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Estimation on large stream of i.i.d. samples

median

How much space do you need in order to learn properties of the
underlying distribution?
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When can we learn statistics in small space?

median
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T

» Would help if statistics are unlikely to skew from a few outliers

» A natural and well-studied problem in statistics
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Robust statistics

Are usually more resilient to outliers and errors.
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Are usually more resilient to outliers and errors.
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Robust statistics

Are usually more resilient to outliers and errors.
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Robust statistics

Established field within theoretical statistics

» The study of when statistics/estimators (median, standard
deviation, etc.) are resilient to noise and small perturbations

Why are robust estimators useful?
» Resilient way of analyzing data
» Non-robust answers arguably less meaningful

What are the computational properties of robust statistics?
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Robust statistics: Our contribution

» Understanding space complexity of approximating robust
estimator T.
» Samples drawn independently from unknown distribution F over

the real line
» Estimator T promised to be robust at F

» Generally, can approximate T(F) in a very small amount of
space.

median
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When can we learn properties in small space?
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» Would help if the property were robust to changes in the
underlying distribution.

» Do we need more samples when we use less space?
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Property testing

» Established field within theoretical CS

» The study of when a distribution satisfies a certain property or is
“far” from all distributions that satisfy that property

> “Weak Continuity”, an analogue of robustness, requires that
nearby distributions are also close under the property.

» What are the space-related issues in property testing?
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Property testing: Our contribution

» Understanding space-sample tradeoff for testing weakly
continuous properties.
» Properties defined on discrete distributions over [n]
» Property promised to be weakly-continuous
» There is a general, direct tradeoff between space complexity
and sample complexity and a corresponding space-limited
property testing algorithm.
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@ Robust statistics
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@ Introductory results
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Preliminaries

» probability distributions

» F'is cumulative distribution function
> f is probability density function
» distance measure is the Lévy distance
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Preliminaries

» probability distributions

» F'is cumulative distribution function D
> f is probability density function /
» distance measure is the Lévy distance

» estimators

» Have the form T(F) : Dgr — R
» Mean: T(F) = [z dF(X) or =3 a;

Katrina Ligett, Cornell Robustness and Space

12



Preliminaries

» probability distributions

» [ is cumulative distribution function D
» f is probability density function /
» distance measure is the Lévy distance

> estimators
» Have the form T(F): D — R
> Mean: T(F) = [z dF(X) or =3, z;
» approximation
» additive: an e-approx of T(F) is a value in [T(F) — ¢, T(F) + €]
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What is robustness?

» Intuitively, a small change to distribution cannot change
estimator much

» Defined for a (T' = estimator, F' = distribution) pair, not the
estimator alone

» Key concept: the influence function

Katrina Ligett, Cornell Robustness and Space
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Robustness: definition and application

Definition
An estimator T is (o, 7)-robust at F' if for all distributions G s.t.
d(F,G) < o,

T(F)—-T(G) < Td(F,G).

Desired result

Let 7" be an estimator of class C. Then if T is (o, 7)-robust at F,
there is an algorithm that produces an e-approx of T'(F') with
probab at least 1 — § and using small space.

Katrina Ligett, Cornell Robustness and Space
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An easy general application of robustness

Simple algorithm for general robust statistics

Take m samples; output answer from those.
Space: m + space needed to compute T'(F)
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How reliable is the statistic on a subsample?
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An easy general application of robustness

Simple algorithm for general robust statistics

Take m samples; output answer from those.
Space: m + space needed to compute T'(F)

How reliable is the statistic on a subsample?

Dvoretzky-Kiefer-Wolfowitz inequality

Let z1,...,x, be m samples drawn independently with respect to
F,and let F,, = L5 A,.. Then

Pr[sgp |Fp(z) — F(2)] > €] < exp(—2me?).
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An easy general application of robustness

Simple algorithm for general robust statistics

Take m samples; output answer from those.
Space: m + space needed to compute T'(F)

How reliable is the statistic on a subsample?

Theorem

If any estimator T is (o, T)-robust at F', there is an algorithm that
produces an e-approximation of T'(F') with probability at least 1 — §
using poly(g%, In %) space.
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An easy general application of robustness

Simple algorithm for general robust statistics

Take m samples; output answer from those.
Space: m + space needed to compute T'(F)

How reliable is the statistic on a subsample?

Theorem

If any estimator T is (o, T)-robust at F', there is an algorithm that
produces an e-approximation of T'(F') with probability at least 1 — §
using poly(g%, In %) space.

Can we use less space?

Katrina Ligett, Cornell Robustness and Space
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.

J

1. Sample repeatedly to get u € (a,b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until » has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
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€ = 0.05; target t = 0.6

range (—o00, 00)
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current u =
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.

J

€ = 0.05; target t = 0.6

range (—o00, 00)
sample 68.336
current uw = 44.734

1. Sample repeatedly to get u € (a,b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.

J

€ = 0.05; target t = 0.6

range (—o00, 00)
sample 12.950
current uw = 44.734

1. Sample repeatedly to get u € (a,b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.

€ = 0.05; target t = 0.6

range (—o00,44.734)
sample 50.182
current u = ...

1. Sample repeatedly to get u € (a,b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.

J

€ = 0.05; target t = 0.6

range (—o00,44.734)
sample 19.233
current v = 19.233

1. Sample repeatedly to get u € (a,b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0,1], we want to find an
element whose rank is within € of ¢.

J

€ = 0.05; target t = 0.6

range (37.384,37.401)
sample ...
current u = ...

1. Sample repeatedly to get u € (a,b)
2. Estimate rank of u with sufficient samples and update range

3. Repeat until u has rank close enough to t
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A building block [Guha-McGregor]

Given a distribution F' and input ¢ in [0, 1], we want to find an
element whose rank is within € of ¢.

Theorem

Given a distribution F' and a value t, the Guha-McGregor algorithm
returns a value whose rank is within € of t with probability at least
1 — 4, using space at most poly(log1/eloglog1/4).

Katrina Ligett, Cornell Robustness and Space
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Estimator classes we handle

» M-estimators: generalized maximum likelihood estimators
> L-estimators: linear combination of order statistics

» R-estimators: based on rank statistics

Katrina Ligett, Cornell Robustness and Space
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This talk

@ Robust statistics

@ Location M-estimators
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Location M-estimators

> p-type: Given a function p : R — R and a distribution F', we
can define

T(F)= argmine/p(x —0) dF(z)

» -type: Given a function ¢ : R — R and a distribution F', we
can define T'(F') = 0 where

/1/}(3: —0) dF(z) =0

Katrina Ligett, Cornell Robustness and Space 21



Examples of M-estimators

mean

px —0) = (x — 6)*
Px—6) =(x— 6)
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Examples of M-estimators

median mean

plx —6) =|x—6| pix —6) = (x — 6)?
Plx —6) =sign(x— 0) | Px—60)=(x— 0)
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Examples of M-estimators

median mean .
Huber estimator

plx —6) =|x—6| pix —6) = (x — 6)?

—bifx—6<—b
= = sj — — = _ P —9)={ if—-b<x-6<b
Yx —6) =signx — 6)) | P(x—6) = (x - 6) . o bifx—x9>b
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Examples of M-estimators

median

mean

Huber estimator

plx —6) =[x -0
Y(x —0) = sign(x — 6)

p(x—8) = (x — 6)?
P —0) = (x — 6)

—bifx—6 < —b
PYx—6) ={xif—b<x—-6<bh
bifx—6>b

Useful distinction: Redescending and Non-Redescending

» Redescending estimators have finite rejection point

» value r s.t. ¥(y) =0 when |y| > r

Katrina Ligett, Cornell Robustness and Space
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Space-efficient algorithm for M-estimators

Define ¥(u) = [4¢(xz — u) dF(x). Given a distribution F', we want
to find an element s.t. ¥(u) = 0.
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Space-efficient algorithm for M-estimators

Define ¥(u) = [4¢(xz — u) dF(x). Given a distribution F', we want
to find an element s.t. ¥(u) = 0.

J

1. Sample repeatedly to get u € (a,b)
2. Sample to estimate W(u) = LS (i — u) and update range
3. Repeat until ¥(u) is close enough to 0

If sampling fails before this happens, need small cleanup phase.
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Space-efficient algorithm for M-estimators
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Result for Location M-estimators

Define U(u) = [¢(z — u) dF(z). Given a distribution F', we want
to find an element s.t. ¥(u) = 0.

Theorem

If a Location M-estimator T is (o, T)-robust at F, there is an
algorithm that produces an e-approximation of T'(F') with
probability at least 1 — 0 using poly(log %, log log %) space.

Katrina Ligett, Cornell Robustness and Space
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Robustness and M-estimators

1. Sample repeatedly to get u e (a,b)
2. Sample to estimate W(u) = L3 9(z; — u) and update range
3. Repeat until U(u) is close enough to 0

If sampling fails before this happens, need small cleanup phase.

What did robustness give us?

» Guarantee that when U(u) is close to 0, u is close to right
answer

» Guarantee that W(u) is actually close to ¥ (u)
» Guarantee that cleanup phase terminates quickly

Katrina Ligett, Cornell Robustness and Space
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Redescending M-estimators

> The problem: we're trying to find 6 the global min of
R(u) = [ p(z,u)dF(z)—how can we tell the local minima
apart?

Katrina Ligett, Cornell Robustness and Space



Redescending M-estimators

> The problem: we're trying to find 6 the global min of
R(u) = [ p(z,u)dF(z)—how can we tell the local minima
apart?
» How can robustness help?
» For any point u sufficiently far from 0, there is a A gap between
R(u) and R(0).
» We pick & < & < ... an increasing sequence of reals with p
values that differ by at most A/4, so for any pair of points
a <bs.t. |p(b) — p(a)| > A/4, there must exist &; € [a, b].
» Bounds the average derivative of R(-) around 6 so that a
random sample = from the distribution has reasonably high
probability that R(z + &;) is close to R(6) for some &;.

Katrina Ligett, Cornell Robustness and Space
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This talk

@ Robust statistics

@ [-estimators
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L-estimator definition

» Given a function h : [0,1] — R>q s.t. fol h(t)dt =1, we can
define

T(F) = /O 1 FY(t)n(t)dt

» That is, an L-estimator is a weighted average of the
distribution, with weights based on rank

Katrina Ligett, Cornell Robustness and Space
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L-estimator examples

mean

h()=1

Katrina Ligett, Cornell Robustness and Space



L-estimator examples

median mean

h(t) =6/, h()=1

Katrina Ligett, Cornell Robustness and Space



L-estimator examples

median mean o-trimmed mean
— _ Oifx<aorx>1—a
hO) =012 h() =1 b0 =" herse
1-2a
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L-estimator algorithm sketch

16

14

12

1

08

06

04

02

0

0 01 02 03 04 05 06 07 08 09 1

Weighting function h(t).

Katrina Ligett, Cornell Robustness and Space



L-estimator algorithm sketch

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

Weighting function h(t). Slice into intervals.
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L-estimator algorithm sketch

0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04 05 06 07 08 09 1

Weighting function h(t). Slice into intervals.

0 01 02 03 04 05 06 07 08 09 1

Compute area of each slice.
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L-estimator algorithm sketch

16 16

14 14

12 12

o §Z

04 04

02 02

0 0 - ™ ™

[ 01 0.2 03 04 05 06 0.7 08 09 1 0 01 0.2 03 04 05 06 07 08 09 1

Weighting function h(t). Slice into intervals.

Estimate F~! of each slice
e midpoint  [Guha-McGregor],
' & and keep running total.

.148|.148

0 01 02 03 04 05 06 07 08 09 1

Compute area of each slice.
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Robustness and L-estimators

Theorem

If an L-estimator T' is (o, T)-robust at F', there is an algorithm that
produces an e-approximation of T'(F') with probability at least 1 — §
using poly(log Z,log log %) space.

What did robustness give us?

» Guarantee that discrete approximation of weighting function is
sufficient

» Guarantee that error introduced by Guha-McGregor subroutine
can be contained
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This talk

e Property Testing
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Preliminaries

» probability distributions

» Discrete distributions over [n]
» Distance metric is variation distance

= > Ip(i)

i€[n]

» properties
» real-valued function 7 on pdf
» want to distinguish 7(p) < a from 7(p) > b
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Canonical testing: definitions

Definition
A property 7 is (€, §)-weakly-continuous if for all distributions

pt,p~ satisfying [pT —p~| < 6 we have |7(pT) —7(p7)| <e.

Definition
We say 7 is symmetric if

m(p(1),...,p(n)) = w(p(a(1)),...,p(a(n))

for any permutation o on [n].
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Canonical testing [Val08]

Canonical Tester
1. Draw k samples.
2. Consider all distributions that exactly match the fraction of
observed heavy elements and have relatively low weight on any
observed light element.

3. If all such distributions satisfy m > b output “yes”, otherwise
output “no”.

Theorem (Val08)

If f(n,a,b,e) is the sample complexity to distinguish between

™ >b—¢€andm < a+ ¢, then the canonical algorithm can
distinguish ™ > b+ ¢ and = < a — € using O(f(n,a, b, €)16vV°87 /§)
samples.
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Canonical testing theorem reframed

» Well-suited to the data-stream model as the problem reduces to
finding “heavy-hitters”
> Recall the Misra-Gries heavy hitters algorithm:

» returns all elements whose frequency exceeds 6/2
» returns none with frequency below 6/4
» uses O(klogk/0) bits of space and k samples

Space-Efficient Property Testing
1. Find heavy hitters with Misra-Gries
2. Calculate their empirical frequencies using a fresh sample

3. Plug these values into the Canonical Testing algorithm
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Space-sample trade-off

Theorem (Trade-off Theorem for (€, d*) weakly continuous 7)

Let S be the sample complexity of distinguishing m > b — € from

m < a+e€. Then, for any § < §* there exists a stream algorithm that
distinguishes ™ > b + ¢ from © < a — € using O(S16V1°8™ /§)
samples and O(S16V°5"§/log n) space.
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Space-sample trade-off

Theorem (Trade-off Theorem for (€, d*) weakly continuous 7)

Let S be the sample complexity of distinguishing m > b — € from

m < a+e€. Then, for any § < §* there exists a stream algorithm that
distinguishes ™ > b + ¢ from © < a — € using O(S16V1°8™ /§)
samples and O(S16V°5"§/log n) space.

The result doesn't appear to be optimal:

Theorem

Let w be (€/2,d)-weakly-continuous and suppose there exists a
s(€)-space algorithm that returns an additive €/2 approximation to
evaluated on a distribution defined empirically by the stream. Then
there exists a stream algorithm using O(6—2nlog(n)) samples and
s(€) space that is an e additive approx for .
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Space-efficient computation of distribution properties
and statistics

» Statistics: robustness allows us to use less space

» Property testing: robustness lets us trade off samples and space
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Thank you!
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