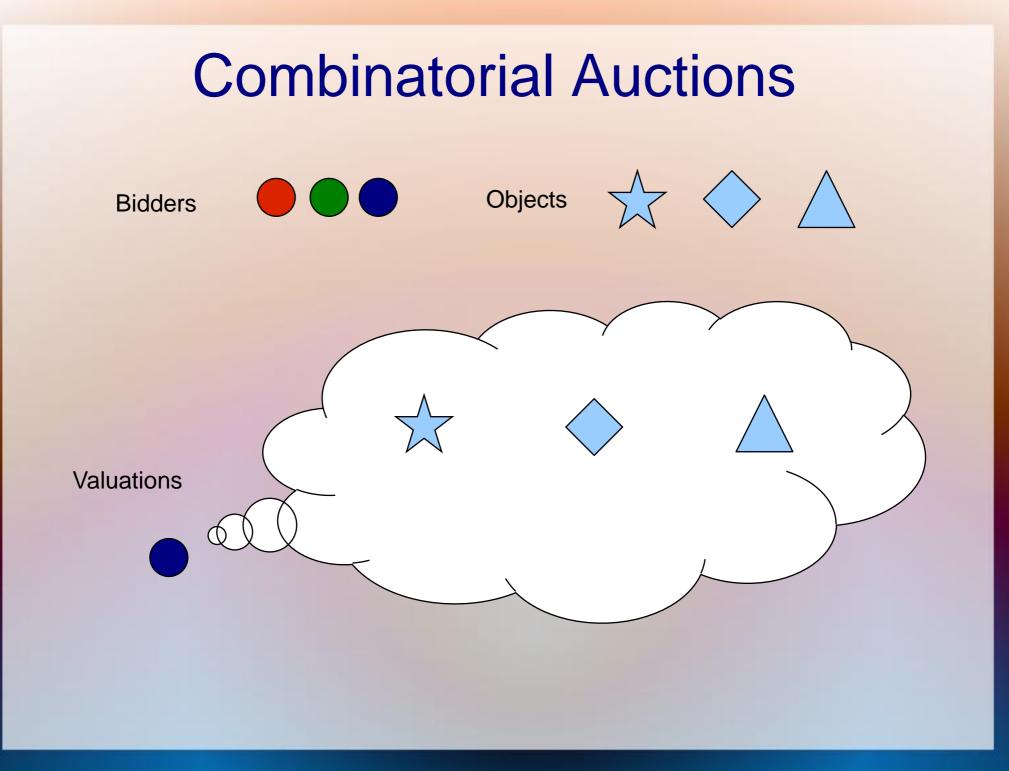
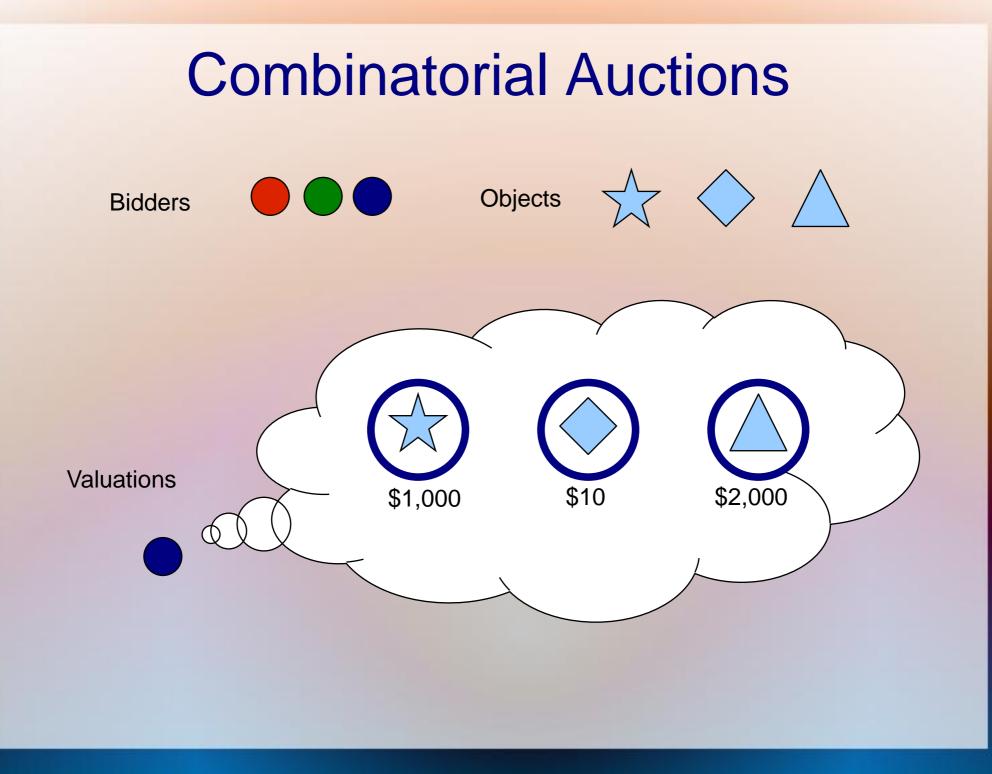
Beyond Equilibria: Mechanisms for Repeated Combinatorial Auctions

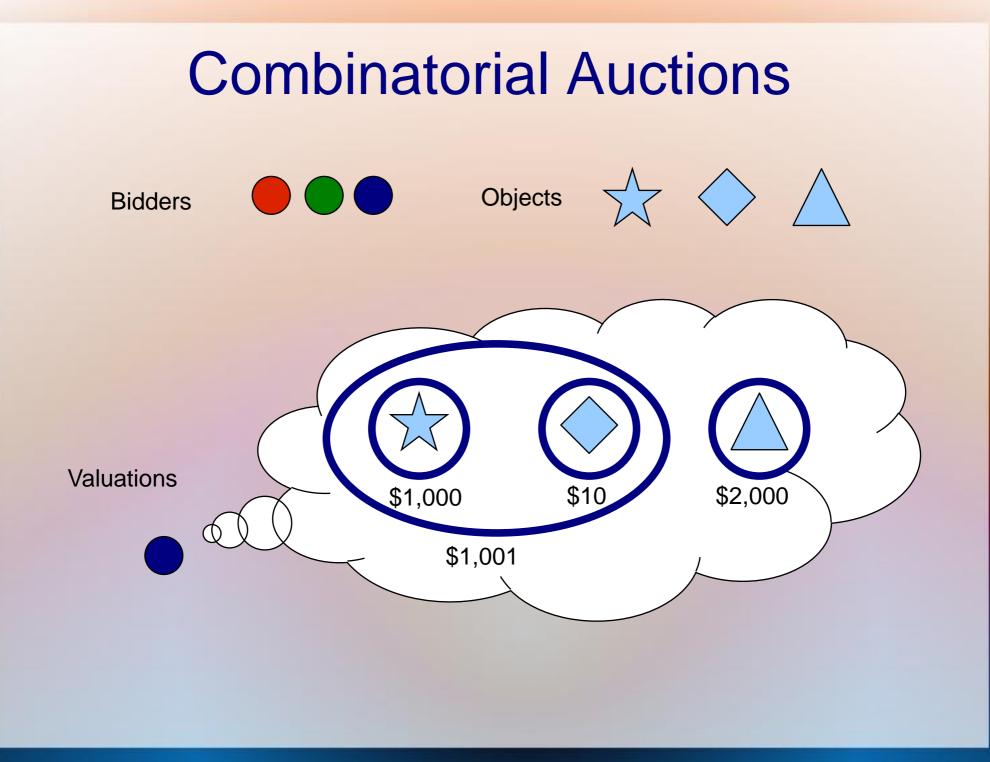
> Brendan Lucier University of Toronto

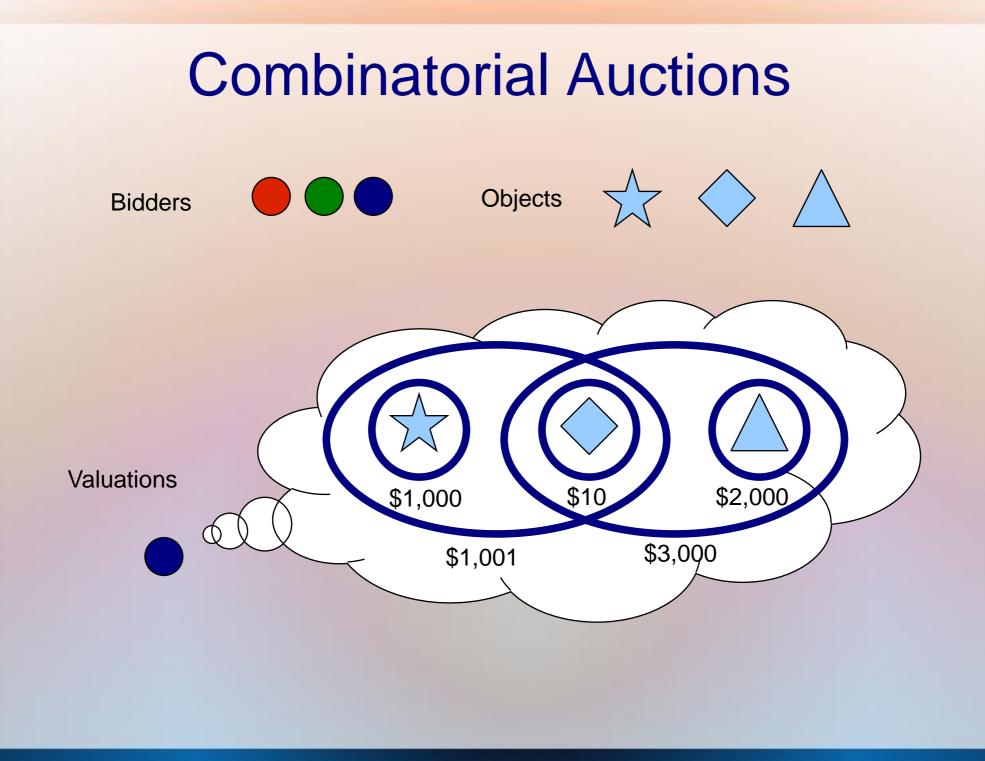
> > ICS 2010

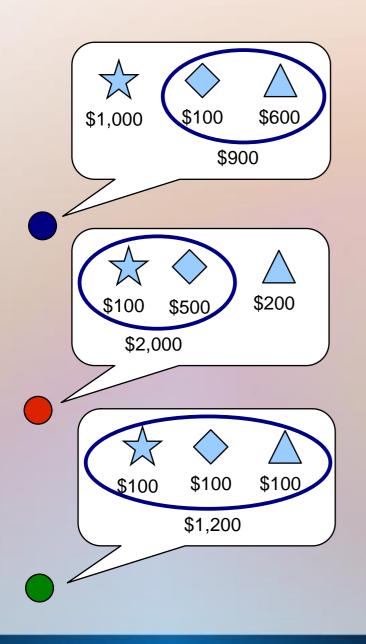
Bidders

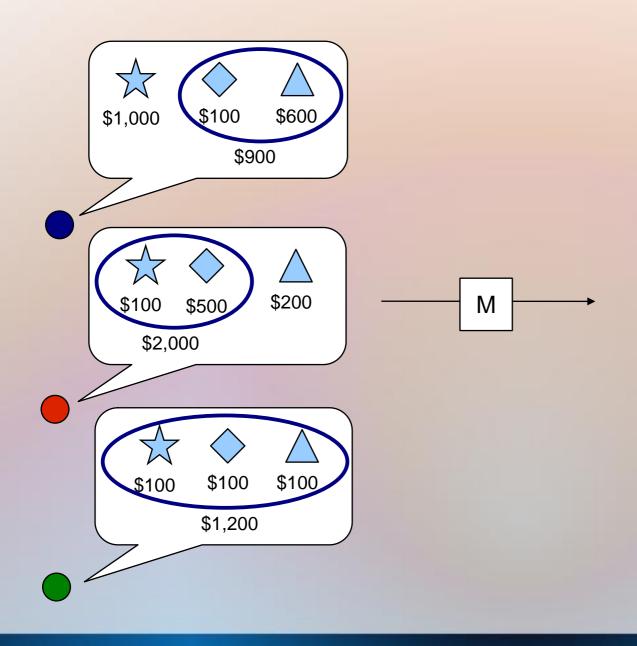


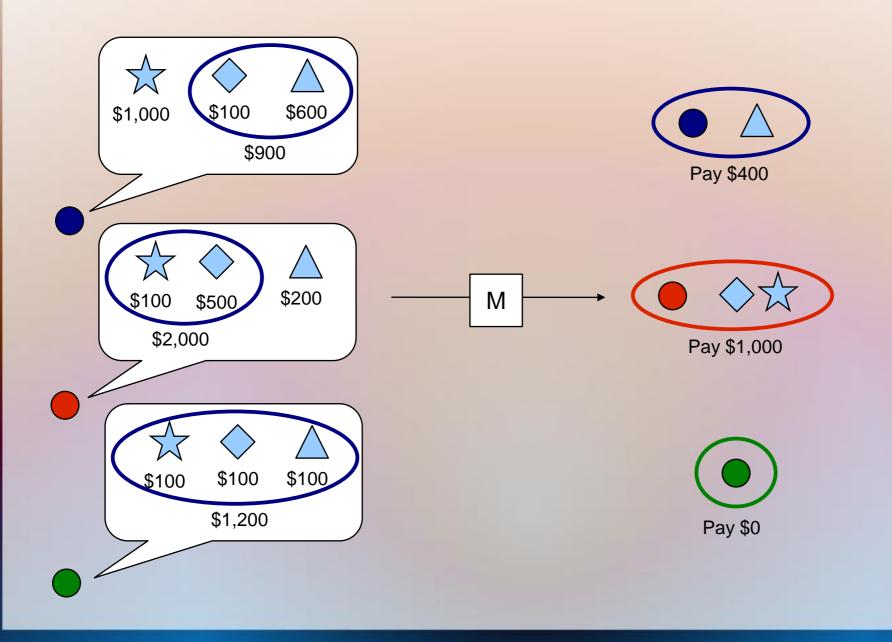


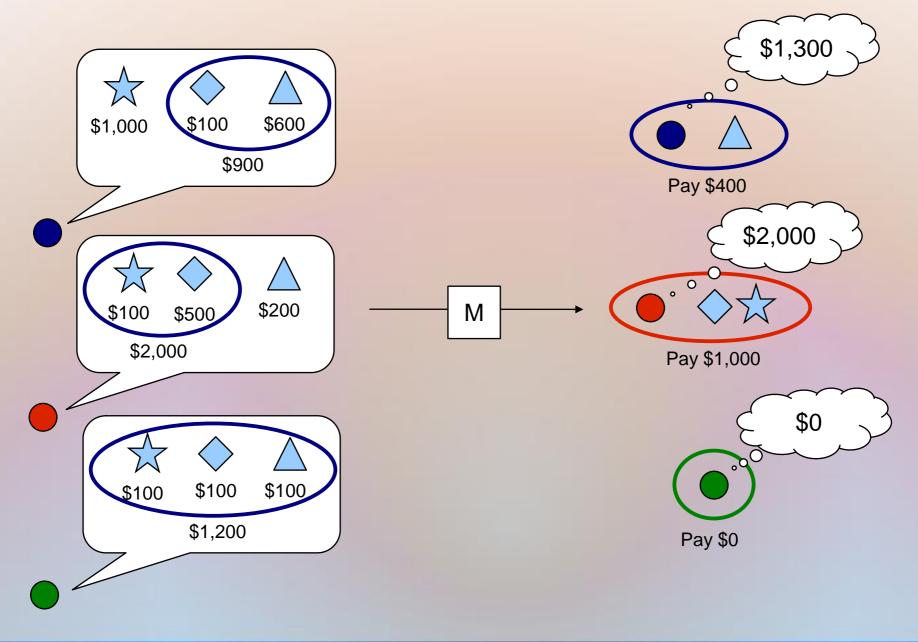






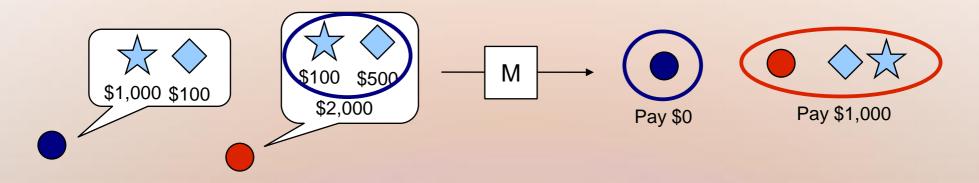


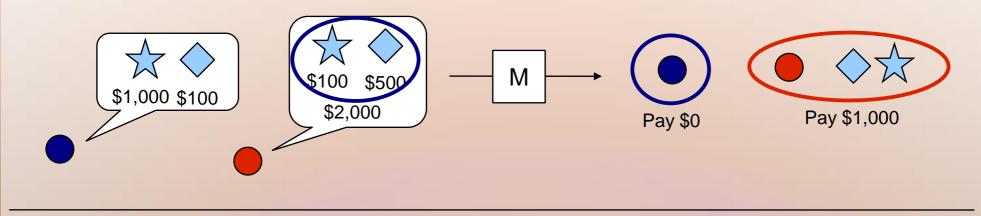


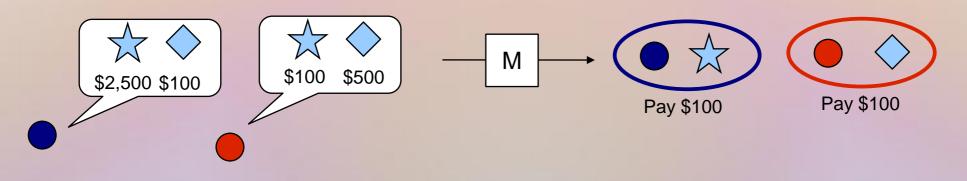


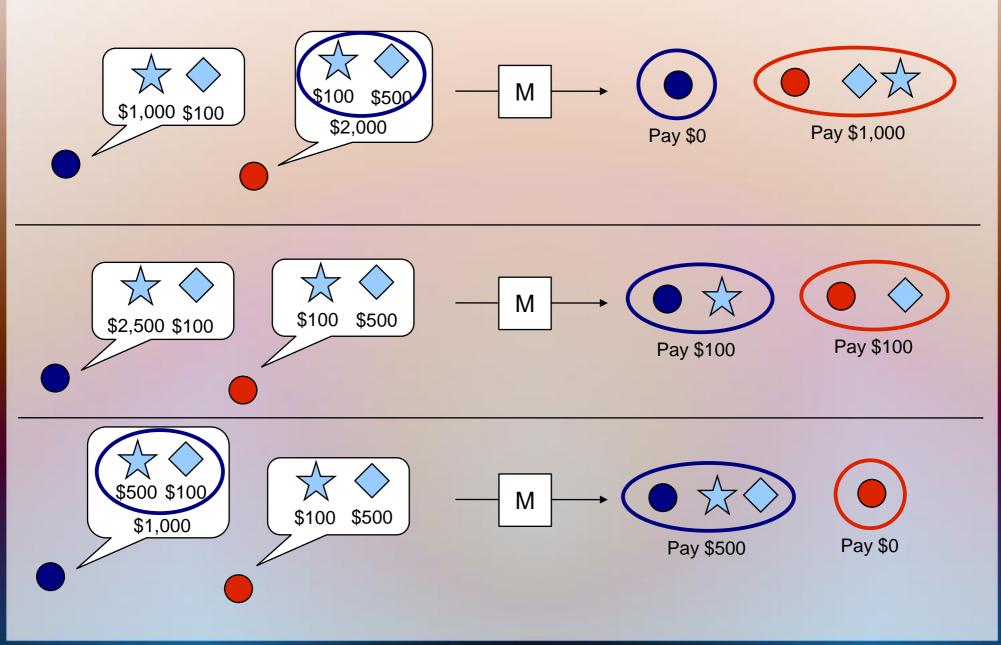
- Ignoring game-theoretic concerns, a simple greedy algorithm gives an O 個本市 approximation to optimal social welfare [Lehmann-O'Callaghan-Shoham 99].
- Can we design a mechanism that obtains an O 個 市 approximation when input is provided by rational agents?

- Ignoring game-theoretic concerns, a simple greedy algorithm gives an O 個本意 approximation to optimal social welfare [Lehmann-O'Callaghan-Shoham 99].
- Can we design a mechanism that obtains an O T 都定 approximation when input is provided by rational agents?
- Best-known <u>truth</u>ful approximation algorithm obtains approximation ratio $O[\overline{m}/\Pi] pgm$ [Holzman Kfir-Dahav Monderer Tennenholz 04].









- *History* of agent declarations $D = (\vec{a}^1, ..., d^T)$
- A mechanism M maps each d^t to an allocation $[{\mathbb{F}}_1^t, \dots, {\mathbb{F}}_n^t]$ and payments $[{\mathbb{F}}_1^t, \dots, {\mathbb{F}}_n^t]$.
- t_i **True value for object set S**
- Designer's objective: maximize average social welfare:

$$SW_{avg}$$
 阁商 $\frac{1}{T}\sum_{t}\sum_{i}t_{i}$ 閣情

Agent's objective: maximize average utility:

- *History* of agent declarations $D = (\vec{a}^1, ..., d^T)$
- A mechanism M maps each d^t to an allocation $[{f}_1^t, ..., S_n^t]$ and payments $[{f}_1^t, ..., p_n^t]$
- t_i **F** agent i's true value for object set S
- Designer's objective: maximize average social welfare:

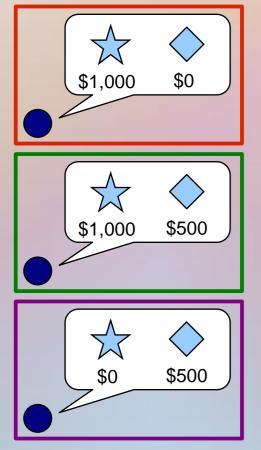
$$SW_{avg}$$
 阁商 $\frac{1}{T}\sum_{t}\sum_{i}t_{i}$ 閣情

Agent's objective: maximize average utility:

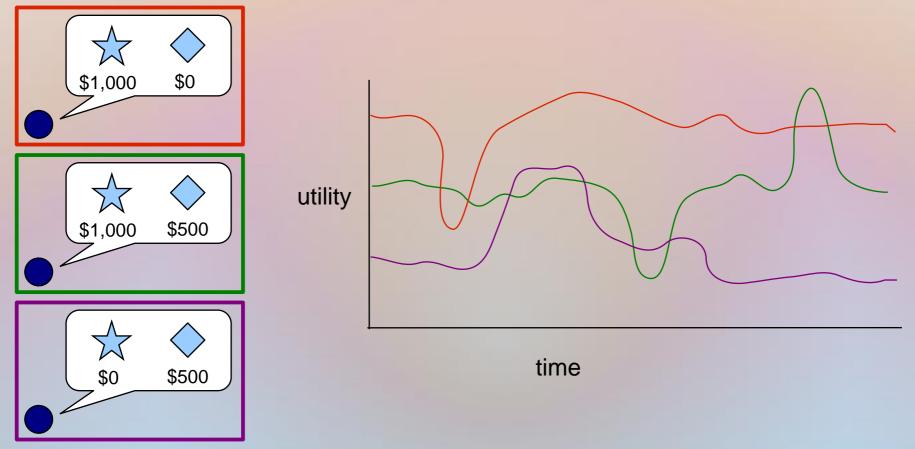
What bidding strategies do we expect from rational agents?

- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as $T
 m R^{\infty}$.

- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T 咯~.



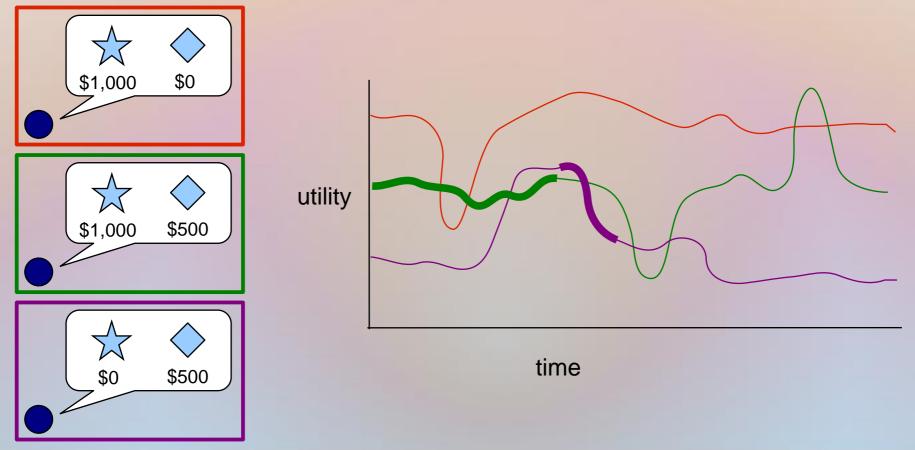
- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T 咯~.



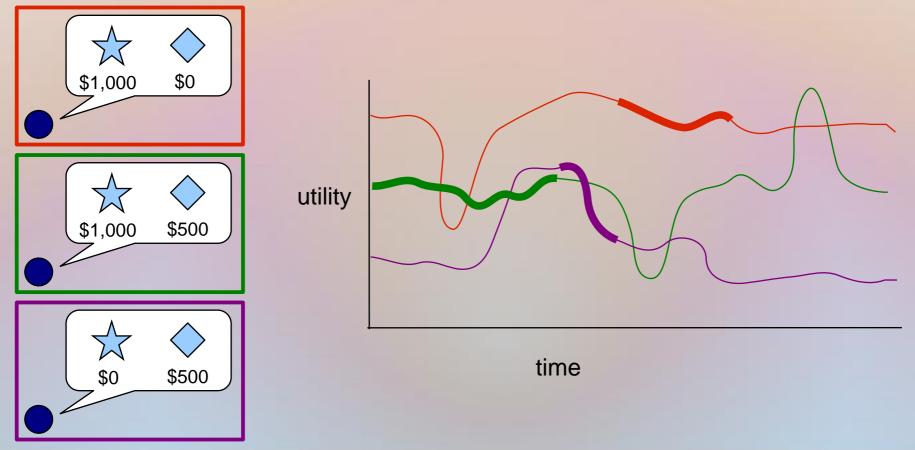
- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T 咯~.



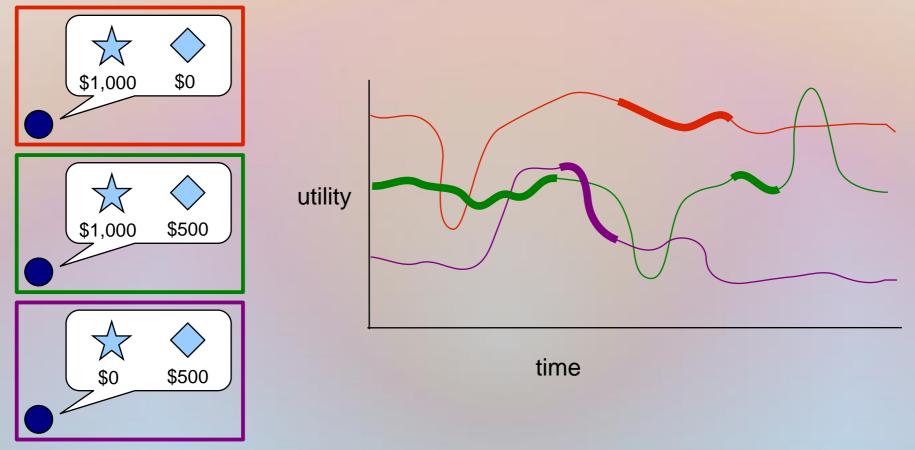
- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T 咯~.



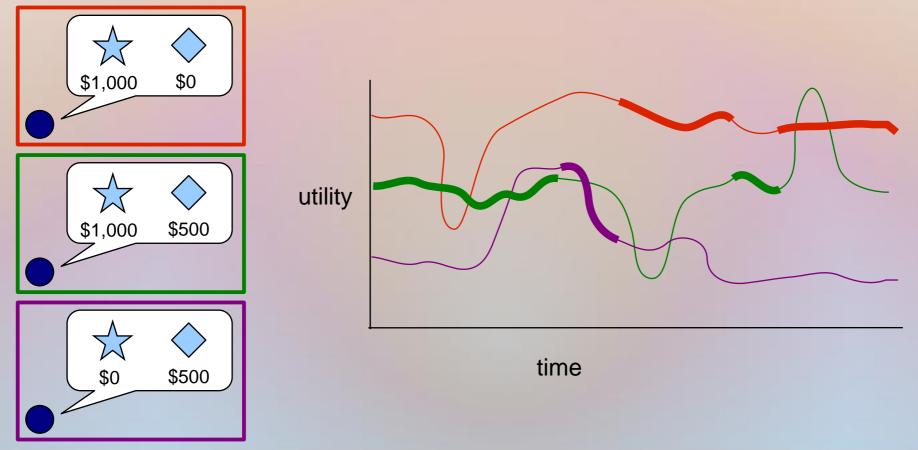
- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T 咯~.



- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T 咯~.



- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as $T
 m R^{\infty}$.



- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T $m R^{\infty}$.
- Simple* algorithms can be used to minimize external regret [Kalai-Vempala 05].

- Given history $D = [a^1, ..., a^T]$, the external regret for agent i is the difference between u_i and the best possible average utility obtainable (in hindsight) using the same declaration each round.
- Agent i minimizes external regret if his regret tends to 0 as T $m R^{\infty}$.
- Simple* algorithms can be used to minimize external regret [Kalai-Vempala 05].
- The price of total anarchy of mechanism M is

$$max_{D} \frac{SW_{opt}}{SW_{avg}}$$

with the max taken over histories in which agents minimize regret [Blum-Hajiaghayi-Ligett-Roth 08].

 Can we implement a mechanism for the CA problem with price of total anarchy O 恒柄?

Let A denote the greedy

O TTAP proximation algorithm.

Let A denote the greedy O 恒元 proximation algorithm. Mechanism M(A): Input: declaration profile d

> Return allocation A(d) Payments: critical prices

Let A denote the greedy O 恒福proximation algorithm. Mechanism M(A): Input: declaration profile d

Return allocation A(d)

Payments: critical prices

- Issue: very rich strategy space.
 - Regret minimization does not imply a high social welfare.

Let A denote the greedy O l 使 proximation algorithm. Mechanism M(A): Input: declaration profile d

Return allocation A(d)

Payments: critical prices

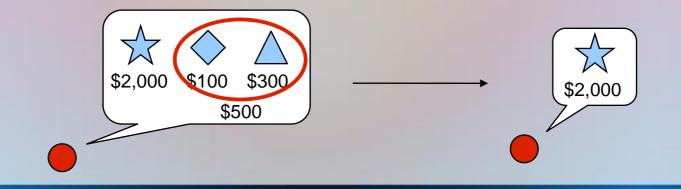
- Issue: very rich strategy space.
 - Regret minimization does not imply a high social welfare.
 - Minimizing regret is not a feasible task for the agents.

Let A denote the greedy O 恒元proximation algorithm. Mechanism M(A): Input: declaration profile d SIMPLIFY(d) Return allocation A(d) Payments: critical prices

- Issue: very rich strategy space.
 - Regret minimization does not imply a high social welfare.
 - Minimizing regret is not a feasible task for the agents.

Let A denote the greedy O 恒元proximation algorithm. Mechanism M(A): Input: declaration profile d SIMPLIFY(d) Return allocation A(d) Payments: critical prices

- Issue: very rich strategy space.
 - Regret minimization does not imply a high social welfare.
 - Minimizing regret is not a feasible task for the agents.



SIMPLIFY:

- Input: declaration profile d
 - SIMPLIFY(d)
 - Return allocation A(d)
 - Payments: critical prices
- Without loss of generality, each agent bids only on a single desired set each round.

- Input: declaration profile d
 - SIMPLIFY(d)
 - Return allocation A(d)
 - Payments: critical prices
- Without loss of generality, each agent bids only on a single desired set each round.
- If agent i bids on set S, then his utility is maximized by declaring his true value, t_i [16], for S.

- Input: declaration profile d
 - SIMPLIFY(d)

Return allocation A(d)

Payments: critical prices

- Without loss of generality, each agent bids only on a single *desired* set each round.
- If agent i bids on set S, then his utility is maximized by declaring his true value, t_i for S.
- We conclude that there are only as many *undominated strategies* as there are sets desired by the agent. Standard regret-minimizing algorithms are feasible.

- Input: declaration profile d
 - SIMPLIFY(d)

Return allocation A(d)

Payments: critical prices

- Without loss of generality, each agent bids only on a single *desired* set each round.
- If agent i bids on set S, then his utility is maximized by declaring his true value, t_i [$rac{1}{6}$], for S.
- We conclude that there are only as many *undominated strategies* as there are sets desired by the agent. Standard regret-minimizing algorithms are feasible.

Theorem: Mechanism M(A) has price of total anarchy O If \overline{M}

 Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- monotone: if agent i makes a single-minded declaration for set S and wins it, then he would also win if he increased his declared value for S.

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- monotone: if agent i makes a single-minded declaration for set S and wins it, then he would also win if he increased his declared value for S.
- **loser-independent**: The outcome for agent i depends only on d_i and on the outcome that would have occurred if agent i did not participate.

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- monotone: if agent i makes a single-minded declaration for set S and wins it, then he would also win if he increased his declared value for S.
- **loser-independent**: The outcome for agent i depends only on d_i and on the outcome that would have occurred if agent i did not participate.
- Includes many greedy-like algorithms.

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- Applies to many greedy algorithms for variants of the CA problem.

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- Applies to many greedy algorithms for variants of the CA problem.

Problem	Feasibility condition	Approximation Ratio
CA Problem	Disjoint sets	

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- Applies to many greedy algorithms for variants of the CA problem.

Problem	Feasibility condition	Approximation Ratio
CA Problem	Disjoint sets	の慣れ
s-CA Problem	Disjoint, size at most s	s 义1

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- Applies to many greedy algorithms for variants of the CA problem.

Problem	Feasibility condition	Approximation Ratio
CA Problem	Disjoint sets	の個本語
s-CA Problem	Disjoint, size at most s	<i>s</i> 义1
Convex Bundles	Disjoint convex areas in plane, max aspect ratio R.	O 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1 ● 1

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- Applies to many greedy algorithms for variants of the CA problem.

Problem	Feasibility condition	Approximation Ratio
CA Problem	Disjoint sets	の慣れ
s-CA Problem	Disjoint, size at most s	s 义1
Convex Bundles	Disjoint convex areas in plane, max aspect ratio R.	O 露 ^{4/3} 〒 [BB01]
Unsplittable Flow	Possible to route flow between graph vertices, max capacity B	O $\mathbf{B} m^{1/\mathbf{B}-1}$ [BKV05]

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- Applies to many greedy algorithms for variants of the CA problem.

Price of Total Anarchy

Problem	Feasibility condition	Approximation Ratio
CA Problem	Disjoint sets	の個本語
s-CA Problem	Disjoint, size at most s	<i>s</i> 义2
Convex Bundles	Disjoint convex areas in plane, max aspect ratio R.	O 含 ^{4/3} 〒 [BB01]
Unsplittable Flow	Possible to route flow between graph vertices, max capacity B	O b $m^{1/b-1}$ b b b b b b b b b b

Byzantine Players

- Our argument is resilient to the presence of byzantine agents who do not necessarily minimize regret.
- We think of byzantine players as not being savvy enough to understand how to bid "well" in the auction.
- If agents do not over-bid, and some subset of the agents minimize regret, then mechanism M(A) obtains a (c+1) approximation to the optimal social welfare obtainable by the regret-minimizing agents.

Best Response

- On each round, an agent is chosen uniformly at random.
- That agent is free to change his declared valuation to the optimal, given the current declarations of the other bidders.

Best Response

- On each round, an agent is chosen uniformly at random.
- That agent is free to change his declared valuation to the optimal, given the current declarations of the other bidders.
- The price of sinking of mechanism M is

 $max \frac{SW_{opt}}{E_D[SW_{avg}]$ 律康

where the maximum is taken over agent types, and the expectation is over histories corresponding to best-response dynamics (randomized by the agent selection process) [Goemans-Mirrokni-Vetta 05].

Best Response

- On each round, an agent is chosen uniformly at random.
- That agent is free to change his declared valuation to the optimal, given the current declarations of the other bidders.
- The price of sinking of mechanism M is

$$max \frac{SW_{opt}}{E_D[SW_{avg}]$$
 律康

where the maximum is taken over agent types, and the expectation is over histories corresponding to best-response dynamics (randomized by the agent selection process) [Goemans-Mirrokni-Vetta 05].

 Theorem: There is a mechanism for the general CA problem with 印間
 前
 f sinking.

Conclusions

- Applied repeated-game solution concepts to the problem of designing mechanisms for repeated combinatorial auctions.
- There is a general reduction from a broad class of approximation algorithms to approximation mechanisms, under the assumption that agents minimize external regret.
- For the general CA problem, it is possible to obtain an O T 市市 approximation when agents apply best-response dynamics.

Future Work

- Does the general reduction used for regret-minimizing bidders also yield an O 宿宿 approximation for best-response bidders?
- Generalize to broader classes of algorithms.
- Generalize to broader classes of problems.
 - Problems that apply restrictions on the agents' valuation functions, e.g. submodular CAs.

Thank You

Regret Minimization

• Given history $D = [\overline{\mathbf{a}}^1, \dots, d^T]$, the external regret for agent i is

$$max_{d^*} \left\{ \frac{1}{T} \sum u_i \left| \overrightarrow{a}^* \right|, d_{-i}^t \right\} u_i \left| \overrightarrow{a} \right|$$

- Agent i minimizes external regret if his regret tends to 0 as T $m R^{\infty}$.
- Simple* algorithms (e.g. follow-the-leader) can be used to minimize external regret [Kalai-Vempala 05].
- The price of total anarchy of mechanism M is

$$max_{D} \frac{SW_{opt}}{SW_{avg}}$$

with the max taken over histories in which agents minimize regret [Blum-Hajiaghayi-Ligett-Roth 08].

 Can we implement a mechanism for the CA problem with price of total anarchy O 恒柄?

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- monotone: if agent i makes a single-minded declaration for set S and wins it, then he would also win if he increased his declared value for S.
- **loser-independent**: if a change in agent i's declaration leads to a change in the algorithm's allocation from $[a_1, ..., S_n]$ to $[a_1', ..., S_n']$, then he must have changed his declared value for either S_i or S_i' .

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- monotone: if agent i makes a single-minded declaration for set S and wins it, then he would also win if he increased his declared value for S.
- **loser-independent**: if a change in agent i's declaration leads to a change in the algorithm's allocation from $[a_1, ..., S_n]$ to $[a_1', ..., S_n']$, then he must have changed his declared value for either S_i or S_i' .
- A generalization of max-in-range algorithms.

- Theorem: If A is a monotone, loser-independent c-approximation algorithm, then M(A) has price of total anarchy (c+1).
- **monotone**: if agent i makes a single-minded declaration for set S and wins it, then he would also win if he increased his declared value for S.
- **loser-independent**: if a change in agent i's declaration leads to a change in the algorithm's allocation from $\mathbb{B}_1, \dots, S_n \in \mathbb{B}_1', \dots, S_n' \in \mathbb{B}_1$, then he must have changed his declared value for either S_i or S_i' .
- A generalization of max-in-range algorithms.
- Includes many greedy-like algorithms.