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Brief history of LP

• Max  c.x   s.t.  Ax <= b. 

(several equivalent formulations)

• Simplex method,1947, Dantzig. 

Many variants. 

Still most popular LP algorithm. 

No polynomial guarantee known.

Assume

nondegenerate: 

each vertex is 

intersection of n 

facets.



History: polynomial algorithms

• Ellipsoid method, Khachiyan, 1979.

• Interior point method, Karmarkar, 1984.
– Nestorov, Nemirovski, …

• Perceptron method, Minsky-Papert, 1969
– Polynomial perceptron, Dunagan-V. 2004

• Random walk method, Bertsimas-V. 2002.

All these methods are geometric.

They “scale” space to make the problem easier; 
complexity depends on #bits in the input. 



Strongly polynomial cases

• Maximum weight matching in general graphs, 

Edmonds, 1965.

• Linear programming in fixed dimension, 

Megiddo, 1984.

• Minimum cost flow,  

E. Tardos, 1986.

These are specialized combinatorial algorithms



Simplex pivot rules

• Assume polyhedron is nondegenerate, i.e., each 
vertex is the intersection of n facets. 

• Then simplex moves from vertex to vertex, 
improving objective value.

• The rule for determining the next vertex is a 
“pivot” rule. 



Simplex pivot rules

Deterministic pivot rules

• Dantzig’s largest coefficient rule. Exponential example: 
Klee and Minty, 1972.

• Greatest increase. Example: Jeroslow, 1973.

• Bland’s least index rule. Ex: Avis and Chvatal, 1978.

• Steepest increase. Ex: Goldfarb and Sit, 1979.

• Shadow vertex rule. Ex: Murty, 1980 and Goldfarb, 1983.

• All examples are “variations” of Klee–Minty’s, and fit a 
general construction called deformed products defined 
by Amenta and Ziegler.



Simplex pivot rule

• Randomized edge rule: Among all pivots that 
improve the objective pick one at random.

• Complexity is open. 

• Best known upper bound (G. Kalai), is 
subexponential. 

• “Is this pivot rule polynomial?”

• This question has dominated the search for 
strongly polynomial algorithms.



Hirsch conjecture

• Diameter of a polytope with m facets is at most 
m-n+1

(Diameter = Diameter of graph induced by vertices and 

edges of polytope)

• Best known upper bound is super-polynomial (G. 
Kalai). 

• Long-standing open problem to prove the 
conjecture or even get a polynomial upper 
bound.



Hirsch vs Simplex

• Complexity of any simplex pivot rule gives 

an upper bound on diameter of polytope 

graph.

• Thus proving randomized simplex 

conjecture would also be a major 

combinatorial breakthrough.

• Is strongly polynomial LP really a 

nongeometric, combinatorial question? 



But,

• [Matousek-Szabo] Take a polytope combinatorially 
equivalent to a hypercube; orient the edges arbitrarily, so 
that each face has a unique sink. There exist 
orientations for which the random edge pivot rule is 
exponential!  (pivot rule runs by picking a random out-
edge at each vertex visited)

• Does this imply strongly polynomial pivot rules are 
impossible? NO, because not all orientations are 
geometrically realizable. 

• However, it does suggest that the geometry plays an 
important role.



New Approach

• Algorithm will be affine-invariant

• So complexity will not depend on how the input 

is scaled.

Two step iteration:

• At current vertex, pick a line to travel along in an 

affine-invariant manner and move along the line. 

• Go to vertex of at least as high objective value in 

the face reached.





Step 1: Affine-invariant direction

How to pick a direction? 
– Compute the set of improving rays (edges that lead to vertices 

of higher objective value)

– Take a linear combination of the improving rays.

Two candidate rules: 
1. Average of all improving rays (centroid rule)

2. Random convex combination of improving rays (random rule). 

Lemma: Both rules are affine-invariant.

(i.e. applying an affine transformation before computing the direction 
gives the same effect as applying it after)





New algorithm, roughly

• At current vertex, 

– pick direction

– Follow to get to new face

– Go to vertex of at least as high value

• Introduces many geometric shortcuts in 
the polytope. 

• No bearing on Hirsch conjecture!



Step 2: go to vertex

• How to go to a vertex of at least as high 
value?

– E.g., Follow gradient, keep adding facets hit 
as equalities till a vertex is reached.

• Doing this step arbitrarily can lead to an 
exponential number of iterations.

• So we will go to a vertex in an affine-
invariant manner. 



• Algorithm: AFFINE
• INPUT: Polyhedron P given by linear inequalities a_j . x  ≤ b_j : j = 1 : m, objective 

vector c and vertex z.

• OUTPUT: A vertex maximizing the objective value, or “unbounded” 

• While the current vertex z is not optimal, repeat:

• 1. (Initialize) (a) Let H be the set of indices of active inequalities at z

(b) (Compute edges) For every t in H compute a vector 

v_t : a_h . v_t = 0 for h in H\{t} and a_t . v_t < 0.

(c) Let T = {t in H : c.v_t ≥ 0} and S = H\T.

• 2. (Iteration) While T is nonempty, repeat:

(a) (Compute improving rays) For every t in T compute a vector 

v_t ≠ 0 : a_h.v_t = 0 for h in H\{t}, c.v_t ≥ 0 

and the length of v_t is the largest value for which z + v_t remains feasible.       
(b) (Pick direction) compute a nonnegative combination v of elements of T.

(c) (Move) Let r be maximal for which z + r v is in P, if there is no such 
maximum, return “unbounded”. Move the current point: z := z + r v.

(d) (Update inequalities) Let s be the index of an inequality which       
becomes active. Let t in T be any index such that 

{a_h : h in {s} U S U T \ t} is linearly independent. 

Set  S := S U {s}; T := T\{t} and H := S U T.



Algorithm: notes

• In Step 2, one new active inequality is 
added in each iteration; thus a vertex is 
reached in at most n iterations.

• Step 2 can be viewed as a recursive 
application of the original procedure in 
lower dimensional faces.

• Each iteration: O(mn).  



Analysis: How many iterations?

• Klee-Minty: n iterations.

• Main Theorem: For any polytope that is a 
deformed product, Algorithm Affine takes 
at most n outer iterations. 

(O(n^2) total iterations).

• Thus, algorithm is efficient on all known 
simplex counterexamples. 



Idea

• Consider P = V x W  (standard product)

• Then vertex x of P can be written as 

x = (v,w)

• Step in P projects to step in V or in W. Progress 
in P goes hand-in-hand with either progress in V 
or in W. 

• Thus f(P) <= f(V) + f(W), where f is the number 
of vertices visited.   



Analysis

• Proof also works for mild perturbations of 
deformed polytopes, which can change 
the combinatorial structure considerably 
(thus algorithm is not specifically designed 
for these counterexample classes).

• Algorithm makes heavy use of geometric 
shortcuts through the interior of the 
polytope.



Next steps

• Polynomial upper bound? (not strongly polynomial, so 
one could use a geometric scaling type argument 
showing progress towards optimum).

• Counterexample?

• Upper bound for combinatorial cubes? 

• Upper bound for random polytopes? (to get away from 
the combinatorial structure of known counterexamples)



Thank you!


