A New Approach to
 Strongly Polynomial Linear Programming

Mihály Bárász and Santosh Vempala

Brief history of LP

- Max c.x s.t. $A x<=b$. (several equivalent formulations)
- Simplex method,1947, Dantzig. Many variants.

Assume
nondegenerate: each vertex is intersection of n facets.

Still most popular LP algorithm.
No polynomial guarantee known.

History: polynomial algorithms

- Ellipsoid method, Khachiyan, 1979.
- Interior point method, Karmarkar, 1984.

- Nestorov, Nemirovski, ...
- Perceptron method, Minsky-Papert, 1969
- Polynomial perceptron, Dunagan-V. 2004
- Random walk method, Bertsimas-V. 2002.

All these methods are geometric.
They "scale" space to make the problem easier; complexity depends on \#bits in the input.

Strongly polynomial cases

- Maximum weight matching in general graphs, Edmonds, 1965.
- Linear programming in fixed dimension, Megiddo, 1984.
- Minimum cost flow,
E. Tardos, 1986.

These are specialized combinatorial algorithms

Simplex pivot rules

- Assume polyhedron is nondegenerate, i.e., each vertex is the intersection of n facets.
- Then simplex moves from vertex to vertex, improving objective value.
- The rule for determining the next vertex is a "pivot" rule.

Simplex pivot rules

Deterministic pivot rules

- Dantzig's largest coefficient rule. Exponential example: Klee and Minty, 1972.
- Greatest increase. Example: Jeroslow, 1973.
- Bland's least index rule. Ex: Avis and Chvatal, 1978.
- Steepest increase. Ex: Goldfarb and Sit, 1979.
- Shadow vertex rule. Ex: Murty, 1980 and Goldfarb, 1983.
- All examples are "variations" of Klee-Minty's, and fit a general construction called deformed products defined by Amenta and Ziegler.

Simplex pivot rule

- Randomized edge rule: Among all pivots that improve the objective pick one at random.
- Complexity is open.
- Best known upper bound (G. Kalai), is subexponential.
- "Is this pivot rule polynomial?"
- This question has dominated the search for strongly polynomial algorithms.

Hirsch conjecture

- Diameter of a polytope with m facets is at most m-n+1
(Diameter = Diameter of graph induced by vertices and edges of polytope)
- Best known upper bound is super-polynomial (G. Kalai).
- Long-standing open problem to prove the conjecture or even get a polynomial upper bound.

Hirsch vs Simplex

- Complexity of any simplex pivot rule gives an upper bound on diameter of polytope graph.
- Thus proving randomized simplex conjecture would also be a major combinatorial breakthrough.
- Is strongly polynomial LP really a nongeometric, combinatorial question?

But,

- [Matousek-Szabo] Take a polytope combinatorially equivalent to a hypercube; orient the edges arbitrarily, so that each face has a unique sink. There exist orientations for which the random edge pivot rule is exponential! (pivot rule runs by picking a random outedge at each vertex visited)
- Does this imply strongly polynomial pivot rules are impossible? NO, because not all orientations are geometrically realizable.
- However, it does suggest that the geometry plays an important role.

New Approach

- Algorithm will be affine-invariant
- So complexity will not depend on how the input is scaled.

Two step iteration:

- At current vertex, pick a line to travel along in an affine-invariant manner and move along the line.
- Go to vertex of at least as high objective value in the face reached.

Step 1: Affine-invariant direction

How to pick a direction?

- Compute the set of improving rays (edges that lead to vertices of higher objective value)
- Take a linear combination of the improving rays.

Two candidate rules:

1. Average of all improving rays (centroid rule)
2. Random convex combination of improving rays (random rule).

Lemma: Both rules are affine-invariant.
(i.e. applying an affine transformation before computing the direction gives the same effect as applying it after)

New algorithm, roughly

- At current vertex,
- pick direction
- Follow to get to new face
- Go to vertex of at least as high value
- Introduces many geometric shortcuts in the polytope.
- No bearing on Hirsch conjecture!

Step 2: go to vertex

- How to go to a vertex of at least as high value?
- E.g., Follow gradient, keep adding facets hit as equalities till a vertex is reached.
- Doing this step arbitrarily can lead to an exponential number of iterations.
- So we will go to a vertex in an affineinvariant manner.
- Algorithm: AFFINE
- INPUT: Polyhedron P given by linear inequalities $a _j . x \leq b _j: j=1: m$, objective vector c and vertex z.
- OUTPUT: A vertex maximizing the objective value, or "unbounded"
- While the current vertex z is not optimal, repeat:
- 1. (Initialize) (a) Let H be the set of indices of active inequalities at z
(b) (Compute edges) For every t in H compute a vector v_t : a_h . v_t $=0$ for h in $H\left\{\{t\}\right.$ and a_t $. v_{-} t<0$.
(c) Let $\mathrm{T}=\{\mathrm{t}$ in $\mathrm{H}: \mathrm{c} . \mathrm{v} \mathrm{t} \geq 0\}$ and $\mathrm{S}=\mathrm{HIT}$.
- 2. (Iteration) While T is nonempty, repeat:
(a) (Compute improving rays) For every t in T compute a vector $v _t \neq 0: a _h . v _t=0$ for h in $H \backslash\{t\}, c . v _t \geq 0$
and the length of $v _t$ is the largest value for which $z+v _t$ remains feasible.
(b) (Pick direction) compute a nonnegative combination \bar{v} of elements of T .
(c) (Move) Let r be maximal for which $z+r v$ is in P, if there is no such
maximum, return "unbounded". Move the current point: $z:=z+r$ v.
(d) (Update inequalities) Let s be the index of an inequality which becomes active. Let t in T be any index such that $\left\{\mathrm{a} _\mathrm{h}: \mathrm{h}\right.$ in $\left.\{\mathrm{s}\} \cup \mathrm{S} \cup \mathrm{T} \backslash \mathrm{t}\right\}$ is linearly independent.
Set $\mathrm{S}:=\mathrm{S} \cup\{\mathrm{s}\} ; \mathrm{T}:=\mathrm{T} \backslash\{\mathrm{t}\}$ and $\mathrm{H}:=\mathrm{S} \cup \mathrm{T}$.

Algorithm: notes

- In Step 2, one new active inequality is added in each iteration; thus a vertex is reached in at most n iterations.
- Step 2 can be viewed as a recursive application of the original procedure in lower dimensional faces.
- Each iteration: $\mathrm{O}(\mathrm{mn})$.

Analysis: How many iterations?

- Klee-Minty: n iterations.
- Main Theorem: For any polytope that is a deformed product, Algorithm Affine takes at most n outer iterations.
($\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right.$) total iterations).
- Thus, algorithm is efficient on all known simplex counterexamples.

Idea

- Consider $\mathrm{P}=\mathrm{V} \times \mathrm{W}$ (standard product)
- Then vertex x of P can be written as

$$
x=(v, w)
$$

- Step in P projects to step in V or in W. Progress in P goes hand-in-hand with either progress in V or in W.
- Thus $f(P)<=f(V)+f(W)$, where f is the number of vertices visited.

Analysis

- Proof also works for mild perturbations of deformed polytopes, which can change the combinatorial structure considerably (thus algorithm is not specifically designed for these counterexample classes).
- Algorithm makes heavy use of geometric shortcuts through the interior of the polytope.

Next steps

- Polynomial upper bound? (not strongly polynomial, so one could use a geometric scaling type argument showing progress towards optimum).
- Counterexample?
- Upper bound for combinatorial cubes?
- Upper bound for random polytopes? (to get away from the combinatorial structure of known counterexamples)

Thank you!

