexity Emerge in Nature?

Benny Applebaum Princeton Weizmann

Yuval Ishai Technion/UCLA

Eyal Kushilevitz Technion

First Symposium on Innovations in Computer Science (ICS 2010)

Computation in the Physical World

Computation in the physical world is spatially local

In a single time unit, information can only travel a bounded distance in space.

Cellular Automata

Spatially local computation is nicely captured by Cellular Automaton

• Grid of n cells each has a state = value from a fixed alphabet (e.g., binary)

• Configuration = State of all cells

• Next state of a cell computed via a local rule applied to its d-neighborhood

• Different cells can have different local rules but rules are fixed over time

Parity-CA with d=1

Brief History of Cellular Automata

• 50’s defined by von Neumann-Ulam showed self-replication/universality

• 60’s Zuse: “the universe is the output of a giant CA” (birth of digital physics)

• 70’s popularized by Conway via the game of life

• 80’s studied by Wolfram, Vichniac, Toffoli, Margolus via simulations

• 90’s-today: study of complex systems

- “simple rules lead to high complexity”

- commonly used in physics, chemistry, biology, economics, sociology…

- special conferences/journals (defeats TM’s in a google test)

Motivation

• CAs exhibit complex computational and dynamical phenomena

(self-replication, universality, synchronization, fractality, chaos,…)

• Main Question: How fast/common “complexity” is?

• Let’s take complexity to be computational intractability

Can we infer the past from the present?
• t-Inversion problem

- Initialize the CA to a random configuration x = (x1,…,xn).

- Let the CA evolve for t steps to a configuration y.

- Goal: given y find x or some other consistent initial configuration x’.

xy

Can we infer the past from the present?
• t-Inversion problem

- Initialize the CA to a random configuration x = (x1,…,xn).

- Let the CA evolve for t steps to a configuration y.

- Goal: given y find x or some other consistent initial configuration x’.

Hard by universality

(Assuming one-way

function)
?

Random x

• NP-hard [Cook-71]

• Poly-time approximation [Lipton-Tarjan-77]

• 2sqrt(n) time exact solution

• NC1 solution for 1-Dimensional CA

Arbitrary x

t=poly(n)t=O(1)

(spatially local CSP)

Can we get hardness for typical configurations in constant time?

Is it possible to compute one-way function in O(1) steps?

Can we predict the future based on partial

observations of the present?

• t-Prediction problem

- Initialize the CA to a random configuration x = (x1,…,xn).

- Let the CA evolve for t steps and collect k>n intermediate values

(y1,…, yk) from several sites during computation.

- Goal: Predict a value of the sequence based on previous values
x

Can we predict the future based on partial

observations of the present?

• t-Prediction problem

- Initialize the CA to a random configuration x = (x1,…,xn).

- Let the CA evolve for t steps and collect k>n intermediate values

(y1,…, yk) from several sites during computation.

- Goal: Predict a value of the sequence based on previous values

• By [Yao82] unpredictability is equivalent to pseudorandomness

• [Wolfram86] conjectured that the prediction problem is hard for t=n

suggested a heuristic construction of a psuedorandom generator

• Many other heuristic candidates but t>poly(n) [Guan87,Habutsu-Nishio-

Sasase-Mori91, Meier91, Gutowitz93, Nandi-Kar-Chaudhuri-94]

Can we generate pseudorandomess in O(1) steps?

Our Results: Intractability is Common and Fast

• DRLC Assumption:

Can’t Decode Random binary Linear Code of rate 1/6 w/noise level 1/4.

• Thm. The inversion and prediction problem are intractable even for t=1.

- Construct explicit CAs for which problems are hard.

- Tight Security: If DRLC is exponentially hard, get 2sqrt(n) hardness.

Our Results: Intractability is Common and Fast

• DRLC Assumption:

Can’t Decode Random binary Linear Code of rate 1/6 w/noise level 1/4.

• Thm. The inversion and prediction problem are intractable even for t=1.

- Construct explicit CAs for which problems are hard.

- Tight Security: If DRLC is exponentially hard, get 2sqrt(n) hardness.

• Also Characterization Thm for crypto by CA in single step:

- Possible: Public/Symmetric-key Encryption, Commitment, Identification

- Impossible: Signatures, Decryption, n+(n) pseudorandom sequence

Application: Crypto with Constant Latency

Inputs

Outputs

Constant

Time

Cryptographic

Device

Vision: const. time independent of security/input length

Previous Works

Inputs

Outputs

• Crypto with constant output locality (NC0) [A-Ishai-Kushilevitz04]

• But fan-out is large long time (replication cost)

• Crypto with constant output locality & input locality [AIK07]

• But long wires long time

• This work: CA based primitives crypto with spatial locality

Const. input locality

Const. output locality

Crypto with Spatial Locality
• Crypto with short wires embedding s.t. distance(input,output)= O(1)

- similar model studied in VLSI by [Chazelle Monier 85]

• Input/output locality vs. Spatial locality: qualitative difference

- Spatial locality Graph is bad expander !

- Seems bad for security…[Gol00,MST03,Alekhnovich03, AIK06]

- Leads to actual attacks (PTAS, sub-exp attack, separation for some primitives)

• Inherently kills all previous constructions/approaches

input gate

output gate

Thm. Assume DRLC is hard.

Then, CA for which single-step inversion is average-case hard.

Proof approach:

About the Proof

DRLC
“Almost-linear”

one-way function

Spatially-Local

one-way function

OWF computable by

CA in a single step

By [AIK04] suffices to take h to be a randomized encoding of f

• for every x: the distribution h(x,r) “encodes” the string f(x)

x y

Enc(y)x

h
r

Enc(y)

f

Almost-linear OWF

f

Spatially-Local OWF

h

http://images.google.com/imgres?imgurl=http://www.leadminingmuseum.co.uk/images/Abacus_clipart.gif&imgrefurl=http://www.leadminingmuseum.co.uk/techinfopage.htm&h=322&w=421&sz=34&tbnid=5_tgniE38ToJ:&tbnh=93&tbnw=122&hl=en&start=6&prev=/images%3Fq%3Dabacus%26hl%3Den%26lr%3D%26sa%3DN
http://images.google.com/imgres?imgurl=http://www.groton.k12.ct.us/WWW/cc/COMPUTER.GIF&imgrefurl=http://www.groton.k12.ct.us/WWW/cc/&h=426&w=469&sz=13&tbnid=JAwVjI6ZFTsJ:&tbnh=113&tbnw=124&hl=en&start=2&prev=/images%3Fq%3Dcomputer%26hl%3Den%26lr%3D

• Want: Spatial Encoding for “almost linear function”

• Warm-up: encode a fixed linear function gM(v)=Mv

Spatial Encoding for Linear Functions

gM(v) =

v1+v4

v2+v3+v4

v3+v4

v1+v3

v1 v2 v3 v4

Black nodes= original inputs

Red nodes= random inputs

Hyper-Edges = outputs

Randomized Encoding of g

r1 r2

r1+r2

• Want: Spatial Encoding for “almost linear function”

• Warm-up: encode a fixed linear function gM(v)=Mv

• Clearly encoding is spatially local

• To decode g(v) sum up the “right edges”

Spatial Encoding for Linear Functions

gM(v) =

v1+v4

v2+v3+v4

v3+v4

v1+v3

v1 v2 v3 v4

Black nodes= original inputs

Red nodes= random inputs

Hyper-Edges = outputs

Randomized Encoding of g

• Want: Spatial Encoding for “almost linear function”

• Warm-up: encode a fixed linear function gM(v)=Mv

• Clearly encoding is spatially local

• To decode g(v) sum up the “right edges”

• Encoding is uniform under the above constraint

Spatial Encoding for Linear Functions

gM(v) =

v1+v4

v2+v3+v4

v3+v4

v1+v3

v1 v2 v3 v4

Black nodes= original inputs

Red nodes= random inputs

Hyper-Edges = outputs

Randomized Encoding of g

• More Generally:

• Can encode the universal linear function L(M,v)=(M, Mv)

• Extends to “almost linear functions”

Useful Extensions

1001

1110

1100

0101

M

Encoding of gMgM(x)=Mx

• In some CAs intractability is fast and common

- What about a random CA?

• Spatially local functions can be used for crypto

- approximation is easy but crypto is possible (unique example?)

• Well known: “Expansion leads to intractability”

- proof complexity, inapproximability, property testing, SDP lower bounds

• New theme in crypto as well [Gol00,MST03,Alekhnovich03]

• This work: in crypto even weak expansion suffices

Conclusion

Thanks !

CA which computes a one-way function

Different colors correspond to different rules

c

b x

a w

y1 y2 y3

blue x1+b1 x2+w2+x3 x1 x3

green x1+b1 x2+w2 x3

purple x1+b1 x2+w2+x1 x3

black a1c1+x1 x2+w2 x3

pink a1c1+x1 x2+w2+x1 x3

yellow x1+b1 w2 x3

orange x1+b1 w2+x1 x3

white 0 0 0

