
© 2009 IBM CorporationICS 2010 1/13/2010

Distribution Specific 
Agnostic Boosting

Vitaly Feldman
CS Theory Group

IBM Almaden Research Center



Vitaly Feldman – Agnostic Boosting2

Learning from examples
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PAC learning [Valiant 84]

PAC learning of a class of functions C:

8D, f2C, and >0, w.h.p. produce hypothesis h s.t. PrD[f(x)h(x)] ·

Efficient: polynomial time in n (problem size) and 1/

Distribution-specific learning over D. D is fixed

Some known learnable classes:

• Boolean dis-/conjunctions over {0,1}n  [Valiant 84]

• Linear threshold functions (halfspaces) over Rn [BEHW 87]

• Parity functions over {0,1}n  [HSW 92]

X domain
f: X ! {-1,+1} unknown function

Random example: (x, f(x))

x » D: unknown distribution over X
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Agnostic learning [Haussler; Kearns,Schapire,Sellie 92]

Agnostic learning of a class of functions C

8 A, and >0, produce w.h.p. h such that PrA[bh(x)] · OptA(C) + 

Distribution-specific learning over D. Marginal of A on X equals 
to a fixed D

Some known agnostically learnable function classes:

• Uniform distribution over {0,1}n: 

 Parities using queries [Goldreich,Levin 89]

 Halfspaces [Kalai,Klivans,Mansour,Servedio 05]

 Decision trees using queries [Gopalan,Kalai,Klivans 08]

Example: (x, b)

(x, b) ~ A: unknown distribution over X £{-1,1}
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OptA(C) = ming2C{PrA[bg(x)]}
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Accuracy boosting

Weak PAC learning [Kearns,Valiant 87]: PrD[fh] · ½ - 1/poly(n)

Weak PAC learning implies (strong) PAC learning [Schapire 90]

• Only for distribution-independent learning!
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Agnostic boosting [Ben-David,Long,Mansour 00]

-weak agnostic learning: output h s.t. PrA[bh(x)] · ½-1/poly(n) 
whenever OptA(C) · ½ - 

-weak agnostic learning implies -optimal agnostic learning

[Kalai,Mansour,Verbin 08]

• Outputs a hypothesis h s.t. PrA[bh(x)] · OptA(C) +  + 

• Distribution-independent

• Based on boosting by branching programs [Mansour,McAllester 99]

• Obtained the first non-trivial algorithm for agnostic learning of 
parities
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Our results

-weak agnostic learning over D implies -optimal agnostic 
learning over D

• Simple and more efficient boosting algorithm

Agnostic boosting algorithms from hardcore set constructions 
with the optimal set size parameter

• Given a function f hard to -approximate construct a subset of the 
domain of weight 2 where f is hard to weakly approximate

• Hardcore set constructions [Impagliazzo 95] are closely related to 
boosting algorithms [Klivans,Servedio 99]

• Known constructions: [Holenstein 05; Barak,Hardt,Kale 09]

• Obtained new simple hardcore set construction
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Results: applications

Decision trees are agnostically learnable over U using queries 

• Known [Gopalan,Kalai,Klivans 08]

Proof

• For every distribution A uniform over X and a DT c of size s if

PrA[bc(x)] · ½ -  then PrA[bp(x)] · ½ - /s

for some parity function p(x) [Kushilevitz,Mansour 91]

• Agnostic parity learning algorithm [Goldreich,Levin 89] gives weak 
agnostic learning

• Boost

x3

x5 x1

x1 x5 x4

-1 1 -1 1 -1 1

1



Vitaly Feldman – Agnostic Boosting9

Applications to PAC learning

MAJ(C,t) : majorities of at most t functions from C

Agnostic learning of C implies PAC learning of MAJ(C,poly(n)) 

[KSS 92]

• For every f 2 MAJ(C,t) and D, exists c 2 C s.t. 

PrD[f(x) c(x)] · ½ - 1/(2t)

Our result: agnostic learning of C over D implies PAC learning of 
MAJ(C,poly(n)) over D

Corollary: DNF formulas are learnable over U using queries

• Known [Jackson 95]

Proof

• DNF µ MAJ(PARITY,poly(n)) [Jackson 95]
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Some intuition

Classical boosting: example (x,b) ! (x,b) of weight 2[0,1]

Here: example (x,b) !  

Total weight = 1. Error contribution 

General technique: gradient descent

• Projection step

• Balancing step

(x,b) of weight (1+)/2

(x,-b) of weight (1-)/2
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Conclusions and further work

Agnostic boosting does not require modifying the marginal 
distribution over X

• Useful in theoretical problems

Agnostic boosting is natural

• Several new algorithms

• Avoids overfitting of some PAC boosters (e.g. Adaboost [Freund 95])

Distribution-specific agnostic boosting and application to 
learning of decision trees also given by Kalai and Kanade

Further directions:

• More general understanding of agnostic boosting

• More efficient agnostic boosting

• Can PAC boosters be converted to agnostic ones automatically?

• Behavior in practice
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