Cryptography by Cellular Automata or

 How Fast Can Complexity Emerge in Nature?Benny Applebaum
Yuval Ishai
Eyal Kushilevitz

Princeton \rightarrow Weizmann
Technion/UCLA
Technion

Computation in the Physical World

Computation in the physical world is spatially local In a single time unit, information can only travel a bounded distance in space.

Cellular Automata

Spatially local computation is nicely captured by Cellular Automaton

- Grid of \boldsymbol{n} cells each has a state = value from a fixed alphabet (e.g., binary)
- Configuration = State of all cells
- Next state of a cell computed via a local rule applied to its d-neighborhood
- Different cells can have different local rules but rules are fixed over time

Parity-CA with $d=1$

Brief History of Cellular Automata

- 50's defined by von Neumann-Ulam showed self-replication/universality
- 60's Zuse: "the universe is the output of a giant CA" (birth of digital physics)
- 70's popularized by Conway via the game of life
- 80's studied by Wolfram, Vichniac, Toffoli, Margolus via simulations
- 90's-today: study of complex systems
- "simple rules lead to high complexity"
- commonly used in physics, chemistry, biology, economics, sociology...
- special conferences/journals (defeats TM's in a google test)

Motivation

- CAs exhibit complex computational and dynamical phenomena (self-replication, universality, synchronization, fractality, chaos,...)
- Main Question: How fast/common "complexity" is?
- Let's take complexity to be computational intractability

Can we infer the past from the present?

-t-Inversion problem

- Initialize the CA to a random configuration $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Let the CA evolve for t steps to a configuration y.
- Goal: given y find x or some other consistent initial configuration x '.

Can we infer the past from the present?

-t-Inversion problem

- Initialize the CA to a random configuration $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Let the CA evolve for t steps to a configuration y.
- Goal: given y find x or some other consistent initial configuration x '.

	$\mathrm{t}=\mathrm{O}(1)$ (spatially local CSP)	$\mathrm{t}=\operatorname{poly}(\mathrm{n})$
Arbitrary x	- NP-hard [Cook-71] - Poly-time approximation [Lipton-Tarjan-77] - $2^{\text {sart(n) }}$ time exact solution - NC^{1} solution for 1-Dimensional CA	
Random x	\bigcirc	Hard by universality

Can we get hardness for typical configurations in constant time?
Is it possible to compute one-way function in $\mathrm{O}(1)$ steps?

Can we predict the future based on partial observations of the present?

- t-Prediction problem
- Initialize the CA to a random configuration $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Let the CA evolve for \mathbf{t} steps and collect $\mathbf{k}>\boldsymbol{n}$ intermediate values $\left(y_{1}, \ldots, y_{k}\right)$ from several sites during computation.
- Goal: Predict a value of the sequence based on previous values

Can we predict the future based on partial observations of the present?

- t-Prediction problem
- Initialize the CA to a random configuration $x=\left(x_{1}, \ldots, x_{n}\right)$.
- Let the CA evolve for t steps and collect $k>n$ intermediate values
$\left(y_{1}, \ldots, y_{k}\right)$ from several sites during computation.
- Goal: Predict a value of the sequence based on previous values

Can we generate pseudorandomess in $\mathrm{O}(1)$ steps?

- [Wolfram86] conjectured that the prediction problem is hard for $t=n$ suggested a heuristic construction of a psuedorandom generator
- Many other heuristic candidates but t>poly(n) [Guan87,Habutsu-Nishio-Sasase-Mori91, Meier91, Gutowitz93, Nandi-Kar-Chaudhuri-94]

Our Results: Intractability is Common and Fast

- DRLC Assumption:

Can't Decode Random binary Linear Code of rate $1 / 6 \mathrm{w} /$ noise level $1 / 4$.

- Thm. The inversion and prediction problem are intractable even for $t=1$.
- Construct explicit CAs for which problems are hard.
- Tight Security: If DRLC is exponentially hard, get $2^{\text {sart(n) }}$ hardness.

Our Results: Intractability is Common and Fast

- DRLC Assumption:

Can't Decode Random binary Linear Code of rate $1 / 6 \mathrm{w} /$ noise level $1 / 4$.

- Thm. The inversion and prediction problem are intractable even for $t=1$.
- Construct explicit CAs for which problems are hard.
- Tight Security: If DRLC is exponentially hard, get $2^{\text {sart(n) }}$ hardness.
- Also Characterization Thm for crypto by CA in single step:
- Possible: Public/Symmetric-key Encryption, Commitment, Identification
- Impossible: Signatures, Decryption, $n+\Omega(n)$ pseudorandom sequence

Application: Crypto with Constant Latency

Vision: const. time independent of security/input length

Previous Works

- Crypto with constant output locality (NC^{0}) [A-Ishai-Kushilevitz04]
- But fan-out is large \Rightarrow long time (replication cost)
- Crypto with constant output locality \& input locality [AIK07]
- But long wires \Rightarrow long time
- This work: CA based primitives \Rightarrow crypto with spatial locality

Const. output locality

Crypto with Spatial Locality

- Crypto with short wires embedding s.t. distance(input,output) $=\mathrm{O}(1)$
- similar model studied in VLSI by [Chazelle Monier 85]
- Input/output locality vs. Spatial locality: qualitative difference
- Spatial locality \Rightarrow Graph is bad expander !
- Seems bad for security...[Gol00,MST03,Alekhnovich03, AIK06]
- Leads to actual attacks (PTAS, sub-exp attack, separation for some primitives)
- Inherently kills all previous constructions/approaches

About the Proof

Thm. Assume DRLC is hard.
Then, \exists CA for which single-step inversion is average-case hard.

Proof approach:

By [AIK04] suffices to take h to be a randomized encoding of f

- for every x : the distribution $h(x, r)$ "encodes" the string $f(x)$

Spatial Encoding for Linear Functions

- Want: Spatial Encoding for "almost linear function"
- Warm-up: encode a fixed linear function $g_{M}(v)=M v$

Spatial Encoding for Linear Functions

- Want: Spatial Encoding for "almost linear function"
- Warm-up: encode a fixed linear function $g_{M}(v)=M v$

- Clearly encoding is spatially local
- To decode $g(v)$ sum up the "right edges"

Spatial Encoding for Linear Functions

- Want: Spatial Encoding for "almost linear function"
- Warm-up: encode a fixed linear function $g_{M}(v)=M v$

- Clearly encoding is spatially local
- To decode $g(v)$ sum up the "right edges"
- Encoding is uniform under the above constraint

Useful Extensions

- More Generally:

M			
1	0	0	1
0	1	1	1
0	0	1	1
1	0	1	0

$g_{M}(x)=M x$

Encoding of g_{M}

- Can encode the universal linear function $L(M, v)=(M, M v)$
- Extends to "almost linear functions"

Conclusion

- In some CAs intractability is fast and common
- What about a random CA?
- Spatially local functions can be used for crypto
- approximation is easy but crypto is possible (unique example?)
- Well known: "Expansion leads to intractability"
- proof complexity, inapproximability, property testing, SDP lower bounds
- New theme in crypto as well [Gol00,MST03,Alekhnovich03]
- This work: in crypto even weak expansion suffices

Thanks !

CA which computes a one-way function
Different colors correspond to different rules

	y_{1}	y_{2}	y_{3}
blue	$x_{1}+b_{1}$	$x_{2}+w_{2}+x_{3} x_{1}$	x_{3}
green	$x_{1}+b_{1}$	$x_{2}+w_{2}$	x_{3}
purple	$x_{1}+b_{1}$	$x_{2}+w_{2}+x_{1}$	x_{3}
black	$a_{1} c_{1}+x_{1}$	$x_{2}+w_{2}$	x_{3}
pink	$a_{1} c_{1}+x_{1}$	$x_{2}+w_{2}+x_{1}$	x_{3}
yellow	$x_{1}+b_{1}$	w_{2}	x_{3}
orange	$x_{1}+b_{1}$	$w_{2}+x_{1}$	x_{3}
white	0	0	0
	c		

