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• What makes a riddle a good riddle?

• Here’s a riddle:

• Three turtles are walking in the desert.

• 1st one says: “Behind me are two turtles.”

• 2nd one says: “In front of me is one turtle, and behind 

me is another one.”

• 3rd one says: “In front of me are two turtles, and 

behind me is one.”

• How is this possible?

• A good riddle is a riddle that is hard, but for which the one 

telling it knows the solution (otherwise it’s just an 

annoying question). 

Good riddles



• One-way functions (OWF) are functions that are easy to 

compute, but hard on average to invert.

• OWF’s are necessary for nearly all crypto, and sufficient 

for a lot.

• Since the existence of OWF implies P≠NP,  a line of work 

studied the possibility of proving the existence of OWF 

based on the assumption that  P≠NP [Brassard ’79, 

Feigenbaum&Fortnow ’93, Bogdanov&Trevisan ’03, AGGM 

’06].

• Bottom line: certain types of reductions cannot reduce the 

security of certain types of OWF’s to P≠NP (under some 

assumptions).

Background



• Such reductions attempt to overcome two challenges at 

once:

(Average-case hardness (ACH): A search problem R and a 

sampler S where R is hard on average under S.)

• Since the first challenge is hard by itself, it is inviting to 

study the second:

Can we prove ACH implies OWF?

Our starting point

P≠NP ) OWF) average-case hardness

worst-case to average-case reduction



Suppose we have a relation R that is hard under a sampler S, 

and we want to prove the existence of OWF. 2 approaches:

1. For some candidate OWF, reduce its security to the 

hardness of R under S.

2. Construct a OWF from (R,S).

Can we prove ACH implies OWF?



Suppose we have a relation R that is hard under a sampler S, 

and we want to prove the existence of OWF. 2 approaches:

1. For some candidate OWF, reduce its security to the 

hardness of R under S.

2. Construct a OWF from (R,S).

• How can such a construction look like?

• Observation:

“If we can sample hard challenges for which we know the 

answers, then OWF exists.”

“If there exists a search problem R and a poly-time sampler 

S* that outputs instance-solution pairs of R, where the 

distribution on the instances is hard on average, then OWF’s 

exist.”

Can we prove ACH implies OWF ?

• R need not be 

poly-time 

verifiable.

• S* need not 

output only YES-

instances.

Why?

The OWF maps the randomness 

for S*, to the instance only

(without the solution).

If one could retrieve the 

randomness given the 

instance, he could run S* on 

that randomness and obtain 

the pair.



The approach for proving ACH implies OWF

input: 1n

randomness

(instance,

solution)

S*

input: 1n

randomness

instance (of R)S

⇒ domination

“regular 

sampler”

“pairs 

sampler”

• Question: When can a regular sampler be 

“transformed” into a pairs sampler?
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Under some standard assumption (which is weaker than 

the existence of OWP):

Roughly: For every polynomial p, there is a pair (R,S) that 

cannot be transformed into a pairs sampler S* with 

randomness complexity p.

Our result



Under some standard assumption (which is weaker than 

the existence of OWP):

There exists a sampler S s.t. for any (arbitrarily large) 

polynomial p and any (arbitrarily small) super-polynomial 

function f there exists a search problem R s.t.:

• R is hard under S;

• R is polynomially bounded and is verifiable in time f(n);

• There is no efficient pairs sampler S* for (R,S):

• If the 1st element output by S* is an R-YES-instance, 

then the 2nd is a solution;

• The marginal distribution on the 1st elements 

dominates S.

• S* has randomness complexity p.

Our result



• Our assumption: There exists (R’,S’) with some properties 

(in particular R’ is hard under S’). Implied by OWP.

• Based on (R’,S’), we construct (R,S).

• We assume an S* exists for (R,S), and show that R’ is not 

hard under S’, in contradiction.

• The crux: R and S are constructed such that:

• (R,S) “inherit” the hardness of (R’,S’);

• R’ is “embedded” in R, and S “imitates” S’;

• Any S* for (R,S) enables solving R’ in the worst case:

The idea

{(☁,x),(w,☁)}2 R

){x,w}2 R’



Any S* for (R,S) enables solving R’ in the worst case:

• Clearly, S* enables obtaining random R-instance-solution 

pairs (and thus random R’-instance-solution pairs);

• The solution in each pair helps obtaining randomness for a 

new pair, where the R’-instance is a little closer to any 

desired instance;

• Thus, given some instance x of R’, using S* we start with a 

random pair of R (and thus a random embedded instance of 

R’), and have the embedded R’-instance become closer and 

closer to x;

• When reaching an R-instance with x embedded in it, the R-

solution contains an R’-solution for x.

The idea

{(☁,x),(w,☁)}2 R ) {x,w}2 R’



r(0) (w(1),r(1)
1,…,r(1)

n)}

{(☁,x(0) ⊕ei),{(☁,x(1)),{(☁,x(0)),{(〈S*〉,x(1)),

S*(r(0)
i)={(☁,x(0)⊕ei),☁}S*(r(0)
i)={(S*,x(0)⊕ei),☁}

(w(0),r(0)
1,…,r(0)

n)}

“If S* exists (for R,S) then R’ can be solved in the worst-

case.”

Suppose we want to solve x under R’.

But, we want to diagonalize against all possible S*’s…

Proof by animation

input: 1n

randomness (w(0),☁)}

S*
2 R

(☁,x(0)) is an R-YES-instance

){(☁,x(0)),(w(0),☁)}2 R

){x(0),w(0)}2 R’

This will help us find x(1) that is 

Hamming-closer to x.

(For R,S)

r(0)
i

This “enforces” any potential 

S* to output any sampler with 

noticeable prob.

S* should dominate S. So we let S output 

any sampler with noticeable prob.



We’re given R’,S’.

Definition of R:

R :   { (〈M〉,x) , (w,r1,…, r|x|) } is in R iff:

• w is a solution for x under R’;

• For all i, on input ri the machine M outputs a pair where 

the 1st element is (〈M〉,x⊕ei) (in at most f(|x|) steps);

• For all i, |ri|≤ p(|x|).

Definition of R and S



We’re given R’,S’.

Definition of S:

On input 1n:

1. Choose i uniformly from [0,n].

2. Choose a potential sampler 〈M〉 uniformly from {0,1}i.

3. Choose x of length n-i according to the distribution of 

S’.

4. Output (〈M〉,x).

Note: Pr[S(1n) = (〈M〉,x) for some x] = (n+1)-1 2-|〈M〉|.

“Every machine is output by S with noticeable probability.”

Definition of R and S



We assume S* exists for (R,S) and solve R’ in the worst case:

On input x:

1. Run S*(1|〈S*〉|+|x|) repeatedly until it outputs a pair of the form 

{(〈S*〉,x(0)) , y}.

S outputs 〈S*〉 with noticeable probability, S* dominates S

) S* outputs 〈S*〉 with noticeable probability

) Step 1 takes expected poly time

Elaborating the proof (and the assumption)



We assume S* exists for (R,S) and solve R’ in the worst case:

On input x:

1. Run S*(1|〈S*〉|+|x|) repeatedly until it outputs a pair of the form 

{(〈S*〉,x(0)) , y}.

We want (〈S*〉,x(0)) to have an R-solution.

a) We assume some properties on R’ and S’.

b) These yield some properties of R,S.

c) These yield that all involved instances are YES-instances.

The existence of (R’,S’) with these properties is implied 

by the existence of onto OWF (and OWP).

Elaborating the proof (and the assumption)



We assume S* exists for (R,S) and solve R’ in the worst case:

On input x:

1. Run S*(1|〈S*〉|+|x|) repeatedly until it outputs a pair of the form 

{(〈S*〉,x(0)) , y}.

2. Parse y to (w(0),r(0)
1,…,r(0)

n).

3. Let i1,…,ih be the bits that are different between x(0) and x.

For j=1 to h:

Use r(j-1)
ij

as randomness for S* to obtain output 

{(〈S*〉,x(j)),(w(j),r(j)
1,…,r(j)

n)}.

4. Output w(h).

Elaborating the proof (and the assumption)



• We asked: When can a regular sampler be “transformed” 

into a pairs sampler?

• We saw: (Under some assumption): There is a (universal) 

sampler that for any polynomial randomness bound cannot 

be transformed into a pairs-sampler with that randomness 

WRT some R. 

• “Transformed samplers (S*) can require arbitrarily large 

polynomial randomness.”

• A “generic” transformation: Given any S that is hard for 

some (reasonable) R, transform it to a pairs sampler that 

uses randomness that depends only on S.

• A generic transformation does not exist.

Interpretation of our result



THANKS!


