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Estimation on large stream of i.i.d. samples

median 

How much space do you need in order to learn properties of the
underlying distribution?
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When can we learn statistics in small space?

median 

I Would help if statistics are unlikely to skew from a few outliers

I A natural and well-studied problem in statistics
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Robust statistics

Are usually more resilient to outliers and errors.
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Robust statistics

Established field within theoretical statistics

I The study of when statistics/estimators (median, standard
deviation, etc.) are resilient to noise and small perturbations

Why are robust estimators useful?

I Resilient way of analyzing data

I Non-robust answers arguably less meaningful

What are the computational properties of robust statistics?
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Robust statistics: Our contribution

I Understanding space complexity of approximating robust
estimator T.

I Samples drawn independently from unknown distribution F over
the real line

I Estimator T promised to be robust at F

I Generally, can approximate T(F) in a very small amount of
space.

median 
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When can we learn properties in small space?

median 

I Would help if the property were robust to changes in the
underlying distribution.

I Do we need more samples when we use less space?
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Property testing

I Established field within theoretical CS
I The study of when a distribution satisfies a certain property or is

“far” from all distributions that satisfy that property

I “Weak Continuity”, an analogue of robustness, requires that
nearby distributions are also close under the property.

I What are the space-related issues in property testing?
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Property testing: Our contribution

I Understanding space-sample tradeoff for testing weakly
continuous properties.

I Properties defined on discrete distributions over [n]
I Property promised to be weakly-continuous

I There is a general, direct tradeoff between space complexity
and sample complexity and a corresponding space-limited
property testing algorithm.
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1 Robust statistics
Preliminaries
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Location M -estimators
L-estimators
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Preliminaries

I probability distributions
I F is cumulative distribution function
I f is probability density function
I distance measure is the Lévy distance

I estimators
I Have the form T (F ) : DR → R
I Mean: T (F ) =

∫
x dF (X) or 1

m

∑
i xi

I approximation
I additive: an ε-approx of T (F ) is a value in [T (F )− ε, T (F ) + ε]
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What is robustness?

I Intuitively, a small change to distribution cannot change
estimator much

I Defined for a (T = estimator, F = distribution) pair, not the
estimator alone

I Key concept: the influence function

IF(x;T, F ) = lim
t→0

T ((1− t)F + t∆x)− T (F )
t
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Robustness: definition and application

Definition

An estimator T is (σ, τ)-robust at F if for all distributions G s.t.
d(F,G) ≤ σ,

T (F )− T (G) ≤ τ d(F,G).

Desired result

Let T be an estimator of class C. Then if T is (σ, τ)-robust at F ,
there is an algorithm that produces an ε-approx of T (F ) with
probab at least 1− δ and using small space.
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An easy general application of robustness

Simple algorithm for general robust statistics

Take m samples; output answer from those.
Space: m + space needed to compute T (F )

How reliable is the statistic on a subsample?

Theorem

If any estimator T is (σ, τ)-robust at F , there is an algorithm that
produces an ε-approximation of T (F ) with probability at least 1− δ
using poly( 1

ε2
, ln 1

δ ) space.

Can we use less space?
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A building block [Guha-McGregor]

Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

sample
current u =

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

range (−∞,∞)
sample 68.336

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

range (−∞,∞)
sample 12.950

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

range (−∞, 44.734)
sample 50.182

current u = . . .

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range
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Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

range (−∞, 44.734)
sample 19.233

current u = 19.233

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range
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A building block [Guha-McGregor]

Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

range (. . . , . . .)
sample . . .

current u = . . .

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

ε = 0.05; target t = 0.6

range (37.384, 37.401)
sample . . .

current u = . . .

1. Sample repeatedly to get u ∈ (a, b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F and input t in [0, 1], we want to find an
element whose rank is within ε of t.

Theorem

Given a distribution F and a value t, the Guha-McGregor algorithm
returns a value whose rank is within ε of t with probability at least
1− δ, using space at most poly(log 1/ε log log 1/δ).
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Estimator classes we handle

I M-estimators: generalized maximum likelihood estimators

I L-estimators: linear combination of order statistics

I R-estimators: based on rank statistics

Katrina Ligett, Cornell Robustness and Space 19



This talk

1 Robust statistics
Preliminaries
Introductory results
Location M -estimators
L-estimators

2 Property Testing

Katrina Ligett, Cornell Robustness and Space 20



Location M -estimators

I ρ-type: Given a function ρ : R→ R and a distribution F , we
can define

T (F ) = argminθ

∫
ρ(x− θ) dF (x)

I ψ-type: Given a function ψ : R→ R and a distribution F , we
can define T (F ) = θ where∫

ψ(x− θ) dF (x) = 0
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Examples of M -estimators

median 

mean 

Huber estimator 

Useful distinction: Redescending and Non-Redescending

I Redescending estimators have finite rejection point

I value r s.t. ψ(y) = 0 when |y| > r
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Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

sample
current u =

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

sample
current u =

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞,∞)
sample

current u =

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞,∞)
sample 44.734

current u =

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞,∞)
sample 44.734

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞,∞)
sample 68.336

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞,∞)
sample 12.950

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞,∞)
sample . . .

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞, 44.734)
sample . . .

current u = 44.734

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞, 44.734)
sample 50.182

current u = . . .

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (−∞, 44.734)
sample 19.233

current u = 19.233

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (. . . , . . .)
sample . . .

current u = . . .

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Space-efficient algorithm for M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

ε = 0.05

range (37.384, 37.401)
sample . . .

current u = . . .

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

Katrina Ligett, Cornell Robustness and Space 23



Result for Location M -estimators

Define Ψ(u) =
∫
ψ(x− u) dF (x). Given a distribution F , we want

to find an element s.t. Ψ(u) = 0.

Theorem

If a Location M -estimator T is (σ, τ)-robust at F , there is an
algorithm that produces an ε-approximation of T (F ) with
probability at least 1− δ using poly(log τ

ε , log log 1
δ ) space.
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Robustness and M -estimators

1. Sample repeatedly to get u ∈ (a, b)
2. Sample to estimate Ψ̂(u) = 1

m

∑
i ψ(xi − u) and update range

3. Repeat until Ψ̂(u) is close enough to 0
If sampling fails before this happens, need small cleanup phase.

What did robustness give us?
I Guarantee that when Ψ(u) is close to 0, u is close to right

answer
I Guarantee that Ψ̂(u) is actually close to Ψ(u)
I Guarantee that cleanup phase terminates quickly
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Redescending M -estimators

I The problem: we’re trying to find θ the global min of
R(u) =

∫
ρ(x, u)dF (x)—how can we tell the local minima

apart?

I How can robustness help?
I For any point u sufficiently far from θ, there is a ∆ gap between
R(u) and R(θ).

I We pick ξ1 < ξ2 < . . . an increasing sequence of reals with ρ
values that differ by at most ∆/4, so for any pair of points
a < b s.t. |ρ(b)− ρ(a)| > ∆/4, there must exist ξj ∈ [a, b].

I Bounds the average derivative of R(·) around θ so that a
random sample x from the distribution has reasonably high
probability that R(x+ ξj) is close to R(θ) for some ξj .
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I We pick ξ1 < ξ2 < . . . an increasing sequence of reals with ρ
values that differ by at most ∆/4, so for any pair of points
a < b s.t. |ρ(b)− ρ(a)| > ∆/4, there must exist ξj ∈ [a, b].

I Bounds the average derivative of R(·) around θ so that a
random sample x from the distribution has reasonably high
probability that R(x+ ξj) is close to R(θ) for some ξj .
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L-estimator definition

I Given a function h : [0, 1]→ R≥0 s.t.
∫ 1
0 h(t)dt = 1, we can

define

T (F ) =
∫ 1

0
F−1(t)h(t)dt

I That is, an L-estimator is a weighted average of the
distribution, with weights based on rank
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L-estimator examples

median 

mean 

!-trimmed mean 
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L-estimator examples

median mean 

!-trimmed mean 
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L-estimator examples

median mean !-trimmed mean 
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L-estimator algorithm sketch

Weighting function h(t).

Slice into intervals.

.028 .028 

.076 .076 

.112 .112 

.136 .136 

.148 .148 

Compute area of each slice.

Estimate F−1 of each slice
midpoint [Guha-McGregor],
and keep running total.
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Robustness and L-estimators

Theorem

If an L-estimator T is (σ, τ)-robust at F , there is an algorithm that
produces an ε-approximation of T (F ) with probability at least 1− δ
using poly(log τ

ε , log log 1
δ ) space.

What did robustness give us?

I Guarantee that discrete approximation of weighting function is
sufficient

I Guarantee that error introduced by Guha-McGregor subroutine
can be contained
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Preliminaries

I probability distributions
I Discrete distributions over [n]
I Distance metric is variation distance

L1(p, q) =
∑
i∈[n]

|p(i)− q(i)|

I properties
I real-valued function π on pdf
I want to distinguish π(p) < a from π(p) > b
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Canonical testing: definitions

Definition

A property π is (ε, δ)-weakly-continuous if for all distributions
p+, p− satisfying |p+ − p−| ≤ δ we have |π(p+)− π(p−)| ≤ ε.

Definition

We say π is symmetric if

π(p(1), . . . , p(n)) = π(p(σ(1)), . . . , p(σ(n))

for any permutation σ on [n].
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Canonical testing [Val08]

Canonical Tester

1. Draw k samples.

2. Consider all distributions that exactly match the fraction of
observed heavy elements and have relatively low weight on any
observed light element.

3. If all such distributions satisfy π > b output “yes”, otherwise
output “no”.

Theorem (Val08)

If f(n, a, b, ε) is the sample complexity to distinguish between
π > b− ε and π < a+ ε, then the canonical algorithm can
distinguish π > b+ ε and π < a− ε using O(f(n, a, b, ε)16

√
logn/δ)

samples.
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Canonical testing theorem reframed

I Well-suited to the data-stream model as the problem reduces to
finding “heavy-hitters”

I Recall the Misra-Gries heavy hitters algorithm:
I returns all elements whose frequency exceeds θ/2
I returns none with frequency below θ/4
I uses O(k log k/θ) bits of space and k samples

Space-Efficient Property Testing

1. Find heavy hitters with Misra-Gries

2. Calculate their empirical frequencies using a fresh sample

3. Plug these values into the Canonical Testing algorithm
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Space-sample trade-off

Theorem (Trade-off Theorem for (ε, δ∗) weakly continuous π)

Let S be the sample complexity of distinguishing π > b− ε from
π < a+ ε. Then, for any δ < δ∗ there exists a stream algorithm that
distinguishes π > b+ ε from π < a− ε using O(S16

√
logn/δ)

samples and O(S16
√

lognδ/ log n) space.

The result doesn’t appear to be optimal:

Theorem

Let π be (ε/2, δ)-weakly-continuous and suppose there exists a
s(ε)-space algorithm that returns an additive ε/2 approximation to π
evaluated on a distribution defined empirically by the stream. Then
there exists a stream algorithm using O(δ−2n log(n)) samples and
s(ε) space that is an ε additive approx for π.
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Space-efficient computation of distribution properties
and statistics

I Statistics: robustness allows us to use less space

I Property testing: robustness lets us trade off samples and space
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Thank you!
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