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New Rounding Method

Relax and Round Paradigm

• Relaxation: Given an instance of an optimization problem,
enlarge the set of feasible solutions I to some I′ ⊃ I.

• Example: Linear-programming (LP) relaxation of an integer
program

• Rounding: Efficiently compute an optimum solution x ∈ I′,
map x to nearby y ∈ I and prove that y is near optimum in I
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Relax and Round Paradigm

• Relaxation: Given an instance of an optimization problem,
enlarge the set of feasible solutions I to some I′ ⊃ I.

• Example: Linear-programming (LP) relaxation of an integer
program

• Rounding: Efficiently compute an optimum solution x ∈ I′,
map x to nearby y ∈ I and prove that y is near optimum in I

We will focus on LP-relaxation of 0-1-integer program and LP
rounding methods.
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• Deterministic rounding
• Randomized rounding

• Independent randomized rounding
• Dependent randomized rounding
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Assignment Problem with Extra Linear Constraints

x1,1 x1,2 x1,n

∑

j :(i ,j)∈E

xi ,j = bi ∀i ∈ V (Assign Constraint)

∑

j :(i ,j)∈E

ai ,jxi ,j ≤ Ti ∀i ∈ V (Extra Linear Constraints)
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Limitation of Independent Rounding

Assignment Problem with Extra Linear Constraints

∑

j :(i ,j)∈E

xi ,j = bi ∀i ∈ V (Assign Constraint)

∑

j :(i ,j)∈E

ai ,jxi ,j ≤ Ti ∀i ∈ V (Extra Linear Constraints)

• Similar kind of problems studied by:
• General linear constraints: Arora, Frieze & Kaplan [FOCS

96]
• Constant number of constraints: Papadimitriou &

Yannakakis [FOCS 00], Grandoni, Ravi & Singh [ESA 09]
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Limitation of Independent Rounding

Assignment Problem with Extra Linear Constraints

∑

j :(i ,j)∈E

xi ,j = bi ∀i ∈ V (Assign Constraint)

∑

j :(i ,j)∈E

ai ,jxi ,j ≤ Ti ∀i ∈ V (Extra Linear Constraints)

• Independent rounding by Raghavan & Thompson.

• By Chernoff-Hoeffding bound, with high probability extra
linear constraints are violated by ±Õ(

√

|V |maxi ,j ai ,j).

• Vertices violate matching constraints.
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Dependent Rounding

Assignment Problem with Extra Linear Constraints

∑

j :(i ,j)∈E

xi ,j = bi ∀i ∈ V (Assign Constraint)

∑

j :(i ,j)∈E

ai ,jxi ,j ≤ Ti ∀i ∈ V (Extra Linear Constraints)

• Several works on Dependent Rounding:
• Ageev & Sviridenko [Journal of Combinatorial Optimization

04]
• Srinivasan [FOCS 01]
• Gandhi, Khuller, Parthasarathy, Srinivasan [FOCS 02]
• Kumar, Marathe, Parthasarathy, Srinivasan[FOCS 05]
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Dependent Rounding

Assignment Problem with Extra Linear Constraints

∑

j :(i ,j)∈E

xi ,j = bi ∀i ∈ V (Assign Constraint)

∑

j :(i ,j)∈E

ai ,jxi ,j ≤ Ti ∀i ∈ V (Extra Linear Constraints)

• Work of Gandhi et al. achieves
• All matching constraints are satisfied with probability 1.
• Variables incident on a vertex are negatively correlated.
• Can still apply Chernoff-Hoeffding bound to get,

±Õ(
√

|V |maxi,j ai,j) violation.
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Our Rounding Method

Assignment Problem with Extra Linear Constraints

∑

j :(i ,j)∈E

xi ,j = bi ∀i ∈ V (Assign Constraint)

∑

j :(i ,j)∈E

ai ,jxi ,j ≤ Ti ∀i ∈ V (Extra Linear Constraints)

• Using our rounding method we get,
• All matching constraints are satisfied with probability 1.
• Extra linear constraints are violated only by ±maxi,jai,j .
• Can also handle additional cost constraint:

∑

(i,j)∈E ci,jxi,j ≤ C.
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Our Rounding Method

minimize cx

s.t

Ax ≤ b

x ∈ [0, 1]n

• We have an n dimensional system of linear constraints,
Ax ≤ b with additional constraints, x ∈ [0, 1]n.

• We are given some x∗ ∈ [0, 1]n

• We want to round x∗ to integer solution.
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Our Rounding Method: Main Idea

• Linear constraints define a polytope.
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Our Rounding Method: Main Idea

• Not at a vertex of the polytope:
• Randomly move on the current facet.

• The expected value of each variable does not change.

• Either round a new variable or make some other constraint
tight.
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Our Rounding Method: Main Idea

• At a vertex:
• Relax the polytope by reducing the number of tight

constraints.
• Drop or combine constraints.
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Our Rounding Method: Example in 2-dimension

1

y

10
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Our Rounding Method

Properties

1 If y∗ is the final rounded solution, then E [y∗] = x∗

2 A variable rounded to 0, 1 is never changed.

3 A constraint dropped or combined is never reinstated.

4 At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.
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Our Rounding Method

Properties

1 If y∗ is the final rounded solution, then E [y∗] = x∗

2 A variable rounded to 0, 1 is never changed.

3 A constraint dropped or combined is never reinstated.

4 At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.

Property (2), (3) and (4) ensure that the process terminates
after O(n + m) steps, where n is the total number of variables
and m is the total number of constraints.
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Our Rounding Method

Properties

1 If y∗ is the final rounded solution, then E [y∗] = x∗

2 A variable rounded to 0, 1 is never changed.

3 A constraint dropped or combined is never reinstated.

4 At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.

If no constraint is dropped or combined, then the integer
solution obtained is optimum.
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Our Rounding Method

Properties

1 If y∗ is the final rounded solution, then E [y∗] = x∗

2 A variable rounded to 0, 1 is never changed.

3 A constraint dropped or combined is never reinstated.

4 At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.

Choice of constraints to drop or combine is problem specific
and are chosen in a way to minimize the violation of the original
constraints.
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Unrelated Parallel Machine Scheduling & GAP
[8, 9, 10, 1, 5, 7, 6, 2, 3, 4]

• pi ,j : processing time of job j on machine i . They are
unrelated.
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Unrelated Parallel Machine Scheduling & GAP
[8, 9, 10, 1, 5, 7, 6, 2, 3, 4]

• Makespan Minimization: Minimize the maximum total
load (sum of processing time of the allocated jobs) on any
machine.
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Unrelated Parallel Machine Scheduling & GAP
[8, 9, 10, 1, 5, 7, 6, 2, 3, 4]

• Makespan Minimization: Minimize the maximum total
load (sum of processing time of the allocated jobs) on any
machine.

• 2 approximation for makepspan minimization in UPM by
Lenstra, Shmoys & Tardos.
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Unrelated Parallel Machine Scheduling & GAP
[8, 9, 10, 1, 5, 7, 6, 2, 3, 4]

• Generalized Assignment Problem (GAP): We incur a
cost of ci ,j if we schedule job j on machine i . Minimize
makespan within a cost C.

• (2,1) approximation for makespan and cost for GAP by
Shmoys & Tardos.
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Applications

• Extension of unrelated parallel machine scheduling and
generalized assignment problem with

• Hard capacity constraints on machines.
• Hard profit constraints with outliers.
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Applications

• GAP with hard capacity constraint on machines
• Handling hard capacity constraints is often tricky.

• Capacitated covering problems, capacitated facility location
problem
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Applications

• GAP with hard capacity constraint on machines
• Servers often have limits on the number of jobs they can

process.
• Studied by References .
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Applications

• GAP with hard capacity constraint on machines
• Previously known: 3 approximation to makespan for

identical machines without any cost constraint.
• Our result: (2, 1) approximation for GAP with hard

capacities.
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Applications

• GAP with outliers and hard profit constraints
• Some jobs may be dropped.
• Profit associated for scheduling a job.

• Total profit of the scheduled jobs must be at least Π.
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Applications

• GAP with outliers and hard profit constraints
• Studied by Gupta et al. in APPROX 09.
• If the optimum makespan is T with profit Π and cost C, the

best known approximation bound was (Π, 3T , (1 + ǫ)C).
• We improve it to (Π, (2 + ǫ)T , (1 + ǫ)C), for any constant

ǫ > 0.
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Applications:Others

• Max-min fair allocation problem
• Closing the integrality gap for a configuration LP considered

by Bansal & Sviridenko, Asadpour & Saberi.
• Extension to equitable partitioning of items.
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Applications:Others

• Random bipartite (b−)matching with sharp tail bounds for
given linear functions.

• Better approximation factor for special kind of linear
functions.
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Applications:Others

• Overlay network design.
• Studied by Andreev, Maggs, Meyerson & Sitaraman.
• Better approximation factor.
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GAP with hard capacity constraints on machines

• Guess the optimum makespan T .

∑

i ,j

ci ,jxi ,j ≤ C (Cost)
∑

i ,j

xi ,j = 1 ∀j (Assign)

∑

j

pi ,jxi ,j ≤ T ∀i (Load)
∑

j

xi ,j ≤ bi ∀i (Capacity)

xi ,j ∈ {0, 1} ∀i , j

xi ,j = 0 if pi ,j > T

• Relax the constraint “xi ,j ∈ {0, 1} ∀(i , j)” to
“xi ,j ∈ [0, 1] ∀(i , j)” to obtain the LP relaxation.

• Solve the LP to obtain the optimum LP solution x∗
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GAP with hard capacity constraints on machines

∑

i ,j

ci ,jxi ,j ≤ C (Cost)
∑

i ,j

xi ,j = 1 ∀j (Assign)

∑

j

pi ,jxi ,j ≤ T ∀i (Load)
∑

j

xi ,j ≤ bi ∀i (Capacity)

xi ,j ∈ {0, 1} ∀i , j

xi ,j = 0 if pi ,j > T

• Ignore (Cost) constraint.

• The expected value of the cost remains same.
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GAP with hard capacity constraints on machines

• Mk : Set of all machines with k jobs fractionally assigned to
it.

(D1) for each i ∈ M1, we drop its load and capacity
constraints.

(D2) for each i ∈ M2, we drop its load constraint and
rewrite its capacity constraint as
xi ,j1 + xi ,j2 ≤ ⌈xi ,j1 + xi ,j2⌉, where j1, j2 are the two
jobs fractionally assigned to i .

(D3) for each i ∈ M3 for which both its load and capacity
constraints are tight, drop its load constraint.
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GAP with hard capacity constraints on machines

Proof Steps

• Show that the algorithm never reaches a vertex of the
polytope. Thus we always make progress.

• Show that dropping constraints (D1), (D2) and (D3) does
not affect capacity and violates makespan only by a factor
of 2. proof

• If the final rounded vector is y∗, then E [y∗] = x∗. Thus the
expected cost remains C.

• Can be derandomized directly by the method of conditional
expectation to get a cost bound of C.

Skip
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached.

Skip
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached.

Notations
• mk = |Mk |, the number of machines with k jobs fractionally

scheduled on it.

• n′= the remaining number of jobs that are yet to be
assigned permanently to a machine.

• v = the number of variables xi ,j ∈ (0, 1).

• t= the number of linearly independent tight constraints in
the current polytope

Skip
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached.

Lower and upper bound on v

• v = m1 + 2m2 + 3m3 + 4m4 + ...

• v ≥ 2n′

Hence averaging,

v ≥ n′ +
m1

2
+ m2 +

3
2

m3 + 2m4 + ...

Skip



Review of Rounding Methods & Our Approach
Applications

GAP with hard capacity constraints on machines

GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached.

Number of constraints

• (Assign) constraints: n′

• Tight (Load) and (Capacity) constraints: by our “dropping
constraints” steps (D1), D2) and (D3), the number of tight
constraints (“Load” and/or “Capacity”) contributed by the
machines is at most m2 + m3 +

∑

k≥4 2mk .

Hence the total number of constraints
t ≤ n′ + m2 + m3 +

∑

k≥4 2mk .

Skip
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached.

Compare number of variables and constraints

• v ≥ n′ + m1
2 + m2 + 3

2m3 + 2m4 + 5
2m5 + ...

• t ≤ n′ + m2 + m3 + 2m4 + 2m5 + ...

For the system to be determined, v ≤ t .

m1 = 0, m3 = 0, m5 = m6 = m7 = . . . = 0

t = v

Skip
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached.

• Remaining machines have all degree 2 or 4.

• All tight (Assign) and (Capacity) constraints are counted in
t .

• But they are not all linearly independent.

Skip
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GAP with hard capacity constraints on machines

Capacity constraints are not violated.

• Capacities are integers.

• Capacity constraint is dropped only for machines in M1.

• Capacity of those machines must be ≥ 1.

Skip
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GAP with hard capacity constraints on machines

Makespan is violated at most by a factor of 2

Let X denote the final rounded variable. Then

∀i ,
∑

j∈J

Xi ,jpi ,j <

∑

j

x∗
i ,jpi ,j + maxj∈J:x∗

i,j∈(0,1)pi ,j ≤ 2T

• Load constraint is dropped for machines in M1. But only
one extra job (already fractionally assigned to it) can get
permanently scheduled on it.

Skip
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GAP with hard capacity constraints on machines

Makespan is violated at most by a factor of 2

Let X denote the final rounded variable. Then

∀i ,
∑

j∈J

Xi ,jpi ,j <

∑

j

x∗
i ,jpi ,j + maxj∈J:x∗

i,j∈(0,1)pi ,j ≤ 2T

• Load constraint is dropped for machines in M2.
• Capacity∈ (0, 1]: at most one job can be assigned.
• Capacity(1, 2]:to start with total fractional assignment is

more than 1 and finally all 2 jobs can get permanently
assigned to it.

Skip
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GAP with hard capacity constraints on machines

Makespan is violated at most by a factor of 2

Let X denote the final rounded variable. Then

∀i ,
∑

j∈J

Xi ,jpi ,j <

∑

j

x∗
i ,jpi ,j + maxj∈J:x∗

i,j∈(0,1)pi ,j ≤ 2T

• Load constraint is dropped for machines in M3, when they
have tight capacity constraints.

• Capacity of any such machine i must be 1 or 2.
• Capacity= 1: argued as above.
• Capacity= 2: to start with total fractional assignment of the

jobs was 2. Finally all 3 jobs can get permanently assigned
to it.

Skip
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Future Direction

• Possible connection with iterative rounding and extensions

• Connection to discrepancy theory Details .
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Thank You!
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• Lattice approximation problem: given A ∈ {0, 1}m×n and
p ∈ [0, 1]n, obtain a q ∈ {0, 1}n such that ||A.(q − p)||∞ is
small.

• lindisc(A) = maxp∈[0,1]n minq∈{0,1}n ||A(q − p)||∞

• Several results for bounding lindisc(A) for different
matrices.

• Our approach can be potentially useful in bounding the
lindisc of random column-sparse matrices.

END .
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