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Good equilibria, Bad equilibria

Many games have both bad and good equilibria.

« TInsome places, everyone drives their own car. In some,
everybody uses and pays for good public transit.




Good equilibria, Bad equilibria

Fair cost-sharing

« nplayers in directed graph G, each edge e costs c..

* Player i wants to get from s; to t.
« all players share cost of edges they use with others.

* cost(s) = Zn: cost;(s)
i=1

S
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Fair cost-sharing

« nplayers in directed graph G, each edge e costs c..

* Player i wants to get from s; to t.
« all players share cost of edges they use with others.
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Good equilibrium: all use edge of cost 1.

(paying 1/n each)



Good equilibria, Bad equilibria

Fair cost-sharing

n players in directed graph G, each edge e costs c..

Player i wants to get from s; to t..
all players share cost of edges they use with others.

cost(s) = Zn: cost;(s)
i=1

S
Good equilibrium: all use edge of cost 1.

1 (paying 1/n each)

Bad equilibrium: all use edge of cost n.
T (paying 1 each)



Inefficiency of equilibria, PoA and PoS

Price of Anarchy (PoA): ratio of worst Nash equilibrium to OPT.

[Koutsoupias-Papadimitriou'99]

Price of Stability (PoS): ratio of best Nash equilibrium to OPT.

[Anshelevich et. al, 2004]

E.g., for fair cost-sharing, PoS is log(n), whereas PoA is n.

Significant effort spent on understanding these in CS.



Dynamics in Games

« Traditionally: convergence to some equilibria

- Best/better response
- Regret Minimization

- Imitation Dynamics

« Not so satisfactory in games with a huge gap between
POA Gnd POS 4 &
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What can we say about getting to good states?



Getting to Good Equilibria

I) Players entering one at a time

« Undirected single sink fair cost sharing, one at a time
entering from an empty config. [Charikar et al, 2008]

* Positive result; get within polylog(n) factor of OPT
« But fails in directed graphs.



Getting to Good Equilibria

I) Players entering one at a time

« Undirected single sink fair cost sharing, one at a time
entering from an empty config. [Charikar et al, 2008]

* Positive result; get within polylog(n) factor of OPT

Directed single sink

Subway/shared
van

Bad eq. result of 1
this dynamics:

k<n




Getting to Good Equilibria

IT) Noisy best response (simulated annealing on potential function)
[Blume95, Marden/Shamma08, Young05]

Pr.(a) « o—Costi(sa)/r  [Prob. of action a decreases exponentially with
| gap between the cost of a and cost of BR]

4+ & Show examples of directed cost sharing where no noisy- best-
*T  response alg can do better than POA within poly #of steps.

How can we get around this

Analyze if a helpful entity/source encourage (guide)
behavior to move from a bad state to a good state.



Getting to Good Equilibria

III) Public Service Advertisement [2e2m, sObA 2009]

* A helpful authority advertises a good joint action.

A random constant fraction of the players follow
the proposal temporarily; others do best response.

Strong positive result for fair cost sharing

If o fraction of players follow the advice,
then get within O(1/a) of PoS. [PoS = log(h), PoA = n]

Note: The model requires:

« receptive/qullible players
* non-receptive/stubborn players.
What if each player is a bit of both?



Our Proposed Model: High level

A more adaptive model

Each player has a few abstract actions.
Uses a learning, experts based alg. to decide which one to use

i\
Expert 1 ﬂ

Expert 2
Play Best Play the Proposed
Response Behavior

[ no rigid separation between receptive vs non-receptive players]



Our Model

Begin in some arbitrary configuration.

Someone analyzing game comes up with a good idea Y
(joint action of low cost) and proposes it. fﬁé

Players go in a random order:
With probability p; do proposed action.
With probability 1-p;, do best-response to current state.

Model A: p/'s stay fixed, at some poly time T*, everyone
commits one way or the other. [Learn then Decide]

Model B: Players use arbitrary learning rule to slowly vary
their p/s. (only limit is learning rate). [Smoothly Adaptive]

9 s
What will happen to the overall state of the system? 07



Our Results

Fair Cost Sharing Proposed action = OPT.

Learn then Decide

A poly number exploration of steps T* is sufficient s.t. the
expected cost at any time T > T* is O(log(n) log(nm)OPT).

Smoothly Adaptive

n=Q(m), p; > 3 for poly steps, then 3 T*=poly(n) s.t. whp
cost at any time T > T* is O(log(nm)OPT).

Consensus

For any graph, any initial configuration, if p; > # then whp play
will reach optimal in O(n logn) steps.



Fair Cost Sharing

Key Lemma #1 :

So long as all p; > € for constant ¢ > O, whp the cost will
reach O(OPT-log(mn)) within poly(n) steps.

Proof sketch preliminaries:

 Fair cost-sharing -- exact potential game: 3 potential fnc &
s.t. if any player makes a move decreasing their own cost by A,
then @ drops by A too.

S =(P1,P2,...,Pn) cost(S) = ) ce
ecU;P;

p(S) =) Ze: fe(x) where fo(x) =%

S X:]_

« For any state S, cost(S) < #(S) < cost(S)log(n).



Fair Cost Sharing

Key Lemma #1 :

So long as all p; > € for constant ¢ > O, whp the cost will
reach O(OPT:-log(mn)) within poly(n) steps.

Proof sketeh:

« Affter initial startup phase, whp all edges e with n_>log(nm) players
on them in OPT, will have > (¢/2)n, players on them now.

« Implies OPT is a "fairly good" response for everyone (cost
O(log(nm)OPT,), where OPT, = i's cost in OPT).

« So, if cost is currently high, if player i picked at random, expected
drop in @ is large (whether i does proposed action or BR).

 Can't happen for too long (use martingale tail bound).



Fair Cost Sharing

Key Lemma #1 :

So long as all p; > € for constant ¢ > O, whp the cost will
reach O(OPT:-log(mn)) within poly(n) steps.

.»\

Great - cost gets low pretty soon! ¢ 8 )

Vs
But not quite enough to get what we want...need to
ensure don't have: U,

-




Fair Cost Sharing, Learn then Decide

Key Lemma #1 :

So long as all p; > € for constant ¢ > O, whp the cost will
reach O(OPT:-log(mn)) within poly(n) steps.

Key Lemma #2:

So long as all p; > € for constant € > O, if cost at time T, is
O(OPT-log(mn)), then E[?] at any time T = T; + poly(n) is
O(OPT:-log(mn)-log(n)).

Final step for learn then decide model:

In final decision step, potential cannot increase by much.



Fair Cost Sharing, Smoothly Adaptive

Key Lemma #1 :

So long as all p; > € for constant ¢ > O, whp the cost will
reach O(OPT:-log(mn)) within poly(n) steps.

Final step for adaptive model:

If *many players of each type* can show that once cost is
low, it will *never* get high again.




Fair Cost Sharing, Smoothly Adaptive

Final step for adaptive model:

If *many players of each type* can show that once cost is
low, it will *never* get high again.

Proof sketeh:
Say cost is low at time t,.

 Hard to analyze cost of state directly, instead track upper
bound ¢’(S;) = cost(S;, U .. U Sy).

* ¢ changes at most m times.

 Many players of each type = average cost of each is low
compared to c*. Each change to ¢* is small. (c*/n;)

Total cost ever at most: cost(Sp)(1 4+ 1/nin)™



Consensus games

* Graph G, vertices have two actions: RED or BLUE.

costi(s) = D Iigzs)
(iJ)eE

Pay 1 for each edge with endpoints

of different color.

cost(s) = 2 cost,(s) +1

« OPT = all RED or all BLUE. Cost(OPT) = 1.



Consensus games
« OPT is an equilibrium so PoS = 1. But PoA = Q(n?).

Two cliques of size n. Each node has
en nbrs in other clique, € < 1.

English

 In fact, the bad equilibrium can be pretty stable.

1

* Even if proposal = “all BLUE", for any p < 3, if € < 3-p then whp BR
is to keep orig color and so no change....



Consensus games

Main result:

For any graph, any initial configuration, if p > 7, then whp
play will reach optimal in O(n log®n) steps. [proposal = all BLUE]

Main idea:

« Two ways a hode can become blue: by choosing the proposed action
or because it has more blue neighbors than red neigh, so BR is blue

* Even if many dependencies among neighbs, Pr(BR is blue) increases
quickly over time.



Conclusions

Propose a novel perspective for leading dynamics to a
good equilibrium and get around inherent lower bounds.

» Analyze process where some entity (who studies the game
and discovers a good behavior) proposes a good joint action.

> Players don't trust, so view proposal and best-response as
two "experts” and run arbitrary learning alg between them

> Positive results for cost-sharing and consensus games.



Open Questions

» Remove restriction on many players of each type for adaptive
model.

» Extend model to allow multiple proposed actions, hope to do
(nearly) as well as the best.

> Alternative ways to give players more info about game they are
playing to allow them to reach good states fast?






