Bounding Rationality by Discounting Time

Lance Fortnow
Rahul Santhanam

Plan of the Talk

- Introduction
- The Model
- Results
- Future Directions

Plan of the Talk

- Introduction
- The Model
- Results
- Future Directions

Perfect Rationality

- Perfect rationality in a strategic situation
- Each player is rational (knows its payoff, and wishes to maximize it)
- Each player knows that the other player is rational
- Each player can derive all consequences of common rationality

Bounded Rationality

- Herbert Simon - "Boundedly rational agents experience limits in formulating and solving complex problems and in processing (receiving, storing, retrieving, transmitting) information"
- In particular, boundedly rational agents are subject to computational constraints

Games

- Simultaneous-move (eg., Prisoner's Dilemma) or Sequential-move (eg., chess)
- Simultaneous-move
- Action spaces: $\mathrm{A}_{1}, \mathrm{~A}_{2}$
- Strategy spaces: $\mathrm{P}\left(\mathrm{A}_{1}\right), \mathrm{P}\left(\mathrm{A}_{2}\right)$
- Payoff functions: $\mathrm{A}_{1} \times \mathrm{A}_{2} \rightarrow \mathbb{R}$
- Sequential-move (one-shot)
- Strategy spaces: $\mathrm{P}\left(\mathrm{A}_{1}\right), \mathrm{P}\left(\mathrm{A}_{2}\right)^{\wedge} \mathrm{A}_{1}$
- Payoff functions: $\mathrm{A}_{1} \times \mathrm{A}_{2} \rightarrow \mathbb{R}$

Nash Equilibrium

- A pair of strategies $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ is an NE if
- For all $\mathrm{T}_{2}, \mathrm{U}_{2}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)>=\mathrm{u}_{2}\left(\mathrm{~S}_{1}, \mathrm{~T}_{2}\right)$
- For all $\mathrm{T}_{1}, \mathrm{u}_{1}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)>=\mathrm{u}_{1}\left(\mathrm{~T}_{1}, \mathrm{~S}_{2}\right)$
- Theorem [Nash]: Every finite game has an NE

Almost-Nash Equilibrium

- A pair of strategies $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ is a γ-NE if
- For all $\mathrm{T}_{2}, \mathrm{u}_{2}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}\right)>=\mathrm{u}_{2}\left(\mathrm{~S}_{1}, \mathrm{~T}_{2}\right)-\psi$
- For all $T_{1}, u_{1}\left(S_{1}, S_{2}\right)>=u_{1}\left(T_{1}, S_{2}\right)-v$

The Largest Number Game

Alice
Bob
Payoff (to Alice)

100 if $\mathrm{M}>\mathrm{N}$, 50 if $M=N$, 0 otherwise

Largest Number game does not have an NE, or even an almost-NE if $\gamma<50$

The Factoring Game (sequential-move)

Alice
Bob
Payoff (to Bob)

X, Y
(Integers)

100 if M is prime or
if $1<X, Y<M$ and
$M=X * Y$,
1 otherwise

Factoring Game has infinitely many Nash equilibria, in each of which Bob gets payoff 100 and Alice gets payoff 1 (Bob's strategy is simply to factor Alice's number)

Plan of the Talk

- Introduction
- The Model
- Results
- Future Directions

Time is Money

- The time it takes to implement a strategy is relevant
- Payoffs should decrease with time
- Exponential discounting: Let $\varepsilon<1$ be a discount factor. Then payoff decreases by a factor $(1-\varepsilon)^{t}$ after t steps

Asymmetric Discounting

- In general, different players have different discount factors
- The players might have different roles in the game
- Even if the game is symmetric, the players themselves might not be equally patient
- ε : Alice's discount factor
- δ : Bob's

Discounting and Computational Power

- By "time" we mean computational time
- Suppose Alice and Bob are equally patient with respect to real time but Alice's computer is 100 times as powerful as Bob's. Then $\delta \sim 100 \varepsilon$
- Discount factor is not just an index of patience, but also of computational power

The Discounted Game

- Let $G=\left(A_{1}, A_{2}, u_{1}, U_{2}\right)$ be a game
- The (ε, δ)-discounted version of G has
- Actions: Probabilistic machines which take as input ε and δ, and output actions in A_{1} (resp. A_{2})
- Payoffs: Alice's payoff corresponding to machines M_{1} (Alice) and M_{2} (Bob) outputting $a_{1} \in A_{1}$ and $a_{2} \in$ A_{2} resp. is $u_{1}\left(a_{1}, a_{2}\right)(1-\varepsilon)^{t}$, where t is time taken for M_{1} to output a_{1}

Uniform Equilibria

- A pair of strategies $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ for the discounted game is a uniform NE if neither player can gain in the limit as $\varepsilon, \delta \rightarrow 0$ by playing a different strategy
- Limit case interesting because
$-\varepsilon, \delta$ are typically small
- As computational power increases, ε and δ get smaller

Plan of the Talk

- Introduction
- The Model
- Results
- Future Directions

Finite Games

- Theorem: Let G be a finite game. For every NE of G, the discounted version of G has a uniform NE with the same payoffs in the limit

Infinite Games

- Theorem: Every countable game with bounded computable payoffs has a uniform NE
- Note that such games do not always have an NE or even an almost-NE (eg., Largest Number Game)

The Largest Number Game, Revisited

Alice Bob Payoff (to Alice)

100 if $\mathrm{M}>\mathrm{N}$, 50 if $M=N$, 0 otherwise

Largest Number game does not have an NE, or even an almost-NE if $\gamma<50$

The Largest Number Game, Revisited

- All the uniform equilibria of Largest Number game yield payoff 0 for both players
- Example: both players play $2^{\wedge}\left\{1 / \varepsilon^{2}+1 / \delta^{2}\right\}$
- If more is known about relationship between ε and δ, eg., $\varepsilon \gg \delta$, then there might be other equilibria yielding non-zero payoffs

The Factoring Game, Revisited

Alice

Bob Payoff (to Bob)

100 if M is prime or
if $1<X, Y<M$ and
$M=X * Y$,
1 otherwise

Factoring Game has infinitely many Nash equilibria, in each of which Bob gets payoff 100 and Alice gets payoff 1 (Bob's strategy is simply to factor Alice's number)

Complexity Through Game Theory

- Tight connection between computational complexity of Factoring and uniform equilibrium payoffs of discounted Factoring game
- Let $\delta=\varepsilon^{c}$, for some $\mathrm{c}>1$, wlog
- Theorem: If Factoring is in time o(nc) on average, then every uniform NE of discounted game gives payoff 1 to Alice and 100 to Bob

Complexity Through Game Theory

- Theorem: Suppose there is no algorithm which runs in time n^{c} polylog(n) and solves Factoring on average for infinitely many input lengths. Then there is a uniform NE of discounted game giving payoff 100 to Alice and 1 to Bob.
- Proof idea: Consider strategy for Alice of outputting random number of size $\sim 1 / \varepsilon$. Show that any strategy for Bob yielding payoff more than 1 in the limit yields factoring algorithm

A Spurious Equilibrium

- In the case where Factoring is hard, there is still a uniform NE where Bob wins
- This corresponds to Bob playing a brute-force Factoring algorithm
- However, in practice, we wouldn't expect this to happen - Bob's threat is not credible

Plan of the Talk

- Introduction
- The Model
- Results
- Future Directions

Future Directions: Refining the Model

- Defining a notion of subgame-perfection for discounted games
- An approach based on preference relations rather than real-number payoffs
- Capture bounded rationality not just in implementation but also in design

Future Directions: Applications of the Model

- Using discounting in choice situations ("flexible" or "anytime" algorithms)
- Perspective on foundations of cryptography, where protocol is treated as a game and adversary is modelled as bounded-rational
- Bounded rationality in extensive-form games

