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Relax and Round Paradigm

e Relaxation: Given an instance of an optimization problem,
enlarge the set of feasible solutions | to some I’ O I.

e Example: Linear-programming (LP) relaxation of an integer
program

e Rounding: Efficiently compute an optimum solution x € I,

map x to nearby y € | and prove thaty is near optimum in |

We will focus on LP-relaxation of 0-1-integer program and LP
rounding methods.
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LP-Rounding

Various LP-rounding approaches exist.

e Deterministic rounding
e Randomized rounding

¢ Independent randomized rounding
e Dependent randomized rounding
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Limitation of Independent Rounding

Assignment Problem with Extra Linear Constraints

> Xy = b Viev (Assign Constraint)
j:(i,))eE
Y agx; < T Viev (Extra Linear Constraints)
j:(ij)eE

e Similar kind of problems studied by:
e General linear constraints: Arora, Frieze & Kaplan [FOCS
96]
e Constant number of constraints: Papadimitriou &
Yannakakis [FOCS 00], Grandoni, Ravi & Singh [ESA 09]
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Limitation of Independent Rounding

Assignment Problem with Extra Linear Constraints

> xy = by Viev (Assign Constraint)
j:(ij)€E
Y oagx; < T Viev (Extra Linear Constraints)
IHB)ISS

¢ Independent rounding by Raghavan & Thompson.

* By Chernoff-Hoeffding bound, with high probability extra
linear constraints are violated by £O(/|V | max; ; & j).

¢ Vertices violate matching constraints.

o
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Dependent Rounding

Assignment Problem with Extra Linear Constraints

> xy = by Viev (Assign Constraint)
j:(ij)€E
Y oagx; < T Viev (Extra Linear Constraints)
j:(i.))€E

e Several works on Dependent Rounding:

e Ageev & Sviridenko [Journal of Combinatorial Optimization
04]

¢ Srinivasan [FOCS 01]

e Gandhi, Khuller, Parthasarathy, Srinivasan [FOCS 02]

e Kumar, Marathe, Parthasarathy, Srinivasan[FOCS 05]

o
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Dependent Rounding

Assignment Problem with Extra Linear Constraints

> xj = b Viev (Assign Constraint)
j:(i,j)eE

Y oagx; < T Viev (Extra Linear Constraints)
j:(i,))€E

e Work of Gandhi et al. achieves

o All matching constraints are satisfied with probability 1.

e Variables incident on a vertex are negatively correlated.

e Can still apply Chernoff-Hoeffding bound to get,
+0(+/[V| max; j & ;) violation.

i
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New Rounding Method

Assignment Problem with Extra Linear Constraints

> Xy = b Viev (Assign Constraint)
j:(i,))eE
Y agx; < T Viev (Extra Linear Constraints)
j:(ij)eE

e Using our rounding method we get,
¢ All matching constraints are satisfied with probability 1.
o Extra linear constraints are violated only by +max; ja; ;.
e Can also handle additional cost constraint:

>_(ijyee CijXij < C.

i
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Our Rounding Method

minimize cX
S.t
Ax <b
x € [0,1]"

e We have an n dimensional system of linear constraints,
Ax < b with additional constraints, x € [0, 1]".

e We are given some x* € [0, 1]"
e We want to round x* to integer solution.
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Our Rounding Method: Main Idea

e Linear constraints define a polytope. )
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Our Rounding Method: Main Idea

e Not at a vertex of the polytope:
e Randomly move on the current facet.
e The expected value of each variable does not change.
o Either round a new variable or make some other constraint
tight.
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Our Rounding Method: Main Idea

e At a vertex:

¢ Relax the polytope by reducing the number of tight
constraints.

e Drop or combine constraints.
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Our Rounding Method: Example in 2-dimension
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Our Rounding Method

@ If y* is the final rounded solution, then E[y*] = x*

® A variable rounded to 0, 1 is never changed.
©® A constraint dropped or combined is never reinstated.

@ At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.




Review of Rounding Methods & Our Approach

Our Rounding Method

New Rounding Method

Properties
@ If y* is the final rounded solution, then E[y*] = x*
® A variable rounded to 0, 1 is never changed.
©® A constraint dropped or combined is never reinstated.

@ At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.

Property (2), (3) and (4) ensure that the process terminates
after O(n + m) steps, where n is the total number of variables
and m is the total number of constraints.
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New Rounding Method

Our Rounding Method

@ If y* is the final rounded solution, then E[y*] = x*
® A variable rounded to 0, 1 is never changed.
©® A constraint dropped or combined is never reinstated.

@ At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.

If no constraint is dropped or combined, then the integer
solution obtained is optimum.
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Our Rounding Method

New Rounding Method

Properties
@ If y* is the final rounded solution, then E[y*] = x*
® A variable rounded to 0, 1 is never changed.
©® A constraint dropped or combined is never reinstated.

@ At each rounding step, either a new variable gets rounded
or a new constraint becomes tight.

-

Choice of constraints to drop or combine is problem specific
and are chosen in a way to minimize the violation of the original
constraints.
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Applications

Unrelated Parallel Machine Scheduling & GAP

[8,9,10,1,5,7,6, 2, 3, 4]

MACHINES
-

PROCESSING
TIME

JOBS
* p; . processing time of job j on machine i. They are
unrelated.
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load (sum of processing time of the allocated jobs) on any
machine.
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Unrelated Parallel Machine Scheduling & GAP
[8,9,10,1,5,7,6, 2, 3, 4]

e Makespan Minimization: Minimize the maximum total
load (sum of processing time of the allocated jobs) on any
machine.

e 2 approximation for makepspan minimization in UPM by
Lenstra, Shmoys & Tardos.
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Unrelated Parallel Machine Scheduling & GAP

[8,9,10,1,5,7,6, 2, 3, 4]

e Generalized Assignment Problem (GAP): We incur a
cost of ¢; ; if we schedule job j on machine i. Minimize
makespan within a cost C.

¢ (2,1) approximation for makespan and cost for GAP by
Shmoys & Tardos.
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Applications

e Extension of unrelated parallel machine scheduling and
generalized assignment problem with
e Hard capacity constraints on machines.
e Hard profit constraints with outliers.
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Applications

MACHINES

MAKESPAN=6

PROCESSING
TIME

JOBS
No capacity constraints

e GAP with hard capacity constraint on machines
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Applications

MACHINES

.

MAKESPAN=7

PROCESSING
TIME

JOBS
Capacity constraint 2 on each
machine

e GAP with hard capacity constraint on machines
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Applications

e GAP with hard capacity constraint on machines
e Handling hard capacity constraints is often tricky.

e Capacitated covering problems, capacitated facility location
problem
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Applications

e GAP with hard capacity constraint on machines
e Servers often have limits on the number of jobs they can

process.
e Studied by
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Applications

e GAP with hard capacity constraint on machines
e Previously known: 3 approximation to makespan for
identical machines without any cost constraint.
e Our result: (2,1) approximation for GAP with hard
capacities.
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Applications

e GAP with outliers and hard profit constraints

e Some jobs may be dropped.
o Profit associated for scheduling a job.

o Total profit of the scheduled jobs must be at least IN.
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Applications

e GAP with outliers and hard profit constraints

e Studied by Gupta et al. in APPROX 09.

o If the optimum makespan is T with profit [1 and cost C, the
best known approximation bound was (M, 3T, (1 + €)C).

e We improve itto (M, (2 +¢)T, (1 4 €)C), for any constant
e> 0.
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Applications:Others

e Max-min fair allocation problem
e Closing the integrality gap for a configuration LP considered
by Bansal & Sviridenko, Asadpour & Saberi.
e Extension to equitable partitioning of items.
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Applications:Others

e Random bipartite (b—)matching with sharp tail bounds for
given linear functions.

o Better approximation factor for special kind of linear
functions.
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Applications:Others

e Overlay network design.

o Studied by Andreev, Maggs, Meyerson & Sitaraman.
o Better approximation factor.
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GAP with hard capacity constraints on machines

e Guess the optimum makespan T.
> cijxj<C  (Cost) ZX., =1Vj  (Assign)

> pixij<TVi (Load) > xij <l Vi (Capacity)
j i
Xij € {0,1} Vi, ]
Xij =0 ifpi,j >T

 Relax the constraint “x; ; € {0,1} V(i,j)" to

“xij € [0,1] V(i,])" to obtain the LP relaxation.
e Solve the LP to obtain the optimum LP solution x*
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GAP with hard capacity constraints on machines

> cijxj<C  (Cost) ZX., =1Vj  (Assign)

> pijxij<TVi  (Load) > xj<bVi (Capacity)
J i
Xij € {0,1} Vi,]
Xij =0 ifpi,j >T

e Ignore (Cost) constraint.
e The expected value of the cost remains same.
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GAP with hard capacity constraints on machines

e My: Set of all machines with k jobs fractionally assigned to
it.

(D1) for eachi € M1, we drop its load and capacity
constraints.

(D2) for each i € My, we drop its load constraint and
rewrite its capacity constraint as
Xij, T Xij, < in g1 T Xi ,J'z-I' where j, j, are the two

jobs fractionally assigned to i.

(D3) for each i € M3 for which both its load and capacity
constraints are tight, drop its load constraint.

>
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GAP with hard capacity constraints on machines

Proof Steps

e Show that the algorithm never reaches a vertex of the
polytope. Thus we always make progress.
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GAP with hard capacity constraints on machines

Proof Steps

e Show that dropping constraints (D1), (D2) and (D3) does
not affect capacity and violates makespan only by a factor
of 2.
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GAP with hard capacity constraints on machines

Proof Steps

e If the final rounded vector is y*, then E[y*] = x*. Thus the
expected cost remains C.

e Can be derandomized directly by the method of conditional
expectation to get a cost bound of C.
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached. J

e my = |Mg/|, the number of machines with k jobs fractionally
scheduled on it.

e n’=the remaining number of jobs that are yet to be
assigned permanently to a machine.

e v = the number of variables x; j € (0, 1).

e t=the number of linearly independent tight constraints in
the current polytope
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached. )

Lower and upper bound on v

e V=mq+2my+ 3mz +4my + ...
o Vv >2n

Hence averaging,

;Mg 3
vV >n +7+m2+§m3+2m4+...
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached. )

Number of constraints

¢ (Assign) constraints: n’

e Tight (Load) and (Capacity) constraints: by our “dropping
constraints” steps (D1), D2) and (D3), the number of tight
constraints (“Load” and/or “Capacity”) contributed by the
machines is at most mp +mz + >\ - 4 2My.

Hence the total number of constraints
t<n'+my+mg+ 3., 2m.
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached. )

Compare number of variables and constraints

ov>n 4+ B4 my+ 3mz+2my + 3ms + ...
et <n +my+ms+2my +2ms + ...

For the system to be determined, v < t.

m=0m3=0mMs=mg=my=...=0

t=v
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GAP with hard capacity constraints on machines

In no iteration a vertex of the current polytope is reached. )

e Remaining machines have all degree 2 or 4.

o All tight (Assign) and (Capacity) constraints are counted in
t.

e But they are not all linearly independent.
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GAP with hard capacity constraints on machines

Capacity constraints are not violated. )

e Capacities are integers.
e Capacity constraint is dropped only for machines in M.

e Capacity of those machines must be > 1.
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GAP with hard capacity constraints on machines

Makespan is violated at most by a factor of 2

Let X denote the final rounded variable. Then

vi, in,jpi,J < infjpi,j + MaXjegx e(0,1)Pij = 2T
j€d j

e Load constraint is dropped for machines in M;. But only
one extra job (already fractionally assigned to it) can get
permanently scheduled on it.
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GAP with hard capacity constraints on machines

Makespan is violated at most by a factor of 2

Let X denote the final rounded variable. Then

Vi, in,jpi,j < fofjpi,j + MaXjeyixc(0,)Pij < 2T
jed j

e Load constraint is dropped for machines in M.

e Capacitye (0, 1]: at most one job can be assigned.

e Capacity(1, 2]:to start with total fractional assignment is
more than 1 and finally all 2 jobs can get permanently
assigned to it.
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GAP with hard capacity constraints on machines

Makespan is violated at most by a factor of 2

Let X denote the final rounded variable. Then

Vi, ) OXigpig < > X5pij + MaXjcy.x:c01)Pij < 2T
jed j

e Load constraint is dropped for machines in M3, when they
have tight capacity constraints.
e Capacity of any such machine i must be 1 or 2.
e Capacity= 1: argued as above.
e Capacity= 2: to start with total fractional assignment of the
jobs was 2. Finally all 3 jobs can get permanently assigned
to it.

>
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Future Direction

e Possible connection with iterative rounding and extensions

e Connection to discrepancy theory
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Thank You!
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Lattice approximation problem: given A € {0,1}™*" and
p € [0,1]", obtain a q € {0,1}" such that ||A.(d — p)||~ iS
small.

lindisc(A) = maxpe(o,10 MiNge(o,13n [|A(G — P)llo

Several results for bounding lindisc(A) for different
matrices.

Our approach can be potentially useful in bounding the
lindisc of random column-sparse matrices.
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