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Logistic Regression

• Used to predict the probability of an event

by learning weights on different attributes. 

Age Female Single Clicked Salary

40 1 1 1 10K

.03 .5 .05 .001 1.5

Weighted Sum: 
z = 40*0.03 + 1*0.5 + 1*0.05

1*.001 + 10*1.5
= 27.551 
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Logistic Regression

Fit the training data to Logistic Func


i

ii yp )(log

i  [n]

Maximize the log-likelihood 


 ixw

e
,

1

1





i

xwyX iiewL )1log()(
,

Minimize the log-loss
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(attributes, label) = (xi, yi)

xiRd yi= 1 or -1
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For (xi, yi), w predicts:
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Widely used in statistics, physics, social science, etc 



Logistic Regression
PrivateDifferentially

for all neighboring databases X and X’,

for all set of w, W 

A LR algorithm is -differentially private, if 

Pr[ (X)W]< e Pr[ (X’)W]

The behavior of the algorithm is “unchanged” no matter if a data point 
opts in or opts out.
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Differentially Private LR

Gradient Descent [FM] Add noise prop. to GS

GS(LR)  2/  [CM]

[CM]2  Algorithm



Algorithm [CM]2

• Draw noise vector b w.p p(b)  e-|b|

• Output w that minimizes 

LX(w)+ <b,w>

Perturb the Loss Function LX(w)!

b

Lap(1/ )

In [CM], simulation results show that [CM]2 outperforms the approach 
that adds noise proportional to GS.  



X: data set     w: true optimum       w’: output of [CM]2    

Noise = |w’-w | ???

Maybe much smaller than GS(LR) = 2/ 

O(1/TX)



|Opt(X) – Opt(X’)|
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Global sensitivity 
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However, 
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Real Sensitivity

Sensitivity of Function



Directional Local Sensitivity



• Analysis of the CM2 algorithm. 

• Directional local sensitivity.

Is the CM2 algorithm actually “tracing” DLS?

Summary



Algorithm [CM]1

• Adding noise proportional to the global sensitivity.

– Pick noise vector v with probability p(v)  e-|v|

– Output (w* + v)

w*
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On any line, the probability 

distribution of |v| is Lap(1/ )



Claim: GS(LR)  1/ 

X 2 = X 1 + (a, 1)
LX2 (w)=  |w|2 + ilog (1 + e-<xi, w>) + log (1 + e-<a, w>)
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X1 (w2) + u g
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0
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uLX1: 

First derivative is the integration of second derivative

along the line from w1 to w2

(u )
2 LX1 (w) =  + T
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Lots of previous works on differential privacy. 

Logistic Regression
PrivateDifferentially

Add noise to achieve privacy

Tradeoff b/w privacy and utility

sensitivity of function

low sensitivity  less noise



Roadmap

• Global sensitivity 

– [CM1]

• Local sensitivity

– Our algorithm and [CM2] 

• Directional local sensitivity

– Add non-spherical noises 

– [CM2] and noisy gradient descent []


