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You are given random odd n-bit number (n big)

You either GIVE UP, or guess PRIME/NOT PRIME

Payoff: GIVE UP $10

Correct answer $1000

Wrong answer -$10000n

A Computational Game

GT predicts

What do you do? Depends on cost of comp!



Add Computation into Game Theory

Idea goes back to Herbert Simon ’55  “bounded rationality”

Two lines of study: 

• restricted strategies of player [Neyman’85, MW’86, ..,PY’94, UV’99, DHR’00]

• charging for size of strategy [Rubinstein’87, …,BKK’06] 

Our goal: provide a general model, 
investigate its properties



Players 1,…,m

Games

Utility ui(a1,…,am)

1 m

Available Actions Rock Paper Scissors

…

“If others are playing their strategies, I better stick to mine!”

Nash Eq (s1, ..., sm) s.t  i s’i Ui(si,s-i)  Ui(s’i,s-i)

Ui(si,s-i) = Exp[ui(a)]Expected Utility

Strategy s distribution over actions

Always exists! [N51]



Bayesian Games


1 m

…

t1 tm

s1(t1)

a1 am

sm(tm)

Types 
(private information)

Actions

Utility u1(t,a) um(t,a)

Strategy



t = odd n-bit number (n big)

Actions: GIVE UP, PRIME, NOT PRIME

Payoff: GIVE UP $10

Correct answer $1000

Wrong answer -$10000n

PRIME/NOT PRIME Game

Only NE



Bayesian Machine Games

Utility depends on: 

• types

• actions

• complexities of machines

Complexity function complex: M x {0,1}*  N

• complex(M,v) = complexity of M on view v = t ; r

• (e.g., time, space, size, communication…)

Strategy = randomized TM



Bayesian Machine Game ([m],,C,u): 



1 m

…

t1 t,m

M1(t1; r1)

a1 am

Mm(tm; rm)

Types

Actions

Utility u1(t,a,c) um(t,a,c)

Strategy

c1= complex(M1,(t1;r1)) cm= complex(Mm,(tm;rm))



Nash Eq in Machine Games

(M1, ..., Mm) s.t  i M’i Ui(Mi,M-i)  Ui(M’i,M-i)

As before:

But do they ALWAYS exist?

NO!



Roshambo with Costly Comp

Rock Paper Scissors

Rock
(0,0) (1,2) (2,1)

Paper (2,1) (0,0) (1,2)

Scissors (1,2) (2,1) (0,0)

Utility as usual but subtract # of coin tosses

Assume exist NE such that is randomizing

 exist det. strategy that does better

same original payoff, better complexity

Only possible NE is det.

But there are no deterministic NE!



Strange? Natural?

The World Champion
Why? Coin tossing is hard?



Nash Eq in Machine Games

Thm: Every finite computable machine game (i.e., utilities    

and probabilities are computable) where “randomization is 
free” has a NE.

Main Lemma [Computational Analog of Nash Thm]:
Bayesian games where ui and  are computable, have a NE   
that is implementable by randomized Turing Machines  
terminating with probability 1.



Explaining Observed Behavior

There exist many “paradoxical” games where 
traditional GT solutions concepts provide the 
“wrong” answer:

• repeated prisoner’s dilemma [LR’51]

• first-impression’s matter bias [R’99]

• belief polarization [LRL’79]

• use of “bad” randomness in sports competition [WW’01]

• …

One remedy: behavioral economics [KT’81]

Use psychology or models of brain to explain “irrational” behavior

SIMPLE assumptions about cost of 
computation suffice! (at a qualitative level)



m parties, each with private input xi

Goal: secure compute function F

(M) securely computes F if it provides the same 
privacy and correctness guarantees as if a trusted 
party had computed F

– Formalized using ZK simulation [GMR]

Secure Computation [Y,GMW]

Election:

F(x1, ..., xm)=tally

Does this mean players want to run (M)?



WHENEVER:
players WANT to compute F using their inputs

THEN:

players WANT to run (M) on their inputs

Our Goal: capture intuition that

(M) securely implements F if



In every situation where:
players WANT to compute F using their inputs

It holds that:

players WANT to run (M) on their inputs

Our Goal: capture intuition that

(M) securely implements F if

situation =   game 

WANT = “is a NE” 



It holds that:

running (M) on true inputs is a NE in G.

(M) universally implements F if:

In every machine game G where:

providing true input to a trusted party computing F and 

outputting what the trusted party replies, is a NE in G.

Notes:

• similar to [Forges’87, ILM’06] but with costly comp

• guarantees that (M) does not “leak more” information than F



The Theorem

Tight connection between cryptographic 
notion of secure computation and 
universal implementation.

The notions are “essentially” equivalent.

Nash equilibrium and “ZK simulation” 

are intimately connected



Framework for GT with Costly Computation
– Give simple computational explanations observed behavior in 

“paradoxical” games. 
• Can we use behavioral experiments to determine “cost of 

computation”?

– Nash Equilibrium v.s. Sequential Equilibrium

– We have assumed that players “understand the game” (i.e., 
they know how well a machine does, and what its complexity is). 

• Can also model players that have “beliefs” about how well a machine 
does.

• But computing these beliefs might itself be costly!

GT definition of security
– “Equivalent” to secure computation in the most general setting,
– But helpful in circumventing lower-bound by considering restricted 

classes of games (e.g., players strictly prefer to computer less, or 
don’t want to be caught cheating)



– Alice and Bob want to find out it they love each 
other: compute AND of their inputs.

– Desiderata:
• Want to know the output.

• Don’t want reveal input.

• If I get the output, (slightly) prefer to trick you.

– [Shoham-Tennenholtz’03] Impossible even 
with a trusted party computing AND!

• If I have input 0, always better to say 1 to trusted 
party (since I already know the output).

LOVE



– Use a crypto protocol, where players need to 
solve a “computational riddle” [DN] if they use 
input 1.

• But still “indistinguishable” if you use input 0 or 1.

– Rational to provide true input if:

• Cost of solving riddle > gain to trying to trick other 
player.

• Value of Privacy > cost of solving riddle

LOVE


