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Logistic Regression

e Used to predict the probability of an event
by learning weights on different attributes. P
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Logistic Regression

Fit the training data to Logistic Func

(attributes, label) = (x, v;)

For (x,, y,), w predicts:

w.p P,(1) =1 being positive
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Widely used in statistics, physics, social science, etc
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Differentially Private

Logistic Regression

A LR algorithm A is e-differentially private, if
for all neighboring databases X and X/,

Vo4

for all set of w, W
PrlA(X)eW]< e® Pr[A(X") e W]

The behavior of the algorithm is “unchanged” no matter if a data point
opts in or opts out.



Differentially Private LR

Gradient Descent [FM] Add noise prop. to GS
GS(LR) £ 2/ A [cwm]



Algorithm [CM]2
Perturb the Loss Function L*(w)!

* Draw noise vector b w.p p(b) oc e¢lbl oy \ -

Output w that minimizes

LX(w)+ <b,w>

In [CM], simulation results show that [CM]2 outperforms the approach
that adds noise proportional to GS.



X:dataset w:true optimum  w’: output of [CM]2

Noise = |[w’-w | ??7?
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Sensitivity of Function
| Opt(X) — Opt(X’)|
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Real Sensitivity

Global sensitivity



Directional Local Sensitivity

DLS,(u)
!
/\J\ ) |
DLS,(u) is the supremum of

opt(X) | :
BV opt(X’) |opt(X’) -opt(X) ]|

over all neighboring data sets X/, s.t.
opt(X’) -opt(X) is parallel to u.

DLS,(u) < e/Ty(u) *



Summary

* Analysis of the CM2 algorithm.
* Directional local sensitivity.

Is the CM2 algorithm actually “tracing” DLS?



Algorithm [CM]1

* Adding noise proportional to the global sensitivity.

— Pick noise vector v with probability p(v) oc eVl

— Output (W* +v)

On any line, the probability
distribution of |v| is Lap(1/€A)
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Claim: GS(LR) <1/ A
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Differentially Private

Logistic Regression

Lots of previous works on differential privacy.

Add noise to achieve privacy

Tradeoff b/w privacy and utility

sensitivity of function

low sensitivity =» less noise



Roadmap

* Global sensitivity
— [CM1]

* Local sensitivity
— Our algorithm and [CM?2]

* Directional local sensitivity
— Add non-spherical noises
— [CM2] and noisy gradient descent ]



