A Structured Wikipedia for Mathematics

> JANUARY 6, 2010 ICS POSTER TALK BY HENRY LIN

OR"MATHEMATICS IN A WEB 2.O WORLD"

Overview

- Background and motivation
- A new system for organizing mathematics
- An interesting new phenomenon: how the Internet is changing the way research is conducted
- Open questions

Background

- Problem: Related work is difficult to find
- Large amount of research is produced each year
- Many overlapping fields of research
- Naming/keyword classification can be inadequate
- In theoretical CS, often need to search for related:
- Mathematical theorems
- Algorithmic problems
- Complexity classes
- Open questions
- Etc.

Existing Resources on the Internet

Wikipedia/PlanetMath:

- Stores general knowledge and knowledge on mathematics
- www.planetmath.org by Nathan Egge, Aaron Krowne, and others
- www.wikipedia.org by Jimmy Wales, Larry Sanger, and others

Complexity Zoo/Complexity Garden:

- Stores complexity classes and computational problems
- qwiki.stanford.edu/wiki/complexity_zoo by Scott Aaronson, and others
- qwiki.stanford.edu/wiki/complexity_garden by Hunter Monroe, and others
- Open Problem Garden: stores open problems
- garden.irmacs.sfu.ca by Matt DeVos and Robert Šámal
- The Scheduling Zoo: stores results on scheduling problems
- www.lix.polytechnique.fr/~durr/query/ by Peter Brucker and Sigrid Knust

A Structured Wikipedia for Mathematics

 (- Except for the scheduling zoo, the previous systems are difficult to use to search for related work
- Can a better system be designed to help organize existing results and open questions?
- The system must be:
- Simple to understand
- Easy to use
- Organize and link related results, for better searching

A Structured Wikipedia for Mathematics

 ©One idea to help organize related work:

- A collaborative website like Wikipedia
- Use indentation to structure results
- Structure allows system to organize and automatically link related results

A special case of Chernoff's Bound

Initial Conditions:

- Let $x_{1}, x_{2}, \ldots, x_{n}$ be
- Independent random variables
- Binary random variables
- With probability $1 / 2$ of being 0 or 1
- Let $X=x_{1}+x_{2}+\ldots+x_{n}$
- Let $\mu=E[X]$
- Let $0<\delta<1$

Conclusion:

- $\operatorname{Pr}[\mathrm{X} \geq(1-\delta) \cdot \mu] \leq \exp \left(-\mu \cdot \delta^{2}\right)$

A special case of Chernoff's Bound

Initial Conditions:

- Let $x_{1}, x_{2}, \ldots, x_{n}$ be
- Independent random variables
- Binary random variables
- With probability $1 / 2$ of being 0 or 1
- Let $X=x_{1}+x_{2}+\ldots+x_{n}$
- Let $\mu=\mathrm{E}[\mathrm{X}]$
- Let $\delta>0$

Conclusion:

- $\operatorname{Pr}[\mathrm{X} \geq(1+\delta) \cdot \mu] \leq \exp \left(-\mu \cdot \delta^{2}\right)$

A general case of Chernoff's Bound

Initial Conditions:

- Let $x_{1}, x_{2}, \ldots, x_{n}$ be
- Independent random variables
- Binary random variables
- With probability p_{i} of being 1 and $\left(1-p_{i}\right)$ of being 0
- Let $X=x_{1}+x_{2}+\ldots+x_{n}$
- Let $\mu=\mathrm{E}[\mathrm{X}]$
- Let $\delta>0$

Conclusion:

- $\operatorname{Pr}[X \geq(1+\delta) \cdot \mu] \leq\left(\mathrm{e}^{\delta} /(1+\delta)^{(1+\delta)}\right)^{\mu}$

Hoeffding's Inequality

Initial Conditions:

- Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ be
- Independent random variables
- Such that $\mathrm{x}_{\mathrm{i}} \in\left[\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right]$ almost surely
- Let $\mathrm{X}=\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{n}}$
- Let $\mu=\mathrm{E}[\mathrm{X}]$
- Let $\delta>0$

Conclusion:

- $\operatorname{Pr}[\mathrm{X} \geq \mu+\delta] \leq \exp \left(-2 \cdot \delta^{2} / \sum\left(\mathrm{a}_{\mathrm{i}}-\mathrm{b}_{\mathrm{i}}\right)^{2}\right)$

Azuma-Hoeffding Inequality

Initial Conditions:

- Let $x_{1}, x_{2}, \ldots, x_{n}$ be
- Such that $Y_{i}=x_{1}+\ldots+x_{i}$ forms a martingale
- Such that $\left|x_{i}\right|<c_{i}$ almost surely
- Let $X=x_{1}+x_{2}+\ldots+x_{n}$
- Let $\mu=\mathrm{E}[\mathrm{X}]$
- Let $\delta>0$

Conclusion:

- $\operatorname{Pr}[\mathrm{X} \geq \delta] \leq \exp \left(-\delta^{2} / 2 \cdot \sum \mathrm{c}_{\mathrm{i}}{ }^{2}\right)$

Linking related complexity classes

NP: Nondeterministic Polynomial-Time

- The class of decision problems solvable by an NP machine such that:
- If the answer is 'yes,' at least one of the computation paths accept.
- If the answer is 'no,' all of the computation paths reject.

RP: Randomized Polynomial-Time

- The class of decision problems solvable by an NP machine such that:
- If the answer is 'yes,' at least $1 / 2$ of the computation paths accept.
- If the answer is 'no,' all of the computation paths reject.

BPP: Bounded-Error Probabilistic Polynomial-Time

- The class of decision problems solvable by an NP machine such that:
- If the answer is 'yes,' at least $2 / 3$ of the computation paths accept.
- If the answer is 'no,' at least $2 / 3$ of the computation paths reject.

Open Questions

- Is the above system adequate for organizing and linking related results?
- Should more rules be imposed on the system?
- What other functionality should be implemented into the system?

Other interesting projects

Tricki:

- A collaborative website to store problem-solving techniques in math
- www.tricki.org by Tim Gowers and others

Polymath:

- Collaborative efforts to solve open math problems
- www.polymathprojects.org by Tim Gowers and others

Vdash:

- A collaborative website to store proofs in a formal, checkable manner
- www.vdash.org by Cameron Freer

The Polymath Project

- Collaborative work done over blogs, discussion forums, and Wiki pages
- Derived a new simpler proof for a variation on the density Hales-Jewett theorem.
- Initiated Feb 1, 2009
- New result being written
- Article about result published in Nature

Open Questions

- Can a similar structured system be developed to link and organize proofs, or ideas for proofs of theorems?
- Is there some structure that proofs can be written in to make them more understandable and checkable?
- Are there other ways to make collaborative research more feasible?
\square

Future Work

 (- Future work to be found at: http://itcs.tsinghua.edu.cn/~henry/
- Or Google "Henry Lin ITCS"
- Questions?

