A Structured Wikipedia for Mathematics

JANUARY 6, 2010 ICS POSTER TALK BY HENRY LIN

OR "MATHEMATICS IN A WEB 2.0 WORLD"

Overview

Background and motivation

• A new system for organizing mathematics

- An interesting new phenomenon: how the Internet is changing the way research is conducted
- Open questions

- Problem: Related work is difficult to find
 - Large amount of research is produced each year
 - Many overlapping fields of research
 - Naming/keyword classification can be inadequate

• In theoretical CS, often need to search for related:

- Mathematical theorems
- Algorithmic problems
- o Complexity classes
- o Open questions
- Etc.

Existing Resources on the Internet

Wikipedia/PlanetMath:

- Stores general knowledge and knowledge on mathematics
 - o www.planetmath.org by Nathan Egge, Aaron Krowne, and others
 - o www.wikipedia.org by Jimmy Wales, Larry Sanger, and others

Complexity Zoo/Complexity Garden:

- Stores complexity classes and computational problems
 - o qwiki.stanford.edu/wiki/complexity_zoo by Scott Aaronson, and others
 - qwiki.stanford.edu/wiki/complexity_garden by Hunter Monroe, and others
- Open Problem Garden: stores open problems
 garden.irmacs.sfu.ca by Matt DeVos and Robert Šámal
- The Scheduling Zoo: stores results on scheduling problems
 - o www.lix.polytechnique.fr/~durr/query/ by Peter Brucker and Sigrid Knust

A Structured Wikipedia for Mathematics

- Except for the scheduling zoo, the previous systems are difficult to use to search for related work
- Can a better system be designed to help organize existing results and open questions?
- The system must be:
 - Simple to understand
 - Easy to use
 - Organize and link related results, for better searching

A Structured Wikipedia for Mathematics

One idea to help organize related work:

- A collaborative website like Wikipedia
- Use indentation to structure results
- Structure allows system to organize and automatically link related results

A special case of Chernoff's Bound

Initial Conditions:

- Let $x_1, x_2, ..., x_n$ be
 - Independent random variables
 - Binary random variables
 - With probability $\frac{1}{2}$ of being 0 or 1
- Let $X = x_1 + x_2 + \dots + x_n$
- Let $\mu = E[X]$
- Let $0 < \delta < 1$

Conclusion:

• $\Pr[X \ge (1-\delta) \cdot \mu] \le \exp(-\mu \cdot \delta^2)$

A special case of Chernoff's Bound

Initial Conditions:

- Let $x_1, x_2, ..., x_n$ be
 - Independent random variables
 - Binary random variables
 - With probability 1/2 of being 0 or 1
- Let $X = x_1 + x_2 + \dots + x_n$
- Let $\mu = E[X]$
- Let $\delta > 0$

Conclusion:

• Pr[X \geq (1+ δ)· μ] \leq exp(- μ · δ^2)

A general case of Chernoff's Bound

Initial Conditions:

- Let x₁, x₂, ..., x_n be
 - o Independent random variables
 - Binary random variables
 - With probability p_i of being 1 and (1- p_i) of being 0
- Let $X = x_1 + x_2 + \dots + x_n$
- Let $\mu = E[X]$
- Let $\delta > 0$

Conclusion:

• $\Pr[X \ge (1+\delta)\cdot\mu] \le (e^{\delta} / (1+\delta)^{(1+\delta)})^{\mu}$

Hoeffding's Inequality

Initial Conditions:

- Let x₁, x₂, ..., x_n be
 Independent random variables
 Such that x_i ∈ [a_i, b_i] almost surely
- Let $X = x_1 + x_2 + \dots + x_n$
- Let $\mu = E[X]$
- Let $\delta > 0$
- Conclusion:
- Pr[X ≥ μ + δ] ≤ exp(- 2· $\delta^2 / \sum (a_i b_i)^2$)

Azuma–Hoeffding Inequality

Initial Conditions:

- Let x₁, x₂, ..., x_n be
 Such that Y_i = x₁ + ... + x_i forms a martingale
 Such that |x_i| < c_i almost surely
- Let $X = x_1 + x_2 + \dots + x_n$
- Let $\mu = E[X]$
- Let $\delta > 0$
- Conclusion:
- Pr[X $\geq \delta$] $\leq \exp(-\delta^2 / 2 \cdot \sum c_i^2)$

Linking related complexity classes

NP: Nondeterministic Polynomial-Time

- The class of decision problems solvable by an NP machine such that:
 - If the answer is 'yes,' at least one of the computation paths accept.
 - If the answer is 'no,' all of the computation paths reject.

RP: Randomized Polynomial-Time

- The class of decision problems solvable by an NP machine such that:
 - If the answer is 'yes,' at least 1/2 of the computation paths accept.
 - If the answer is 'no,' all of the computation paths reject.

BPP: Bounded-Error Probabilistic Polynomial-Time

- The class of decision problems solvable by an NP machine such that:
 - If the answer is 'yes,' at least 2/3 of the computation paths accept.
 - If the answer is 'no,' at least 2/3 of the computation paths reject.

• Is the above system adequate for organizing and linking related results?

• Should more rules be imposed on the system?

• What other functionality should be implemented into the system?

Other interesting projects

Tricki:

- A collaborative website to store problem-solving techniques in math
 - www.tricki.org by Tim Gowers and others

Polymath:

- Collaborative efforts to solve open math problems
 - www.polymathprojects.org by Tim Gowers and others

Vdash:

A collaborative website to store proofs in a formal, checkable manner
 www.vdash.org by Cameron Freer

The Polymath Project

- Collaborative work done over blogs, discussion forums, and Wiki pages
- Derived a new simpler proof for a variation on the density Hales-Jewett theorem.
 - o Initiated Feb 1, 2009
 - New result being written
 - Article about result published in Nature

- Can a similar structured system be developed to link and organize proofs, or ideas for proofs of theorems?
- Is there some structure that proofs can be written in to make them more understandable and checkable?
- Are there other ways to make collaborative research more feasible?

Future Work

• Future work to be found at: http://itcs.tsinghua.edu.cn/~henry/

• Or Google "Henry Lin ITCS"

• Questions?