
Beyond Equilibria:
Mechanisms for Repeated

Combinatorial Auctions

Brendan Lucier
University of Toronto

ICS 2010



Combinatorial Auctions

Bidders Objects



Combinatorial Auctions

Bidders Objects

Valuations



Combinatorial Auctions

Bidders Objects

Valuations
$10$1,000 $2,000



Combinatorial Auctions

Bidders Objects

Valuations
$10$1,000 $2,000

$1,001



Combinatorial Auctions

Bidders Objects

Valuations
$10$1,000 $2,000

$1,001 $3,000



Combinatorial Auctions

$1,000 $100 $600

$900

$100 $500 $200

$2,000

$100 $100 $100

$1,200



Combinatorial Auctions

$1,000 $100 $600

$900

$100 $500 $200

$2,000

$100 $100 $100

$1,200

M



Combinatorial Auctions

$1,000 $100

Pay $400

Pay $1,000

$600

$900

$100 $500 $200

$2,000

$100 $100 $100

$1,200 Pay $0

M



Combinatorial Auctions

$1,000 $100

Pay $400

Pay $1,000

$600

$900

$100 $500 $200

$2,000

$100 $100 $100

$1,200 Pay $0

$1,300

$2,000

$0

M



Combinatorial Auctions

 Ignoring game-theoretic concerns, a simple greedy algorithm gives 
an            approximation to optimal social welfare [Lehmann-
O'Callaghan-Shoham 99].

 Can we design a mechanism that obtains an             approximation 
when input is provided by rational agents?
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Combinatorial Auctions

 Ignoring game-theoretic concerns, a simple greedy algorithm gives 
an            approximation to optimal social welfare [Lehmann-
O'Callaghan-Shoham 99].

 Can we design a mechanism that obtains an             approximation 
when input is provided by rational agents?

 Best-known truthful approximation algorithm obtains approximation 
ratio                       [Holzman Kfir-Dahav Monderer Tennenholz 04].
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Repeated Combinatorial Auctions

 History of agent declarations 

 A mechanism M maps each     to an allocation                    and          
payments                   .

 - agent i's true value for object set S

 Designer's objective: maximize average social welfare:

 Agent's objective: maximize average utility:
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Repeated Combinatorial Auctions

 History of agent declarations 

 A mechanism M maps each     to an allocation                    and          
payments

 - agent i's true value for object set S

 Designer's objective: maximize average social welfare:

 Agent's objective: maximize average utility:

 What bidding strategies do we expect from rational agents?
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Regret Minimization
 Given history                         , the external regret for agent i is the 

difference between          and the best possible average utility 
obtainable (in hindsight) using the same declaration each round.
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T ∞
 Agent i minimizes external regret if his regret tends to 0 as .

 Simple* algorithms can be used to minimize external regret [Kalai-
Vempala 05].
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Regret Minimization

T ∞
 Agent i minimizes external regret if his regret tends to 0 as .

 Simple* algorithms can be used to minimize external regret [Kalai-
Vempala 05].

 The price of total anarchy of mechanism M is

with the max taken over histories in which agents minimize regret 
[Blum-Hajiaghayi-Ligett-Roth 08].

 Can we implement a mechanism for the CA problem with price of 
total anarchy             ?
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Input: declaration profile d

SIMPLIFY(d)
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Let A denote the greedy approximation algorithm.

Mechanism M(A):

Om

 Issue: very rich strategy space.

 Regret minimization does not imply a high social welfare.

 Minimizing regret is not a feasible task for the agents.
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set each round.

 If agent i bids on set , then his utility is maximized by declaring his
true value, , for .

 We conclude that there are only as many undominated strategies as
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 Without loss of generality, each agent bids only on a single desired
set each round.

 If agent i bids on set , then his utility is maximized by declaring his
true value, , for .

 We conclude that there are only as many undominated strategies as
there are sets desired by the agent. Standard regret-minimizing
algorithms are feasible.
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 Theorem: If A is a monotone, loser-independent c-approximation
algorithm, then M(A) has price of total anarchy (c+1).

 Applies to many greedy algorithms for variants of the CA problem.
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Problem Feasibility condition Approximation Ratio

CA Problem Disjoint sets

s-CA Problem Disjoint, size at most s

Convex Bundles
Disjoint convex areas in plane, 
max aspect ratio R.

[BB01]

Unsplittable Flow
Possible to route flow between 
graph vertices, max capacity B

[BKV05]

 Theorem: If A is a monotone, loser-independent c-approximation
algorithm, then M(A) has price of total anarchy (c+1).

 Applies to many greedy algorithms for variants of the CA problem.
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Byzantine Players
 Our argument is resilient to the presence of byzantine agents 

who do not necessarily minimize regret.

 We think of byzantine players as not being savvy enough to 
understand how to bid “well” in the auction.

 If agents do not over-bid, and some subset of the agents 
minimize regret, then mechanism M(A) obtains a (c+1) 
approximation to the optimal social welfare obtainable by the 
regret-minimizing agents.
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Best Response
 On each round, an agent is chosen uniformly at random.

 That agent is free to change his declared valuation to the optimal, given 
the current declarations of the other bidders.

 The price of sinking of mechanism M is 

where the maximum is taken over agent types, and the expectation is 
over histories corresponding to best-response dynamics (randomized 
by the agent selection process) [Goemans-Mirrokni-Vetta 05].

 Theorem: There is a mechanism for the general CA problem with                       
price of sinking.

max
SW opt

E D [SW avgD]
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Conclusions

 Applied repeated-game solution concepts to the problem of 
designing mechanisms for repeated combinatorial auctions.

 There is a general reduction from a broad class of approximation 
algorithms to approximation mechanisms, under the assumption 
that agents minimize external regret.

 For the general CA problem, it is possible to obtain an 
approximation when agents apply best-response dynamics.
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Future Work

 Does the general reduction used for regret-minimizing bidders 
also yield an         approximation for best-response bidders?

 Generalize to broader classes of algorithms.

 Generalize to broader classes of problems.  

 Problems that apply restrictions on the agents' valuation 
functions, e.g. submodular CAs.
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Regret Minimization
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 Agent i minimizes external regret if his regret tends to 0 as .

 Simple* algorithms (e.g. follow-the-leader) can be used to minimize
external regret [Kalai-Vempala 05].

 The price of total anarchy of mechanism M is

with the max taken over histories in which agents minimize regret 
[Blum-Hajiaghayi-Ligett-Roth 08].

 Can we implement a mechanism for the CA problem with price of 
total anarchy             ?
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