On the Construction of One-Way Functions from Hverage Case Hardnoss

Noam Livne
Weizmann Institute

Cood riddllos

- What makes a riddle a good riddle?
- Here's a riddle:
- Three turtles are walking in the desert.
- $1^{\text {st }}$ one says: "Behind me are two turtles."
- $2^{\text {nd }}$ one says: "In front of me is one turtle, and behind me is another one."
- $3^{\text {rd }}$ one says: "In front of me are two turtles, and behind me is one."
- How is this possible?
- A good riddle is a riddle that is hard, but for which the one telling it knows the solution (otherwise it's just an annoying question).
- One-way functions (OWF) are functions that are easy to compute, but hard on average to invert.
- OWF's are necessary for nearly all crypto, and sufficient for a lot.
- Since the existence of OWF implies $P \neq N P$, a line of work studied the possibility of proving the existence of OWF based on the assumption that $\mathrm{P} \neq \mathrm{NP}$ [Brassard '79, Feigenbaum\&Fortnow '93, Bogdanov\&Trevisan '03, AGGM '06].
- Bottom line: certain types of reductions cannot reduce the security of certain types of OWF's to $\mathrm{P} \neq \mathrm{NP}$ (under some assumptions).

Our starting point

- Such reductions attempt to overcome two challenges at once:

$$
P \neq \mathrm{NP}) \text { average-case hardness) OWF }
$$

worst-case to average-case reduction
(Average-case hardness (ACH): A search problem R and a sampler S where R is hard on average under S.)

- Since the first challenge is hard by itself, it is inviting to study the second:

Can we prove ACH implies OWF?

Gan we prove ACH implies OWFP

Suppose we have a relation R that is hard under a sampler S, and we want to prove the existence of OWF. 2 approaches:

1. For some candidate OWF, reduce its security to the hardness of R under S.
2. Construct a OWF from (R,S).

Gan we prove ACH implies OWF?

Why?
The OWF maps the randomness for S^{*}, to the instance only (without the solution). If one could retrieve the randomness given the instance, he could run S^{*} on that randomness and obtain the pair.
"If we can sample ho allenges for w answers, then OWF ex s."
is hard under a sampler S , e of OWF. 2 approaches:

- R need not be poly-time verifiable.
- S^{*} need not output only YESinstances. we know the
"If there exists a search problem R and a poly-time sampler S^{*} that outputs instance-solution pairs of R, where the distribution on the instances is hard on average, then OWF's exist."

The approach for proving ACH implies OWF

- Question: When can a regular sampler be "transformed" into a pairs sampler?

Under some standard assumption (which is weaker than the existence of OWP):

Roughly: For every polynomial p, there is a pair (R, S) that cannot be transformed into a pairs sampler S^{*} with randomness complexity p.

Under some standard assumption (which is weaker than the existence of OWP):

There exists a sampler S s.t. for any (arbitrarily large) polynomial p and any (arbitrarily small) super-polynomial function f there exists a search problem R s.t.:

- R is hard under S;
- R is polynomially bounded and is verifiable in time $f(n)$;
- There is no efficient pairs sampler S^{*} for (R, S):
- If the $1^{\text {st }}$ element output by S^{*} is an R-YES-instance, then the $2^{\text {nd }}$ is a solution;
- The marginal distribution on the $1^{\text {st }}$ elements dominates S.
- S* has randomness complexity p.
- Our assumption: There exists ($\mathrm{R}^{\prime}, S^{\prime}$) with some properties (in particular R^{\prime} is hard under S^{\prime}). Implied by OWP.
- Based on (R^{\prime}, S^{\prime}), we construct (R, S).
- We assume an S^{*} exists for (R, S), and show that R^{\prime} is not hard under S^{\prime}, in contradiction.
- The crux: R and S are constructed such that:
- (R, S) "inherit" the hardness of ($\left.R^{\prime}, S^{\prime}\right)$;
- R ' is "embedded" in R, and S "imitates" S^{\prime};
- Any S^{*} for (R, S) enables solving R^{\prime} in the worst case:

$$
\begin{aligned}
& \{(\circlearrowleft, x),(w, \infty)\} 2 R \\
&)\{x, w\} 2 R^{\prime}
\end{aligned}
$$

Any S^{*} for (R, S) enables solving R^{\prime} in the worst case:

- Clearly, S* enables obtaining random R-instance-solution pairs (and thus random R^{\prime}-instance-solution pairs);
- The solution in each pair helps obtaining randomness for a new pair, where the R^{\prime}-instance is a little closer to any desired instance;
- Thus, given some instance x of R', using S^{*} we start with a random pair of R (and thus a random embedded instance of R'), and have the embedded R'-instance become closer and closer to x ;
- When reaching an R -instance with x embedded in it, the R solution contains an R'-solution for x .
$\{(\hookleftarrow, x),(w, \infty)\} 2 R)\{x, w\} 2 R^{\prime}$

Proof by animation

"If S^{*} exists (for R, S) then R' can be solved in the worstcase."

Suppose we want to solve x under R'.

But, we want to diagonalize against all possible $S^{* \prime}$...
S^{*} should dominate S. So we let S output any sampler with noticeable prob.

This "enforces" any potential S* to output any sampler with noticeable prob.
randomness
input: 1

$\left(\circlearrowleft, x^{(0)}\right)$ is an R-YES-instance
$)\left\{\left(\infty^{\prime} x^{(0)}\right),\left(w^{(0)}, \infty\right)\right\} 2 R$
$)\left\{x^{(0)}, w^{(0)}\right\} 2 R^{\prime}$

This will help us find $x^{(1)}$ that is Hamming-closer to x.

$$
S^{*}\left(r^{(0)}\right)=\left\{\left(S^{\star}, x^{(0)} \oplus e_{i}\right), \infty\right\}
$$

Definition of R and S

We're given R^{\prime}, S^{\prime}.
Definition of R :
$R:\left\{(\langle M\rangle, x),\left(w, r_{1}, \ldots, r_{|x|}\right)\right\}$ is in R iff:

- w is a solution for x under R';
- For all i, on input r_{i} the machine M outputs a pair where the $1^{\text {st }}$ element is $\left(\langle M\rangle, x \oplus e_{i}\right)$ (in at most $f(|x|)$ steps);
- For all $i,\left|r_{i}\right| \leq p(|x|)$.

Definition of R and S

We're given R^{\prime}, S^{\prime}.
Definition of S :
On input 1^{n} :

1. Choose i uniformly from $[0, \mathrm{n}]$.
2. Choose a potential sampler $\langle M\rangle$ uniformly from $\{0,1\}^{\mathrm{j}}$.
3. Choose x of length $\mathrm{n}-\mathrm{i}$ according to the distribution of S'.
4. Output ($\langle M\rangle, x$).

Note: $\operatorname{Pr}\left[S\left(1^{n}\right)=(\langle M\rangle, x)\right.$ for some $\left.x\right]=(n+1)^{-1} 2^{-|\langle M\rangle|}$.
"Every machine is output by S with noticeable probability."

Elahorating the proof [and the assumption]

We assume S^{*} exists for (R, S) and solve R^{\prime} in the worst case: On input x :

1. Run $S^{*}\left(1\left|\left\langle S^{*}\right\rangle\right|+|x|\right)$ repeatedly until it outputs a pair of the form $\left\{\left(\left\langle S^{*}\right\rangle, x^{(0)}\right), y\right\}$.
S outputs $\left\{S^{*}\right\rangle$ with noticeable probability, S^{*} dominates S
) S* outputs $\left\langle S^{*}\right\rangle$ with noticeable probability
) Step 1 takes expected poly time

Elahorating the proof [and the assumption]

We assume S^{*} exists for (R, S) and solve R^{\prime} in the worst case:
On input x :

1. Run $S^{*}\left(1\left|\left\langle S^{*}\right\rangle\right|+|x|\right)$ repeatedly until it outputs a pair of the form $\left\{\left(\left\langle S^{*}\right\rangle, x^{(0)}\right), y\right\}$.
We want ($\left.\left(S^{*}\right), x^{(0)}\right)$ to have an R-solution.
a) We assume some properties on R^{\prime} and S^{\prime}.
b) These yield some properties of R, S.
c) These yield that all involved instances are YES-instances. The existence of (R^{\prime}, S^{\prime}) with these properties is implied by the existence of onto OWF (and OWP).

Elahorating the proof [and the assumption]

We assume S^{*} exists for (R, S) and solve R^{\prime} in the worst case:
On input x:

1. Run $S^{*}\left(1\left|\left\langle S^{*}\right\rangle\right|+|x|\right)$ repeatedly until it outputs a pair of the form $\left\{\left(\left\langle S^{*}\right\rangle, x^{(0)}\right), y\right\}$.
2. Parse y to $\left(w^{(0)}, r^{(0)}{ }_{1}, \ldots, r^{(0)}{ }_{n}\right)$.
3. Let i_{1}, \ldots, i_{h} be the bits that are different between $x^{(0)}$ and x.

For $\mathrm{j}=1$ to h :
Use $r^{(j-1)} i_{j}$ as randomness for S^{*} to obtain output

$$
\left\{\left(\left\langle S^{*}\right\rangle, x^{(j)}\right),\left(w^{(j)}, r^{(j)}{ }_{1}, \ldots, r^{(j)}\right)\right\} .
$$

4. Output $w^{(h)}$.

Interpretation of our result

- We asked: When can a regular sampler be "transformed" into a pairs sampler?
- We saw: (Under some assumption): There is a (universal) sampler that for any polynomial randomness bound cannot be transformed into a pairs-sampler with that randomness WRT some R.
- "Transformed samplers (S*) can require arbitrarily large polynomial randomness."
- A "generic" transformation: Given any S that is hard for some (reasonable) R, transform it to a pairs sampler that uses randomness that depends only on S.
- A generic transformation does not exist.

