Cryptography by Cellular Automata or How Fast Can Complexity Emerge in Nature?

Benny Applebaum Yuval Ishai Eyal Kushilevitz Princeton → Weizmann Technion/UCLA Technion

First Symposium on Innovations in Computer Science (ICS 2010)

Computation in the Physical World

Computation in the physical world is **spatially local**

In a single time unit, information can only travel a bounded distance in space.

Cellular Automata

Spatially local computation is nicely captured by Cellular Automaton

- Grid of **n** cells each has a state = value from a fixed alphabet (e.g., binary)
- Configuration = State of all cells
- Next state of a cell computed via a local rule applied to its d-neighborhood
- Different cells can have different local rules but rules are fixed over time

Parity-CA with d=1

Brief History of Cellular Automata

- 50's defined by von Neumann-Ulam showed self-replication/universality
- 60's Zuse: "the universe is the output of a giant CA" (birth of digital physics)
- 70's popularized by Conway via the game of life
- 80's studied by Wolfram, Vichniac, Toffoli, Margolus via simulations
- 90's-today: study of complex systems
 - "simple rules lead to high complexity"
 - commonly used in physics, chemistry, biology, economics, sociology...
 - special conferences/journals (defeats TM's in a google test)

Motivation

• CAs exhibit complex computational and dynamical phenomena (self-replication, universality, synchronization, fractality, chaos,...)

• Main Question: How fast/common "complexity" is?

• Let's take complexity to be computational intractability

Can we infer the past from the present? • t-Inversion problem

- Initialize the CA to a random configuration $x = (x_1, ..., x_n)$.
- Let the CA evolve for **t** steps to a configuration **y**.
- Goal: given y find x or some other consistent initial configuration x'.

Can we infer the past from the present? • t-Inversion problem

- Initialize the CA to a random configuration $x = (x_1, ..., x_n)$.
- Let the CA evolve for **t** steps to a configuration **y**.
- Goal: given y find x or some other consistent initial configuration x'.

	t=O(1)	t=poly(n)				
	(spatially local CSP)					
Arbitrary x	NP-hard [Cook-71]					
	 Poly-time approximation [Lipton-Tarjan-77] 2^{sqrt(n)} time exact solution NC¹ solution for 1-Dimensional CA 					
Random x		Hard by universality				
Can we get hardness for typical configurations in constant time?						
Is it possible to compute one-way function in O(1) steps?						

Can we predict the future based on partial observations of the present?

t-Prediction problem

- Initialize the CA to a random configuration $x = (x_1, ..., x_n)$.
- Let the CA evolve for t steps and collect k>n intermediate values (y₁,..., y_k) from several sites during computation.
- Goal: Predict a value of the sequence based on previous values

Can we predict the future based on partial observations of the present?

t-Prediction problem

- Initialize the CA to a random configuration $x = (x_1, ..., x_n)$.
- Let the CA evolve for t steps and collect k>n intermediate values (y₁,..., y_k) from several sites during computation.
- Goal: Predict a value of the sequence based on previous values

Can we generate pseudorandomess in O(1) steps?

- [Wolfram86] conjectured that the prediction problem is hard for t=n suggested a heuristic construction of a psuedorandom generator
- Many other heuristic candidates but t>poly(n) [Guan87,Habutsu-Nishio-Sasase-Mori91, Meier91, Gutowitz93, Nandi-Kar-Chaudhuri-94]

Our Results: Intractability is Common and Fast

• DRLC Assumption:

Can't Decode Random binary Linear Code of rate 1/6 w/noise level 1/4.

- Thm. The inversion and prediction problem are intractable even for t=1.
 - Construct explicit CAs for which problems are hard.
 - Tight Security: If DRLC is exponentially hard, get 2^{sqrt(n)} hardness.

Our Results: Intractability is Common and Fast

• DRLC Assumption:

Can't Decode Random binary Linear Code of rate 1/6 w/noise level 1/4.

- Thm. The inversion and prediction problem are intractable even for t=1.
 - Construct explicit CAs for which problems are hard.
 - Tight Security: If DRLC is exponentially hard, get 2^{sqrt(n)} hardness.
- Also Characterization Thm for crypto by CA in single step:
 - Possible: Public/Symmetric-key Encryption, Commitment, Identification
 - Impossible: Signatures, Decryption, $n+\Omega(n)$ pseudorandom sequence

Application: Crypto with Constant Latency

Vision: const. time independent of security/input length

Previous Works

- Crypto with constant output locality (NC⁰) [A-Ishai-Kushilevitz04]
- But fan-out is large \Rightarrow long time (replication cost)
- Crypto with constant output locality & input locality [AIK07]
- But long wires \Rightarrow long time
- This work: CA based primitives \Rightarrow crypto with spatial locality

Crypto with Spatial Locality

- Crypto with short wires embedding s.t. distance(input,output)= O(1)
 - similar model studied in VLSI by [Chazelle Monier 85]
- Input/output locality vs. Spatial locality: qualitative difference
 - Spatial locality \Rightarrow Graph is **bad** expander !
 - Seems bad for security...[Gol00,MST03,Alekhnovich03, AlK06]
 - Leads to actual attacks (PTAS, sub-exp attack, separation for some primitives)
- Inherently kills all previous constructions/approaches

About the Proof

Thm. Assume DRLC is hard.

Then, \exists CA for which single-step inversion is average-case hard.

Proof approach:

By [AIK04] suffices to take h to be a randomized encoding of f

• for every x: the distribution h(x,r) "encodes" the string f(x)

Spatial Encoding for Linear Functions

- Want: Spatial Encoding for "almost linear function"
- Warm-up: encode a fixed linear function $g_M(v)=Mv$

Randomized Encoding of g

Black nodes= original inputs Red nodes= random inputs Hyper-Edges = outputs

 $g_{M}(v) = \begin{array}{c} v_{1}+v_{4} \\ v_{2}+v_{3}+v_{4} \\ v_{3}+v_{4} \end{array}$

 $V_1 + V_3$

Spatial Encoding for Linear Functions

Randomized Encoding of g

- Want: Spatial Encoding for "almost linear function"
- Warm-up: encode a fixed linear function $g_M(v)=Mv$

Black nodes= original inputs Red nodes= random inputs Hyper-Edges = outputs

- Clearly encoding is spatially local
- To decode g(v) sum up the "right edges"

Spatial Encoding for Linear Functions

Randomized Encoding of g

- Want: Spatial Encoding for "almost linear function"
- Warm-up: encode a fixed linear function $g_M(v)=Mv$

Black nodes= original inputs Red nodes= random inputs Hyper-Edges = outputs

- Clearly encoding is spatially local
- To decode g(v) sum up the "right edges"
- Encoding is uniform under the above constraint

Useful Extensions

• More Generally:

• Can encode the universal linear function L(M,v)=(M, Mv)

• Extends to "almost linear functions"

Conclusion

- In some CAs intractability is fast and common
 - What about a random CA?
- Spatially local functions can be used for crypto
 - approximation is easy but crypto is possible (unique example?)
- Well known: "Expansion leads to intractability"
 proof complexity, inapproximability, property testing, SDP lower bounds
- New theme in crypto as well [Gol00,MST03,Alekhnovich03]
- This work: in crypto even weak expansion suffices

Thanks !

CA which computes a one-way function Different colors correspond to different rules

	У ₁		У ₂		У ₃		
blue	x ₁ +b ₁		$x_2 + w_2 + x_3 x_1$		х ₃		
green	x ₁ +b ₁		x ₁ +b ₁			x ₂ +w ₂	x ₃
purple	x ₁ +b ₁			x ₂ +w ₂ +x ₁	x ₃		
black	a ₁ c ₁ +x ₁		x ₂ +w ₂		x ₃		
pink	a ₁ c ₁ +x ₁		x ₂ +w ₂ +x ₁		x ₃		
yellow	x ₁ +b ₁			W ₂	x ₃		
orange	x ₁ +b ₁			w ₂ +x ₁	X ₃		
white	0			0	0		
	С						
	b	Х					
	а	W					