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 What makes a riddle a good riddle?
e Here’s a riddle:
e Three turtles are walking in the desert.
e 15t one says: “Behind me are two turtles.”

e 2" one says: “In front of me is one turtle, and behind
me is another one.”

« 3rd one says: “In front of me are two turtles, and
behind me is one.”

e How is this possible?

e A good riddle is a riddle that is hard, but for which the one
telling it knows the solution (otherwise it’s just an
annoying question).



One-way functions (OWF) are functions that are easy to
compute, but hard on average to invert.

OWF’s are necessary for nearly all crypto, and sufficient
for a lot.

Since the existence of OWF implies P=NP, a line of work
studied the possibility of proving the existence of OWF
based on the assumption that P=NP [Brassard ’79,
Feigenbaum&Fortnow ’93, Bogdanov&Trevisan 03, AGGM
"06].

Bottom line: certain types of reductions cannot reduce the
security of certain types of OWF’s to P=NP (under some
assumptions).



e Such reductions attempt to overcome two challenges at
once:
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worst-case to average-case reduction

(Average-case hardness (ACH): A search problem R and a
sampler S where R is hard on average under S.)

e Since the first challenge is hard by itself, it is inviting to
study the second:

Can we prove ACH implies OWF?



Suppose we have a relation R that is hard under a sampler S,
and we want to prove the existence of OWF. 2 approaches:

1. For some candidate OWF, reduce its security to the
hardness of R under S.

2. Construct a OWF from (R,S).
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“If there exists a search problem R and a poly-time sampler
S* that outputs instance-solution pairs of R, where the
distribution on the instances is hard on average, then OWF’s
exist.”



The approach for proving ACH implies OWF
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e Question: When can a regular sampler be
“transformed” into a pairs sampler?



Under some standard assumption (which is weaker than
the existence of OWP):

Roughly: For every polynomial p, there is a pair (R,S) that
cannot be transformed into a pairs sampler S* with
randomness complexity p.



Under some standard assumption (which is weaker than
the existence of OWP):

There exists a sampler S s.t. for any (arbitrarily large)
polynomial p and any (arbitrarily small) super-polynomial
function f there exists a search problem R s.t.:

« Ris hard under S;

e R is polynomially bounded and is verifiable in time f(n);
e There is no efficient pairs sampler $* for (R,S):

o If the 15t element output by S* is an R-YES-instance,
then the 2" is a solution;

e The marginal distribution on the 15t elements
dominates S.

e S* has randomness complexity p.



'I'Ile idea

Our assumption: There exists (R’,S’) with some properties
(in particular R’ is hard under S’). Implied by OWP.

e Based on (R’,S’), we construct (R,S).

 We assume an S* exists for (R,S), and show that R’ is not
hard under S’, in contradiction.

e The crux: R and S are constructed such that:
e (R,S) “inherit” the hardness of (R’,S’);

« R’is “embedded” in R, and S “imitates” S’;

e Any S* for (R,S) enables solving R’ in the worst case:
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The idea

Any S* for (R,S) enables solving R’ in the worst case:

Clearly, S* enables obtaining random R-instance-solution
pairs (and thus random R’-instance-solution pairs);

The solution in each pair helps obtaining randomness for a
new pair, where the R’-instance is a little closer to any
desired instance;

Thus, given some instance x of R’, using S* we start with a
random pair of R (and thus a random embedded instance of
R’), and have the embedded R’-instance become closer and
closer to x;

When reaching an R-instance with x embedded in it, the R-
solution contains an R’-solution for x.
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“If S* exists (for R,S) then R’ can be solved in the worst-
case.”

Suppose we want to solve x under R’.

But, we want to diagonalize against all possible 5*’s...
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Definitionof R and $

We’re given R’,S’.

Definition of R:

R: { ((M),X), (W,rq,..., T1y;) }is in Riff:
e W is a solution for x under R’;

e For all i, on input r, the machine M outputs a pair where
the 15t element is ((M),x®e.) (in at most f(|x|) steps);

e Foralli, |r;|<p(Ix]).



Definitionof R and $
We’re given R’,S’.
Definition of S:
On input 1"
1. Choose i uniformly from [0,n].
2. Choose a potential sampler (M) uniformly from {0,1%}.

3. Choose x of length n-i according to the distribution of
S’.

4., Output ((M),x).

Note: Pr[S(1") = ((M),x) for some x] = (n+1)" 2- (W1,

“Every machine is output by S with noticeable probability.”



Elaborating the proof (and the assumption)
We assume S* exists for (R,S) and solve R’ in the worst case:
On input x:

1. Run S*(1191+1x1) repeatedly until it outputs a pair of the form

{((5),x©) , y}.
S outputs (5*) with noticeable probability, S* dominates S
) S* outputs (S*) with noticeable probability

) Step 1 takes expected poly time



We assume S* exists for (R,S) and solve R’ in the worst case:

On input x:

1. Run S*(1191+1x1) repeatedly until it outputs a pair of the form
{((5),x@) , y}.
We want ((S*),x©) to have an R-solution.

a) We assume some properties on R’ and S’.
b) These vield some properties of R,S.
c) These vield that all involved instances are YES-instances.

The existence of (R’,S’) with these properties is implied
by the existence of onto OWF (and OWP).



We assume S* exists for (R,S) and solve R’ in the worst case:
On input x:

1. Run S*(1191+1x1) repeatedly until it outputs a pair of the form

{((5%),x@) , y3.

2. Parse y to (W@ r©@_ .. r©).
3. Let i,,...,i, be the bits that are different between x(© and x.
For j=1 to h:
Use r(j'”ij as randomness for $* to obtain output
{((S%),xD), (WO,r0,,...,r0 3.
4. Output wh),



« We asked: When can a regular sampler be “transformed”
into a pairs sampler?

« We saw: (Under some assumption): There is a (universal)
sampler that for any polynomial randomness bound cannot
be transformed into a pairs-sampler with that randomness
WRT some R.

o “Transformed samplers (5*) can require arbitrarily large
polynomial randomness.”

e A “generic” transformation: Given any S that is hard for
some (reasonable) R, transform it to a pairs sampler that
uses randomness that depends only on S.

e A generic transformation does not exist.



THANKS!



