Market Equilibrium under Separable, Piecewise-Linear, Concave Utilities

Vijay V. Vazirani

Mihalis Yannakakis

Fisher's model with plc utilities

amount of j X_{ij}

total utility

 $v_i = \sum_{j \in G} f_{ij}(x_{ij})$

For given prices, find optimal bundle of goods

 p_1

 p_2

 p_3

Several buyers with different utility functions and moneys.

Several buyers with different utility functions and moneys. Find equilibrium prices.

Long-standing open problem

Complexity of finding an equilibrium for Fisher and Arrow-Debreu models under separable, plc utilities? Long-standing open problem

Complexity of finding an equilibrium for Fisher and Arrow-Debreu models under separable, plc utilities?

■ 2009: Both PPAD-complete

Linear Fisher market

DPSV, 2002:

Combinatorial, polynomial time algorithm

Assume:

- $\square m_i$: money of buyer *i*.
- \Box One unit of each good *j*.

Eisenberg-Gale Program, 1959

$$\max \sum_{i} m_{i} \log v_{i}$$

s.t.
$$\forall i: v_{i} = \sum_{j} u_{ij} \chi_{ij}$$

$$\forall j: \sum_{i} \chi_{ij} \leq 1$$

$$\forall ij: \chi_{ij} \geq 0$$

Eisenberg-Gale Program, 1959

$$\max \sum_{i} m_{i} \log v_{i}$$
s.t.

$$\forall i: v_{i} = \sum_{j} u_{ij} \chi_{ij}$$

$$\forall j: \sum_{i} \chi_{ij} \leq 1 \quad \text{prices } p_{j}$$

$$\forall ij: \chi_{ij} \geq 0$$

Generalize EG program to piecewise-linear, concave utilities?

Generalization of EG program

$$\forall j: \qquad \sum_{i,k} \chi_{ij} \leq 1$$

$$\forall ijk: \quad \mathcal{X}_{ijk} \leq l_{ijk}$$

$$\forall ijk: \quad \boldsymbol{\chi}_{ijk} \geq 0$$

■ V. & Yannakakis, 2007

Equilibrium is rational for both Fisher and Arrow-Debreu models

A simpler question

Given prices <u>p</u>, are they equilibrium prices?

■ What does buyer *i*'s optimal bundle look like?

Bang-per-buck w.r.t. <u>p</u>

• bpb(s)
$$= \frac{u_{ijk}}{p_j}$$

For each buyer *i*: Sort segments by decreasing bpb, and partition by equality.

Allocate in order: Q_1, Q_2, Q_3, \dots

Find min k s.t. $Q_1, Q_2, ..., Q_k$ exhaust buyer i's money

•
$$Q_1, Q_2, \dots Q_{k-1}$$
 Q_k Q_{k+1}, \dots
forced flexible undesirable

After forced allocations:
 m'(i): i's left-over money

 $\Box p'(j)$: left-over value of good *j*.

Network N(p)

Max flow in $N(\underline{p})$

<u>p</u>: equilibrium prices iff both cuts saturated

Can write max-flow in N as an LP
 Introduce flow variables

Suppose, corresponding to an equilibrium, we "guess" flexible partitions. Don't know <u>p</u>

Pick prices as variables. Construct *N*.
 All edge capacities linear in price variables.

Write max-flow LP (it is still linear!)
 Introduce flow variables.

Rationality proof

If "guess" is correct, optimal solution to LP yields equilibrium prices.

Hence rational!

Rationality proof

If "guess" is correct, optimal solution to LP yields equilibrium prices.

Hence rational!

■ In P??

NP-hardness does not apply

■ Megiddo, 1988:

 \Box Equilibrium NP-hard => NP = co-NP

Papadimitriou, 1991: PPAD 2-player Nash equilibrium is PPAD-complete Rational

Etessami & Yannakakis, 2007: FIXP
 3-player Nash equilibrium is FIXP-complete
 Irrational

Chen, Dai, Du, Teng, 2009:
 PPAD-hardness for Arrow-Debreu model

Chen, Dai, Du, Teng, 2009: □ PPAD-hardness for Arrow-Debreu model Chen, Teng, 2009: **PPAD**-hardness for Fisher's model ■ V., & Yannakakis, 2009: □ PPAD-hardness for Fisher's model □ Membership in PPAD for both models, Sufficient condition: non-satiation.

Chen, Dai, Du, Teng, 2009: □ PPAD-hardness for Walras' model Chen, Teng, 2009: **PPAD**-hardness for Fisher's model ■ V., & Yannakakis, 2009: □ PPAD-hardness for Fisher's model □ Membership in PPAD for both models, **Otherwise**, deciding existence of eq. is NP-hard

Brouwer's Fixed Point Theorem

Brouwer's Fixed Point Theorem

Kakutani's fixed point theorem

S: compact, convex set in \mathbb{R}^n

$$f: S \rightarrow 2^{S}$$

upper hemi-continuous

$$\exists x \text{ s.t. } x \in f(x)$$

FIXP = fixed points of Brouwer functions represented as polynomially computable algebraic circuits over basis {+,-,*,/,max,min} with rationals.

 EY, 2007:
 PPAD = fixed point of polynomial time piecewise-linear Brouwer function. ■ *M*: instance satisfying sufficient conditions.

• Prove: equilibrium for *M* can be found in PPAD

Geanakoplos, 2003: Brouwer function-based proof of existence of equilibrium ■ *M*: instance satisfying sufficient conditions.

Prove: equilibrium for *M* can be found in PPAD

 Geanakoplos, 2003: Brouwer function-based proof of existence of equilibrium

Piecewise-linear Brouwer function??

Proof of membership in PPAD

- *F*: correspondence used in Kakutani-based proof of existence of equilibrium.
- G: piecewise-linear Brouwer approximation of F
- (p*, x*): fixed point of G.
 Can be found in PPAD
 Yields "guess"

Proof of membership in PPAD

- *F*: correspondence used in Kakutani-based proof of existence of equilibrium.
- G: piecewise-linear Brouwer approximation of F
- (p*, x*): fixed point of G.
 Can be found in PPAD and yields "guess"
- Solve rationality LP to find equilibrium for *M*!

Algorithmic ratification of the "invisible hand of the market"??

How do we salvage the situation?

Is PPAD really hard?

What is the "right" model?

Price discrimination markets

Goel & V., 2009:
 Perfect price discrimination market.
 Business charges each consumer what they are willing and able to pay.

plc utilities

Middleman buys all goods and sells to buyers, charging according to utility accrued. Given *p*, there is a well defined rate for each buyer.

Middleman buys all goods and sells to buyers, charging according to utility accrued.
 Given <u>p</u>, there is a well defined rate for each buyer.

Equilibrium is captured by a convex program –
 Efficient algorithm for equilibrium

Generalization of EG program works!

 $\max \sum m_i \log v_i$ s.t. $\forall i: \quad v_i = \sum_{i,k} u_{iik} \chi_{iik}$ $\forall j: \qquad \sum_{i,k} \chi_{ij} \leq 1$ $\forall ijk: \quad \mathcal{X}_{ijk} \leq l_{ijk}$ $\forall ijk: \quad \boldsymbol{\chi}_{ijk} \geq \boldsymbol{0}$

Middleman buys all goods and sells to buyers, charging according to utility accrued.
 Given <u>p</u>, there is a well defined rate for each buyer.

- Equilibrium is captured by a convex program generalization of EG program.
 Efficient algorithm for equilibrium
- Market satisfies both welfare theorems.