Adversarial Leakage in Games

Yuval Emek

Microsoft Israel R&D Center

Innovations in Computer Science 2009

Joint work with Noga Alon, Michal Feldman, Moshe Tennenholtz

ROW ("good guy") plays some row $i \in [m]$. COL (adversary) plays some column $j \in [n]$.

ROW ("good guy") plays some row $i \in [m]$. COL (adversary) plays some column $j \in [n]$. ROW wins if $M_{i,j} = 1$; looses if $M_{i,j} = 0$.

ROW ("good guy") plays some row $i \in [m]$. COL (adversary) plays some column $j \in [n]$. ROW wins if $M_{i,j} = 1$; looses if $M_{i,j} = 0$. When mixed strategies are allowed, it doesn't matter who plays first:

ROW ("good guy") plays some row $i \in [m]$. COL (adversary) plays some column $j \in [n]$. ROW wins if $M_{i,j} = 1$; looses if $M_{i,j} = 0$. When mixed strategies are allowed, it doesn't matter who plays first:

Theorem (von Neumann, 1928)

$$\max_{p \in \Delta(m)} \min_{j \in [n]} \sum_{i \in [m]} p(i) \cdot M_{i,j} = \min_{q \in \Delta(n)} \max_{i \in [m]} \sum_{j \in [n]} q(j) \cdot M_{i,j} .$$

This is defined to be the value of the game, denoted v(M) = the probability that ROW wins.

COL may know ROW's mixed strategy — some distribution $p \in \Delta(m)$ — but the coin tosses of ROW are private.

- COL may know ROW's mixed strategy some distribution $p \in \Delta(m)$ but the coin tosses of ROW are private.
- In particular, COL doesn't know the instantiation of p = the pure action i ∈ [m] that ROW is going to play.

- In particular, COL doesn't know the instantiation of p = the pure action i ∈ [m] that ROW is going to play.
- In some scenarios it is impractical to assume that our opponent knows nothing about our (pure) choices (espionage).

- In particular, COL doesn't know the instantiation of p = the pure action i ∈ [m] that ROW is going to play.
- In some scenarios it is impractical to assume that our opponent knows nothing about our (pure) choices (espionage).
- Information leakage = COL decides on her action after learning *b* bits of information about the pure action of ROW.

- In particular, COL doesn't know the instantiation of p = the pure action i ∈ [m] that ROW is going to play.
- In some scenarios it is impractical to assume that our opponent knows nothing about our (pure) choices (espionage).
- Information leakage = COL decides on her action after learning *b* bits of information about the pure action of ROW.

• Question 1:

what should ROW do now that she knows that COL may learn *b* bits of information about her pure action?

 COL may know ROW 's mixed strategy — some distribution $p \in \Delta(m)$ — but the coin tosses of ROW are private.

- In particular, COL doesn't know the instantiation of p = the pure action $i \in [m]$ that ROW is going to play.
- In some scenarios it is impractical to assume that our opponent knows nothing about our (pure) choices (espionage).
- Information leakage = COL decides on her action after learning *b* bits of information about the pure action of ROW.

• Question 1:

what should ROW do now that she knows that COL may learn *b* bits of information about her pure action?

• Question 2:

what happens to the value of the game (probability that ROW wins)?

$$f:[m] \rightarrow \{0,1\}^b$$
 .

$$f:[m] \rightarrow \{0,1\}^b$$
.

• Let $i \in [m]$ be the action that ROW is going to play.

$$f:[m] \rightarrow \{0,1\}^b$$
.

- Let $i \in [m]$ be the action that ROW is going to play.
- COL sees f(i) before she decides on her action $j \in [n]$.

$$f:[m] \rightarrow \{0,1\}^b$$
.

- Let $i \in [m]$ be the action that ROW is going to play.
- COL sees f(i) before she decides on her action $j \in [n]$.
- Strong model of leakage: COL decides on $f : [m] \rightarrow \{0,1\}^b$ when she already knows the mixed strategy p of ROW.

$$f:[m] \rightarrow \{0,1\}^b$$
.

- Let $i \in [m]$ be the action that ROW is going to play.
- COL sees f(i) before she decides on her action $j \in [n]$.
- Strong model of leakage: COL decides on $f : [m] \rightarrow \{0,1\}^b$ when she already knows the mixed strategy p of ROW.
- Weak model of leakage: COL decides on f : [m] → {0,1}^b without knowing the mixed strategy p of ROW.

Strong leakage:

Strong leakage:

Weak leakage:

(1) ROW decides on $p \in \Delta(m)$ (knowing *M* and *b*).

Strong leakage:

- (1) ROW decides on $p \in \Delta(m)$ (knowing *M* and *b*).
- (2) COL decides on $f: [m] \rightarrow \{0,1\}^b$ (knowing M, b, and p).

Strong leakage:

(1) ROW decides on $p \in \Delta(m)$ (knowing *M* and *b*).

(2) COL decides on $f : [m] \rightarrow \{0, 1\}^{b}$ (knowing M, b, and p).

```
(1) COL decides on

f: [m] \rightarrow \{0, 1\}^{b} (knowing M

and b).
```

Strong leakage:

- (1) ROW decides on $p \in \Delta(m)$ (knowing *M* and *b*).
- (2) COL decides on $f : [m] \rightarrow \{0, 1\}^{b}$ (knowing M, b, and p).

- (1) COL decides on $f: [m] \rightarrow \{0, 1\}^{b}$ (knowing Mand b).
- (2) ROW decides on $p \in \Delta(M)$ (knowing M, b, and f).

Strong leakage:

Weak leakage:

- (1) ROW decides on $p \in \Delta(m)$ (knowing *M* and *b*).
- (2) COL decides on $f : [m] \to \{0, 1\}^b$ (knowing M, b, and p).

(1) COL decides on $f: [m] \rightarrow \{0, 1\}^{b}$ (knowing Mand b).

(2) ROW decides on $p \in \Delta(M)$ (knowing *M*, *b*, and *f*).

(3) ROW chooses $i \in_p [m]$.

Strong leakage:

(1) ROW decides on $p \in \Delta(m)$ (knowing M and b).

(2) COL decides on b, and p).

- (1) COL decides on $f:[m] \rightarrow \{0,1\}^b$ (knowing M and b).
- $f: [m] \to \{0,1\}^b$ (knowing M, (2) ROW decides on $p \in \Delta(M)$ (knowing M, b, and f).
 - (3) ROW chooses $i \in_p [m]$. (4) COL decides on $i \in [n]$ (knowing M, b, p, and f(i)).

Strong leakage:

(1) ROW decides on $p \in \Delta(m)$ (knowing M and b).

(2) COL decides on b, and p).

- (1) COL decides on $f:[m] \rightarrow \{0,1\}^b$ (knowing M and b).
- $f: [m] \to \{0,1\}^b$ (knowing M, (2) ROW decides on $p \in \Delta(M)$ (knowing M, b, and f).
 - (3) ROW chooses $i \in_p [m]$.
 - (4) COL decides on $i \in [n]$ (knowing M, b, p, and f(i)).
 - (5) ROW wins iff $M_{i,i} = 1$.

Strong leakage:

Weak leakage:

- (1) ROW decides on $p \in \Delta(m)$ (knowing M and b).
- (2) COL decides on b, and p).
- (1) COL decides on $f:[m] \rightarrow \{0,1\}^b$ (knowing M and b).
- $f: [m] \to \{0,1\}^b$ (knowing M, (2) ROW decides on $p \in \Delta(M)$ (knowing M, b, and f).
 - (3) ROW chooses $i \in_p [m]$.
 - (4) COL decides on $i \in [n]$ (knowing M, b, p, and f(i)).
 - (5) ROW wins iff $M_{i,i} = 1$.

Convenient to formalize the (pure) decision of COL in step (4) as a function $g: \{0,1\}^b \rightarrow [n]$.

Strong leakage:

Weak leakage:

- (1) ROW decides on $p \in \Delta(m)$ (knowing M and b).
- (2) COL decides on b, and p).
- (1) COL decides on $f:[m] \rightarrow \{0,1\}^b$ (knowing M and b).
- $f: [m] \to \{0,1\}^b$ (knowing M, (2) ROW decides on $p \in \Delta(M)$ (knowing M, b, and f).
 - (3) ROW chooses $i \in_p [m]$.
 - (4) COL decides on $i \in [n]$ (knowing M, b, p, and f(i)).
 - (5) ROW wins iff $M_{i,i} = 1$.

Convenient to formalize the (pure) decision of COL in step (4) as a function $g: \{0,1\}^b \rightarrow [n]$. ROW wins (step (5)) iff $M_{i,g(f(i))} = 1$.

$$\mathbf{v}^{s}(M,b) = \max_{p \in \Delta(m)} \min_{f:[m] \to \{0,1\}^{b}} \min_{g:\{0,1\}^{b} \to [n]} \sum_{i \in [m]} p(i) \cdot M_{i,g(f(i))} .$$

$$\mathbf{v}^{s}(M,b) = \max_{p \in \Delta(m)} \min_{f:[m] \to \{0,1\}^{b}} \min_{g:\{0,1\}^{b} \to [n]} \sum_{i \in [m]} p(i) \cdot M_{i,g(f(i))} .$$

 $p_b^* =$ a mixed strategy of ROW that realizes $v^s(M, b)$.

$$v^{s}(M, b) = \max_{p \in \Delta(m)} \min_{f:[m] \to \{0,1\}^{b}} \min_{g:\{0,1\}^{b} \to [n]} \sum_{i \in [m]} p(i) \cdot M_{i,g(f(i))}$$

 $p_b^* =$ a mixed strategy of ROW that realizes $v^s(M, b)$.

The value of the game M under b leaking bits in the weak model:

$$\mathbf{v}^{\mathsf{w}}(M,b) = \min_{f:[m] \to \{0,1\}^{b}} \max_{p \in \Delta(m)} \min_{g:\{0,1\}^{b} \to [n]} \sum_{i \in [m]} p(i) \cdot M_{i,g(f(i))} .$$

$$v^{s}(M, b) = \max_{p \in \Delta(m)} \min_{f:[m] \to \{0,1\}^{b}} \min_{g:\{0,1\}^{b} \to [n]} \sum_{i \in [m]} p(i) \cdot M_{i,g(f(i))}$$

 $p_b^* =$ a mixed strategy of ROW that realizes $v^s(M, b)$.

The value of the game M under b leaking bits in the weak model:

$$\mathbf{v}^{\mathsf{w}}(M,b) = \min_{f:[m] \to \{0,1\}^{b}} \max_{p \in \Delta(m)} \min_{g:\{0,1\}^{b} \to [n]} \sum_{i \in [m]} p(i) \cdot M_{i,g(f(i))} .$$

Clearly, $v^{s}(M, b) \leq v^{w}(M, b) \leq v(M)$ for every game M and $b \geq 0$.

Strong leakage

Theorem

If $v(M) = 1 - \epsilon$, then the original maximin strategy of *ROW* guarantees $v^{s}(M, b) \ge 1 - 2^{b}\epsilon$.

Theorem

If $v(M) = 1 - \epsilon$, then the original maximin strategy of *ROW* guarantees $v^{s}(M, b) \ge 1 - 2^{b}\epsilon$.

There are examples showing that this is essentially tight.
If $v(M) = 1 - \epsilon$, then the original maximin strategy of ROW guarantees $v^{s}(M, b) \ge 1 - 2^{b}\epsilon$.

There are examples showing that this is essentially tight.

Corollary

If $v(M) = 1 - \epsilon$ and $b \leq \lg(1/\epsilon) - 1$, then $v^s(M, b) \geq 1/2$.

If
$$v(M) = 1 - \epsilon$$
, then $v^{s}(M, b) \leq (1 - \epsilon)^{2^{b}}$.

If $v(M) = 1 - \epsilon$, then $v^{s}(M, b) \leq (1 - \epsilon)^{2^{b}}$.

There are examples showing that this is essentially tight as well. (Explicit construction soon.)

If
$$v(M) = 1 - \epsilon$$
, then $v^{s}(M, b) \leq (1 - \epsilon)^{2^{b}}$.

There are examples showing that this is essentially tight as well. (Explicit construction soon.)

If
$$v(M) = 1 - \epsilon$$
 and $b \ge \lg(1/\epsilon) + 2$, then $v^{s}(M, b) \le e^{-4} < 0.02$.

If
$$v(M) = 1 - \epsilon$$
, then $v^{s}(M, b) \leq (1 - \epsilon)^{2^{b}}$.

There are examples showing that this is essentially tight as well. (Explicit construction soon.)

Corollary

If $v(M) = 1 - \epsilon$ and $b \ge \lg(1/\epsilon) + 2$, then $v^{s}(M, b) \le e^{-4} < 0.02$.

Hence the sequence $\{v^{s}(M, b)\}_{b=1,2,...}$ exhibits a sharp threshold:

If
$$v(M) = 1 - \epsilon$$
, then $v^{s}(M, b) \leq (1 - \epsilon)^{2^{b}}$.

There are examples showing that this is essentially tight as well. (Explicit construction soon.)

Corollary

If $v(M) = 1 - \epsilon$ and $b \ge \lg(1/\epsilon) + 2$, then $v^s(M, b) \le e^{-4} < 0.02$.

Hence the sequence $\{v^{s}(M, b)\}_{b=1,2,...}$ exhibits a sharp threshold: it is $\geq 1/2$ as long as $b \leq \lg(1/\epsilon) - 1$; it is < 0.02 once $b \geq \lg(1/\epsilon) + 2$.

There exists an infinite sequence of games $M \in \{0,1\}^{m \times m}$, $v(M) = q(1 \pm o(1))$, so that if $b \leq \lg \lg(m) - O(1)$, then $v^{s}(M, b) \geq q^{2^{b}}(1 \pm o(1))$.

There exists an infinite sequence of games $M \in \{0,1\}^{m \times m}$, $v(M) = q(1 \pm o(1))$, so that if $b \leq \lg \lg(m) - O(1)$, then $v^{s}(M, b) \geq q^{2^{b}}(1 \pm o(1))$.

There exists an infinite sequence of games $M \in \{0,1\}^{m \times m}$, $v(M) = q(1 \pm o(1))$, so that if $b \leq \lg \lg(m) - O(1)$, then $v^{s}(M, b) \geq q^{2^{b}}(1 \pm o(1))$.

Prove for q = 1/2; can be easily generalized for any q = 1/p for a prime power p.

• Let r be a sufficiently large integer.

There exists an infinite sequence of games $M \in \{0,1\}^{m \times m}$, $v(M) = q(1 \pm o(1))$, so that if $b \leq \lg \lg(m) - O(1)$, then $v^{s}(M, b) \geq q^{2^{b}}(1 \pm o(1))$.

- Let *r* be a sufficiently large integer.
- Fix $m = 2^r 1$.

There exists an infinite sequence of games $M \in \{0,1\}^{m \times m}$, $v(M) = q(1 \pm o(1))$, so that if $b \leq \lg \lg(m) - O(1)$, then $v^{s}(M, b) \geq q^{2^{b}}(1 \pm o(1))$.

- Let r be a sufficiently large integer.
- Fix $m = 2^r 1$.
- The *m* rows (and columns) of *M* are indexed by all non-zero *r*-dimensional vectors over *GF*(2).

There exists an infinite sequence of games $M \in \{0,1\}^{m \times m}$, $v(M) = q(1 \pm o(1))$, so that if $b \leq \lg \lg(m) - O(1)$, then $v^{s}(M, b) \geq q^{2^{b}}(1 \pm o(1))$.

- Let r be a sufficiently large integer.
- Fix $m = 2^r 1$.
- The *m* rows (and columns) of *M* are indexed by all non-zero *r*-dimensional vectors over *GF*(2).
- $M_{u,v} = 1$ iff the vectors u and v are orthogonal over GF(2).

Observation

Every row and column of M contain exactly $2^{r-1} - 1$ 1-entries.

Observation

Every row and column of M contain exactly $2^{r-1} - 1$ 1-entries.

$$v(M) = \frac{2^{r-1}-1}{2^r-1} = \frac{1}{2}(1-o(1)).$$

Observation

Every row and column of M contain exactly $2^{r-1} - 1$ 1-entries.

Corollary

$$v(M) = \frac{2^{r-1}-1}{2^r-1} = \frac{1}{2}(1-o(1)).$$

• Take any column subset J, $|J| = 2^b \le r(1 - \Omega(1))$.

Observation

Every row and column of M contain exactly $2^{r-1} - 1$ 1-entries.

$$v(M) = \frac{2^{r-1}-1}{2^r-1} = \frac{1}{2}(1-o(1)).$$

- Take any column subset J, $|J| = 2^b \le r(1 \Omega(1))$.
- We argue that there exist $\geq 2^{r-|J|} 1$ rows u s.t. $M_{u,v} = 1$ for all $v \in J$.

Observation

Every row and column of M contain exactly $2^{r-1} - 1$ 1-entries.

$$v(M) = \frac{2^{r-1}-1}{2^r-1} = \frac{1}{2}(1-o(1)).$$

- Take any column subset J, $|J| = 2^b \le r(1 \Omega(1))$.
- We argue that there exist $\geq 2^{r-|J|} 1$ rows u s.t. $M_{u,v} = 1$ for all $v \in J$.
- Indeed, requiring that M_{u,v} = 1 for every v ∈ J yields a homogeneous system of |J| linear equations over GF(2) in r variables; it has ≥ 2^{r-|J|} 1 non-zero solutions.

Observation

Every row and column of M contain exactly $2^{r-1} - 1$ 1-entries.

$$v(M) = \frac{2^{r-1}-1}{2^r-1} = \frac{1}{2}(1-o(1)).$$

- Take any column subset J, $|J| = 2^b \le r(1 \Omega(1))$.
- We argue that there exist $\geq 2^{r-|J|} 1$ rows u s.t. $M_{u,v} = 1$ for all $v \in J$.
- Indeed, requiring that M_{u,v} = 1 for every v ∈ J yields a homogeneous system of |J| linear equations over GF(2) in r variables; it has ≥ 2^{r-|J|} 1 non-zero solutions.
- Playing the uniform distribution on [m] implies the desired $v^{s}(M, b) \geq \frac{2^{r-|J|}-1}{m} \geq \left(\frac{1}{2}\right)^{2^{b}} (1 o(1)).$

Weak leakage

For every fixed 0 < q < 1 and $0 < \delta < 1$, and for all sufficiently large m, there exists a game $M \in \{0,1\}^{m^2 \times m}$ so that: (1) v(M) = q + o(1); and (2) $v^w(M, b) \ge q - \delta$ for every $b \le \lg \lg(m) - O_{q,\delta}(1)$.

For every fixed 0 < q < 1 and $0 < \delta < 1$, and for all sufficiently large m, there exists a game $M \in \{0,1\}^{m^2 \times m}$ so that: (1) v(M) = q + o(1); and (2) $v^w(M, b) \ge q - \delta$ for every $b \le \lg \lg(m) - O_{q,\delta}(1)$.

In particular, ROW may be able to retain almost the original value of the game against any constant number of weakly leaking bits.

For every fixed 0 < q < 1 and $0 < \delta < 1$, and for all sufficiently large m, there exists a game $M \in \{0,1\}^{m^2 \times m}$ so that: (1) v(M) = q + o(1); and (2) $v^w(M, b) \ge q - \delta$ for every $b \le \lg \lg(m) - O_{q,\delta}(1)$.

In particular, ROW may be able to retain almost the original value of the game against any constant number of weakly leaking bits.

Theorem

If v(M) = q and $b \ge \lg \lg(m) + O_q(1)$, then $v^w(M, b) = 0$.

For every fixed 0 < q < 1 and $0 < \delta < 1$, and for all sufficiently large m, there exists a game $M \in \{0,1\}^{m^2 \times m}$ so that: (1) v(M) = q + o(1); and (2) $v^w(M, b) \ge q - \delta$ for every $b \le \lg \lg(m) - O_{q,\delta}(1)$.

In particular, ${
m ROW}$ may be able to retain almost the original value of the game against any constant number of weakly leaking bits.

Theorem

If v(M) = q and $b \ge \lg \lg(m) + O_q(1)$, then $v^w(M, b) = 0$.

Hence there are instances M for which the sequence $\{v^w(M, b)\}_{b=1,2,...}$ also exhibits a sharp threshold:

For every fixed 0 < q < 1 and $0 < \delta < 1$, and for all sufficiently large m, there exists a game $M \in \{0,1\}^{m^2 \times m}$ so that: (1) v(M) = q + o(1); and (2) $v^w(M, b) \ge q - \delta$ for every $b \le \lg \lg(m) - O_{q,\delta}(1)$.

In particular, ${
m ROW}$ may be able to retain almost the original value of the game against any constant number of weakly leaking bits.

Theorem

If v(M) = q and $b \ge \lg \lg(m) + O_q(1)$, then $v^w(M, b) = 0$.

Hence there are instances M for which the sequence $\{v^w(M, b)\}_{b=1,2,...}$ also exhibits a sharp threshold: it stays close to v(M) as long as $b \leq \lg \lg(m) - O(1)$; it drops to 0 once $b \geq \lg \lg(m) + O(1)$.

Computational complexity

Given a game $M \in \{0,1\}^{m \times n}$ and some $b \ge 0$, both $v^{s}(M, b)$ and $v^{w}(M, b)$ are NP-hard to approximate to within any factor.

Given a game $M \in \{0,1\}^{m \times n}$ and some $b \ge 0$, both $v^{s}(M, b)$ and $v^{w}(M, b)$ are NP-hard to approximate to within any factor.

Reducing set cover to the problem of deciding whether the (strong or weak) value is strictly positive.

Given a game $M \in \{0,1\}^{m \times n}$ and some $b \ge 0$, both $v^{s}(M, b)$ and $v^{w}(M, b)$ are NP-hard to approximate to within any factor.

Reducing set cover to the problem of deciding whether the (strong or weak) value is strictly positive.

When b is fixed, computing $v^{s}(M, b)$ becomes tractable:

Theorem

Given a game $M \in \{0,1\}^{m \times n}$, the optimal mixed strategy p_b^* can be efficiently computed.

conclusions

Would like to solve the LP

maximize v s.t.

$$\sum_{i \in [m]} p_i \cdot M_{i,g(f(i))} \ge v \quad \forall f : [m] \to \{0,1\}^b, \forall g : \{0,1\}^b \to [n]$$
$$\sum_{i \in [m]} p_i = 1$$
$$p_i \ge 0 \quad \forall i \in [m] .$$

Would like to solve the LP

maximize v s.t.

$$\sum_{i \in [m]} p_i \cdot M_{i,g(f(i))} \ge v \quad \forall f : [m] \to \{0,1\}^b, \forall g : \{0,1\}^b \to [n]$$
$$\sum_{i \in [m]} p_i = 1$$
$$p_i \ge 0 \quad \forall i \in [m] .$$

However, there are 2^{bm} different functions f — exponentially many constraints.

Would like to solve the LP

maximize v s.t.

$$\sum_{i \in [m]} p_i \cdot M_{i,g(f(i))} \ge v \quad \forall f : [m] \to \{0,1\}^b, \forall g : \{0,1\}^b \to [n]$$
$$\sum_{i \in [m]} p_i = 1$$
$$p_i \ge 0 \quad \forall i \in [m] .$$

However, there are 2^{bm} different functions f — exponentially many constraints.

The composition $g \circ f$ is a mapping $h : [m] \to [n]$ with $|\text{image}(h)| \le 2^b$.

Would like to solve the LP

maximize v s.t.

$$\sum_{i \in [m]} p_i \cdot M_{i,g(f(i))} \ge v \quad \forall f : [m] \to \{0,1\}^b, \forall g : \{0,1\}^b \to [n]$$
$$\sum_{i \in [m]} p_i = 1$$
$$p_i \ge 0 \quad \forall i \in [m] .$$

However, there are 2^{bm} different functions f — exponentially many constraints.

The composition $g \circ f$ is a mapping $h : [m] \to [n]$ with $|\text{image}(h)| \le 2^b$. Fixing some $J \subseteq [n]$, $|J| \le 2^b$, it is easy to compute the mapping h_J that is worst for ROW out of all mappings h with image(h) = J:

Would like to solve the LP

maximize v s.t.

$$\sum_{i \in [m]} p_i \cdot M_{i,g(f(i))} \ge v \quad \forall f : [m] \to \{0,1\}^b, \forall g : \{0,1\}^b \to [n]$$
$$\sum_{i \in [m]} p_i = 1$$
$$p_i \ge 0 \quad \forall i \in [m] .$$

However, there are 2^{bm} different functions f — exponentially many constraints.

The composition $g \circ f$ is a mapping $h : [m] \to [n]$ with $|\text{image}(h)| \leq 2^b$. Fixing some $J \subseteq [n]$, $|J| \leq 2^b$, it is easy to compute the mapping h_J that is worst for ROW out of all mappings h with image(h) = J: h_J simply maps each row $i \in [m]$ to the column $j \in J$ that minimizes $M_{i,j}$. Sufficient to solve the LP

maximize v s.t. $\sum_{j \in J} \sum_{i:h_J(i)=j} p_i \cdot M_{i,j} \ge v \quad \forall J \subseteq [n], |J| \le 2^b$ $\sum_{i \in [m]} p_i = 1$ $p_i \ge 0 \quad \forall i \in [m] .$

Size = polynomial when *b* is fixed.

Conclusions
• The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.
- In reality, complete privacy is often impractical.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.
- In reality, complete privacy is often impractical.
- This leads to the study of adversarial leakage of information in games.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.
- In reality, complete privacy is often impractical.
- This leads to the study of adversarial leakage of information in games.
- We cover the basic model of uni-directional leakage in two-player zero-sum binary games.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.
- In reality, complete privacy is often impractical.
- This leads to the study of adversarial leakage of information in games.
- We cover the basic model of uni-directional leakage in two-player zero-sum binary games.
- The investigation of more complicated models deserves further study: leakage in both directions, arbitrary games.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.
- In reality, complete privacy is often impractical.
- This leads to the study of adversarial leakage of information in games.
- We cover the basic model of uni-directional leakage in two-player zero-sum binary games.
- The investigation of more complicated models deserves further study: leakage in both directions, arbitrary games.

- The validity of von Neumann's theorem for two-player zero-sum games requires mixed strategies.
- The randomization phase must be private.
- In reality, complete privacy is often impractical.
- This leads to the study of adversarial leakage of information in games.
- We cover the basic model of uni-directional leakage in two-player zero-sum binary games.
- The investigation of more complicated models deserves further study: leakage in both directions, arbitrary games.

