An Analysis of the Chaudhuri and Monteleoni Algorithm

--- a differentially private logistic regression algorithm

Cynthia Dwork, Parikshit Gopalan, Huijia (Rachel) Lin, Toniann Pitassi, Guy Rothblum, Adam Smith, Sergey Yekhanin

Logistic Regression

• Used to predict the probability of an event by learning weights on different attributes.

Age	Female	Single	Clicked	Salary
40	1	1	1	10K
Weights:				
.03	.5	.05	.001	1.5

Weighted Sum: z = 40*0.03 + 1*0.5 + 1*0.05 1*.001 + 10*1.5 = 27.551

Logistic Function

Logistic Regression

Widely used in statistics, physics, social science, etc

Differentially Private Logistic Regression

A LR algorithm \mathbb{A} is ε -differentially private, if for all neighboring databases X and X',

for all set of w, W

$\Pr[\mathbb{A}(X) \in W] < e^{\varepsilon} \Pr[\mathbb{A}(X') \in W]$

The behavior of the algorithm is "unchanged" no matter if a data point opts in or opts out.

Differentially Private LR

 $\begin{array}{ll} \mbox{Gradient Descent [FM]} & \mbox{Add noise prop. to GS} \\ & \mbox{GS(LR)} \leq \mbox{2/} \ \lambda \ \mbox{[CM]} \end{array}$

Algorithm [CM]2

Perturb the Loss Function L^X(w)!

 $Lap(1/\epsilon)$

b

- Draw noise vector b w.p $p(b) \propto e^{-\epsilon|b|}$
- Output w that minimizes

L^X(w)+ <b,w>

In [CM], simulation results show that [CM]2 outperforms the approach that adds noise proportional to GS.

X: data set w: true optimum w': output of [CM]2

Noise = |w'-w | ???

Sensitivity of Function

|Opt(X) - Opt(X')|

Real Sensitivity

Directional Local Sensitivity

DLS_X(u) is the supremum of |opt(X') -opt(X)|

over all neighboring data sets X', s.t. opt(X') -opt(X) is parallel to u.

 $DLS_x(u) \le e/T_x(u) *$

Summary

- Analysis of the CM2 algorithm.
- Directional local sensitivity.

Is the CM2 algorithm actually "tracing" DLS?

Algorithm [CM]1

- Adding noise proportional to the global sensitivity.
 - Pick noise vector v with probability $p(v) \propto e^{-\epsilon \lambda |v|}$
 - Output (w* + v)

On any line, the probability distribution of |v| is Lap $(1/\epsilon\lambda)$

Claim: GS(LR) \leq 1/ λ

Differentially Private Logistic Regression

Lots of previous works on differential privacy.

Add noise to achieve privacy

Tradeoff b/w privacy and utility

sensitivity of function

low sensitivity \rightarrow less noise

Roadmap

- Global sensitivity
 [CM1]
- Local sensitivity
 - Our algorithm and [CM2]
- Directional local sensitivity
 - Add non-spherical noises
 - [CM2] and noisy gradient descent []