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Brief history of LP

e Max c.x s.t. AXx<=Dh.

(several equivalent formulations) A

Assume
+ Simplex method, 1947, Dantzig. | e
] intersection of n
Many variants. \ facets. Y,

Still most popular LP algorithm.
No polynomial guarantee known.



History: polynomial algorithms

Ellipsoid method, Khachiyan, 1979.

Interior point method, Karmarkar, 1984.
— Nestorov, Nemirovski, ...

Perceptron method, Minsky-Papert, 1969
— Polynomial perceptron, Dunagan-V. 2004

Random walk method, Bertsimas-V. 2002.

All these methods are geometric.

They “scale” space to make the problem easier;
complexity depends on #bits in the input.



Strongly polynomial cases

« Maximum weight matching in general graphs,
Edmonds, 1965.

 Linear programming in fixed dimension,
Megiddo, 1984.

 Minimum cost flow,
E. Tardos, 1986.

These are specialized combinatorial algorithms



Simplex pivot rules

« Assume polyhedron is nondegenerate, I.e., each
vertex iIs the intersection of n facets.

* Then simplex moves from vertex to vertex,
Improving objective value.

* The rule for determining the next vertex is a
“pivot” rule.



Simplex pivot rules

Deterministic pivot rules

Dantzig’s largest coefficient rule. Exponential example:
Klee and Minty, 1972.

Greatest increase. Example: Jeroslow, 1973.
Bland’s least index rule. Ex: Avis and Chvatal, 1978.
Steepest increase. Ex: Goldfarb and Sit, 1979.
Shadow vertex rule. Ex: Murty, 1980 and Goldfarb, 1983.

All examples are “variations” of Klee—Minty’s, and fit a
general construction called deformed products defined
by Amenta and Ziegler.



Simplex pivot rule

Randomized edge rule: Among all pivots that
Improve the objective pick one at random.

Complexity is open.

Best known upper bound (G. Kalal), is
subexponential.

“Is this pivot rule polynomial?”

This guestion has dominated the search for
strongly polynomial algorithms.



Hirsch conjecture

« Diameter of a polytope with m facets is at most
m-n+1

(Diameter = Diameter of graph induced by vertices and
edges of polytope)

« Best known upper bound is super-polynomial (G.
Kalai).

* Long-standing open problem to prove the
conjecture or even get a polynomial upper
bound.



Hirsch vs Simplex

« Complexity of any simplex pivot rule gives
an upper bound on diameter of polytope
graph.

* Thus proving randomized simplex

conjecture would also be a major
combinatorial breakthrough.

* |s strongly polynomial LP really a
nongeometric, combinatorial question?



But,

« [Matousek-Szabo] Take a polytope combinatorially
equivalent to a hypercube; orient the edges arbitrarily, so
that each face has a unigue sink. There exist
orientations for which the random edge pivot rule is
exponential! (pivot rule runs by picking a random out-
edge at each vertex visited)

* Does this imply strongly polynomial pivot rules are
Impossible? NO, because not all orientations are
geometrically realizable.

« However, it does suggest that the geometry plays an
Important role.



New Approach

 Algorithm will be affine-invariant

« So complexity will not depend on how the input
IS scaled.

Two step iteration:

« At current vertex, pick a line to travel along in an
affine-invariant manner and move along the line.

« (o to vertex of at least as high objective value in
the face reached.






Step 1: Affine-invariant direction

How to pick a direction?

—  Compute the set of improving rays (edges that lead to vertices
of higher objective value)

— Take a linear combination of the improving rays.

Two candidate rules:
1. Average of all improving rays (centroid rule)
2. Random convex combination of improving rays (random rule).

Lemma: Both rules are affine-invariant.

(i.e. applying an affine transformation before computing the direction
gives the same effect as applying it after)






New algorithm, roughly

* At current vertex,
— pick direction
— Follow to get to new face
— Go to vertex of at least as high value

 Introduces many geometric shortcuts in
the polytope.

* No bearing on Hirsch conjecture!



Step 2: go to vertex

 How to go to a vertex of at least as high
value?

— E.g., Follow gradient, keep adding facets hit
as equalities till a vertex is reached.

* Doing this step arbitrarily can lead to an
exponential number of iterations.

* So we will go to a vertex in an affine-
Invariant manner.



Algorithm: AFFINE

INPUT: Polyhedron P given by linear inequalitiesa_j.x <b_j:j=1:m, objective
vector ¢ and vertex z.

OUTPUT: A vertex maximizing the objective value, or “unbounded”

While the current vertex z is not optimal, repeat:
1. (Initialize) (a) Let H be the set of indices of active inequalities at z
(b) (Compute edges) For every t in H compute a vector
vi:ah.vt=0forhinH\{ttanda t.v t<O0.
(c)LetT={tinH:c.v_t=0}and S =H\T.

2. (Iteration) While T is nonempty, repeat:
(a) (Compute improving rays) For every t in T compute a vector
vi#0:a hv t=0forhin H\{t},cv t=0

and the length of v_t is the largest value for which z + v_t remains feasible.
(b) (Pick direction) compute a nonnegative combination v of elements of T.

(c) (Move) Let r be maximal for which z + r vis in P, if there is no such
maximum, return “unbounded”. Move the current pomt Zz:=z+rVv.

(d) (Update inequalities) Let s be the index of an inequality which
becomes active. Lettin T be any index such that

{a_ h:hin{s} US UT\t}is linearly independent.
Set S:=SU{s}; T=T{ttandH:=SUT.



Algorithm: notes

* In Step 2, one new active inequality Is
added Iin each iteration: thus a vertex Is
reached in at most n iterations.

« Step 2 can be viewed as a recursive
application of the original procedure In
lower dimensional faces.

« Each iteration: O(mn).



Analysis: How many Iterations?

* Klee-Minty: n iterations.

 Main Theorem: For any polytope that is a
deformed product, Algorithm Affine takes

at most n outer iterations.
(O(n"2) total iterations).

* Thus, algorithm is efficient on all known
simplex counterexamples.



ldea
Consider P =V x W (standard product)

Then vertex x of P can be written as
X = (V,w)

Step In P projects to step in V or in W. Progress
In P goes hand-in-hand with either progress in V
orinW.

Thus f(P) <= (V) + f(W), where f is the number
of vertices visited.



Analysis

* Proof also works for mild perturbations of
deformed polytopes, which can change
the combinatorial structure considerably
(thus algorithm is not specifically designed
for these counterexample classes).

 Algorithm makes heavy use of geometric
shortcuts through the interior of the

polytope.



Next steps

Polynomial upper bound? (not strongly polynomial, so
one could use a geometric scaling type argument
showing progress towards optimum).

Counterexample?
Upper bound for combinatorial cubes?

Upper bound for random polytopes? (to get away from
the combinatorial structure of known counterexamples)



Thank you!



