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Two-player zero-sum (binary) games

ROW (“good guy”) plays some row i ∈ [m].

COL (adversary) plays some column j ∈ [n].

ROW wins if Mi ,j = 1; looses if Mi ,j = 0.

When mixed strategies are allowed, it doesn’t
matter who plays first:

Theorem (von Neumann, 1928)

max
p∈∆(m)

min
j∈[n]

∑
i∈[m]

p(i) ·Mi ,j = min
q∈∆(n)

max
i∈[m]

∑
j∈[n]

q(j) ·Mi ,j .

This is defined to be the value of the game, denoted v(M) = the
probability that ROW wins.
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Information leakage

Implicit assumption:
COL may know ROW’s mixed strategy — some distribution
p ∈ ∆(m) — but the coin tosses of ROW are private.

In particular, COL doesn’t know the instantiation of p = the pure
action i ∈ [m] that ROW is going to play.

In some scenarios it is impractical to assume that our opponent knows
nothing about our (pure) choices (espionage).

Information leakage = COL decides on her action after learning b
bits of information about the pure action of ROW.

Question 1:
what should ROW do now that she knows that COL may learn b bits
of information about her pure action?

Question 2:
what happens to the value of the game (probability that ROW wins)?
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Strong vs. weak leakage

Information leakage is formalized in terms of b predicates, merged
into a function

f : [m] → {0, 1}b .

Let i ∈ [m] be the action that ROW is going to play.

COL sees f (i) before she decides on her action j ∈ [n].

Strong model of leakage: COL decides on f : [m] → {0, 1}b when she
already knows the mixed strategy p of ROW.

Weak model of leakage: COL decides on f : [m] → {0, 1}b without
knowing the mixed strategy p of ROW.
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Strong vs. weak leakage — cont.

Strong leakage:

(1) ROW decides on p ∈ ∆(m)
(knowing M and b).

(2) COL decides on
f : [m] → {0, 1}b (knowing M,
b, and p).

Weak leakage:

(1) COL decides on
f : [m] → {0, 1}b (knowing M
and b).

(2) ROW decides on p ∈ ∆(M)
(knowing M, b, and f ).

(3) ROW chooses i ∈p [m].

(4) COL decides on j ∈ [n]
(knowing M, b, p, and f (i)).

(5) ROW wins iff Mi ,j = 1.

Convenient to formalize the (pure) decision of COL in step (4) as a
function g : {0, 1}b → [n].
ROW wins (step (5)) iff Mi ,g(f (i)) = 1.
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New game values

The value of the game M under b leaking bits in the strong model:

vs(M, b) = max
p∈∆(m)

min
f :[m]→{0,1}b

min
g :{0,1}b→[n]

∑
i∈[m]

p(i) ·Mi ,g(f (i)) .

p∗b = a mixed strategy of ROW that realizes vs(M, b).

The value of the game M under b leaking bits in the weak model:

vw(M, b) = min
f :[m]→{0,1}b

max
p∈∆(m)

min
g :{0,1}b→[n]

∑
i∈[m]

p(i) ·Mi ,g(f (i)) .

Clearly, vs(M, b) ≤ vw(M, b) ≤ v(M) for every game M and b ≥ 0.
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Strong leakage

Theorem

If v(M) = 1− ε, then the original maximin strategy of ROW guarantees
vs(M, b) ≥ 1− 2bε.

There are examples showing that this is essentially tight.

Corollary

If v(M) = 1− ε and b ≤ lg(1/ε)− 1, then vs(M, b) ≥ 1/2.

Yuval Emek (Microsoft) Adversarial Leakage in Games ICS 2009 7 / 15



Strong leakage

Theorem

If v(M) = 1− ε, then the original maximin strategy of ROW guarantees
vs(M, b) ≥ 1− 2bε.

There are examples showing that this is essentially tight.

Corollary

If v(M) = 1− ε and b ≤ lg(1/ε)− 1, then vs(M, b) ≥ 1/2.

Yuval Emek (Microsoft) Adversarial Leakage in Games ICS 2009 7 / 15



Strong leakage

Theorem

If v(M) = 1− ε, then the original maximin strategy of ROW guarantees
vs(M, b) ≥ 1− 2bε.

There are examples showing that this is essentially tight.

Corollary

If v(M) = 1− ε and b ≤ lg(1/ε)− 1, then vs(M, b) ≥ 1/2.

Yuval Emek (Microsoft) Adversarial Leakage in Games ICS 2009 7 / 15



Strong leakage

Theorem

If v(M) = 1− ε, then the original maximin strategy of ROW guarantees
vs(M, b) ≥ 1− 2bε.

There are examples showing that this is essentially tight.

Corollary

If v(M) = 1− ε and b ≤ lg(1/ε)− 1, then vs(M, b) ≥ 1/2.

Yuval Emek (Microsoft) Adversarial Leakage in Games ICS 2009 7 / 15



Strong leakage — cont.

Theorem

If v(M) = 1− ε, then vs(M, b) ≤ (1− ε)2
b
.

There are examples showing that this is essentially tight as well.
(Explicit construction soon.)

Corollary

If v(M) = 1− ε and b ≥ lg(1/ε) + 2, then vs(M, b) ≤ e−4 < 0.02.

Hence the sequence {vs(M, b)}b=1,2,... exhibits a sharp threshold:
it is ≥ 1/2 as long as b ≤ lg(1/ε)− 1;
it is < 0.02 once b ≥ lg(1/ε) + 2.
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Explicit construction

Lemma

There exists an infinite sequence of games M ∈ {0, 1}m×m,
v(M) = q(1± o(1)), so that if b ≤ lg lg(m)− O(1), then

vs(M, b) ≥ q2b
(1± o(1)).

Prove for q = 1/2;
can be easily generalized for any q = 1/p for a prime power p.

Let r be a sufficiently large integer.

Fix m = 2r − 1.

The m rows (and columns) of M are indexed by all non-zero
r -dimensional vectors over GF (2).

Mu,v = 1 iff the vectors u and v are orthogonal over GF (2).
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Explicit construction — cont.

Observation

Every row and column of M contain exactly 2r−1 − 1 1-entries.

Corollary

v(M) = 2r−1−1
2r−1 = 1

2(1− o(1)).

Take any column subset J, |J| = 2b ≤ r(1− Ω(1)).

We argue that there exist ≥ 2r−|J| − 1 rows u s.t. Mu,v = 1 for all
v ∈ J.

Indeed, requiring that Mu,v = 1 for every v ∈ J yields a homogeneous
system of |J| linear equations over GF (2) in r variables;
it has ≥ 2r−|J| − 1 non-zero solutions.

Playing the uniform distribution on [m] implies the desired

vs(M, b) ≥ 2r−|J|−1
m ≥

(
1
2

)2b

(1− o(1)).
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Weak leakage

Theorem

For every fixed 0 < q < 1 and 0 < δ < 1, and for all sufficiently large m,
there exists a game M ∈ {0, 1}m2×m so that:
(1) v(M) = q + o(1); and
(2) vw(M, b) ≥ q − δ for every b ≤ lg lg(m)− Oq,δ(1).

In particular, ROW may be able to retain almost the original value of the
game against any constant number of weakly leaking bits.

Theorem

If v(M) = q and b ≥ lg lg(m) + Oq(1), then vw(M, b) = 0.

Hence there are instances M for which the sequence {vw(M, b)}b=1,2,...

also exhibits a sharp threshold:
it stays close to v(M) as long as b ≤ lg lg(m)− O(1);
it drops to 0 once b ≥ lg lg(m) + O(1).
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Computational complexity

Theorem

Given a game M ∈ {0, 1}m×n and some b ≥ 0, both vs(M, b) and
vw(M, b) are NP-hard to approximate to within any factor.

Reducing set cover to the problem of deciding whether the (strong or
weak) value is strictly positive.

When b is fixed, computing vs(M, b) becomes tractable:

Theorem

Given a game M ∈ {0, 1}m×n, the optimal mixed strategy p∗b can be
efficiently computed.

conclusions
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Polynomial algorithm for constant b

Would like to solve the LP

maximize v s.t.∑
i∈[m]

pi ·Mi ,g(f (i)) ≥ v ∀f : [m] → {0, 1}b,∀g : {0, 1}b → [n]

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] .

However, there are 2bm different functions f — exponentially many
constraints.

The composition g ◦ f is a mapping h : [m] → [n] with |image(h)| ≤ 2b.

Fixing some J ⊆ [n], |J| ≤ 2b, it is easy to compute the mapping hJ that
is worst for ROW out of all mappings h with image(h) = J:
hJ simply maps each row i ∈ [m] to the column j ∈ J that minimizes Mi ,j .
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Polynomial algorithm for constant b — cont.

Sufficient to solve the LP

maximize v s.t.∑
j∈J

∑
i :hJ(i)=j

pi ·Mi ,j ≥ v ∀J ⊆ [n], |J| ≤ 2b

∑
i∈[m]

pi = 1

pi ≥ 0 ∀i ∈ [m] .

Size = polynomial when b is fixed.
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Conclusions

The validity of von Neumann’s theorem for two-player zero-sum
games requires mixed strategies.

The randomization phase must be private.

In reality, complete privacy is often impractical.

This leads to the study of adversarial leakage of information in games.

We cover the basic model of uni-directional leakage in two-player
zero-sum binary games.

The investigation of more complicated models deserves further study:
leakage in both directions, arbitrary games.
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