Local Algorithms for Finding Interesting Individuals in Large Networks

Mickey Brautbar, Michael Kearns

Computer and Information Science University of Pennsylvania Innovations in Computer Science 2010

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

Structural Properties of Social Networks

- Nodes with high degree.
- Nodes with high clustering coefficient.
- Nodes with high betweenness centrality (measures how many shortest paths between other nodes are passing through the given node).

- Small diameter.
- Many other structural properties...

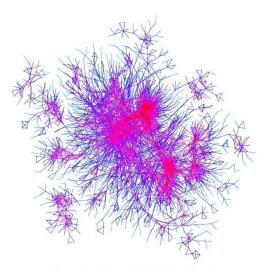


FIGURE 20. A subgraph of the Hollywood graph.

Figure: Taken from 'Complex Graphs and Networks' by Chung and Lu.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

The Algorithmic Side

- Question 1: If the network contains the structure at hand, how hard is it to find that structure?
- Question 2: Is it substantially easier to find such a structure in a social network than finding such a structure in an arbitrary network (that contains the structure)?
- Potential applications.

Example: Marketing of new product of small budget companies Find a node with high degree in an online social network and pay that node to add a link to your new product from his online profile.

What Kind of Query Model Should We Use?

Facebook as a model

- As a user of Facebook I am lacking a central view of the Facebook network.
- ▶ The edges in the network are the connections between friends.
- How hard would it be for me to find a user with many friends?
- I can make a Crawl query go to the profile of my friend and check his degree.
- I can make a Jump query by using the Friend's Finder option of Facebook. Typing a random name in Friend's Finder will return a user with that profile (if one exists).

The Model

- At a given user we know his degree and also the identity of his immediate neighbors.
- We can make a Crawl query to move to a specified neighbor of the node at hand.

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

Or we can make a Jump query to move to a uniformly at random chosen node from the network.

Goal

In this talk we shall focus on the high degree structure and also the high clustering coefficient structure.

Definition (approximation of high degree)

Given a parameter $0 \le \alpha \le 1$ and a network with *n* nodes, we say that *v* gives an approximation ratio of $n^{1-\alpha}$ if $d^* \le \text{degree}(v) \cdot n^{1-\alpha}$.

- For $\alpha = 0$, any node works (in a connected network).
- For α = 1, only a node with the highest in the network is a valid answer
- ► Goal: Find such a vertex *v* in **sublinear time** in the size of the network.
- Answer will depend on type of network considered. Three network categories: arbitrary networks, power law networks, and preferential attachment networks.

High Degree Structure - Arbitrary Connected Network

- Question 1: If the network contains the structure at hand, how hard is it to find that structure?
- ► Answer- lower bound: Let G be a k-edge connected network, for a fixed k. Let $0 < \beta < \frac{1}{2}$. Then $\Omega(n^{\beta})$ Jump and Crawl queries are necessary in order to find a node that gives an approximation ratio of $O(n^{1-\beta})$.
- Proof idea: In the line-clique graph n^β Jump queries will leave us n^{1-β} distance away from the clique subnetwork, so even with Crawl queries the algorithm will see only degree 2 nodes. However, the highest degree is n^{1-β}.

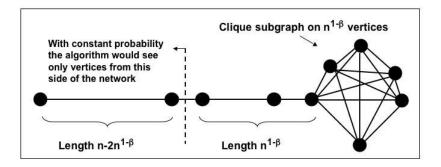


Figure: A line-clique network

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

High Degree Structure - Arbitrary Connected Network

- Question 1: If the network contains the structure at hand, how hard is it to find that structure?
- Answer- upper bound: Let G be an arbitrary network and let 0 < β < 1. Then there exists an algorithm that with Õ(n^β) Jump and Crawl queries finds a node which gives an approximation ratio of n^{1−β}, whp.
- Algorithm sketch:
 - Let v^* be a maximum degree node (with degree d^*).
 - If $d^* < n^{1-\beta}$ any node will do.
 - Else, with $\tilde{O}(\frac{n}{d^*})$ Jump queries a neighbor of v^* is found.
 - ► Unless such a node has already degree higher than d^{*}/n^{1-β}, by Crawling that node's immediate neighbors we find v^{*}.
 - Total number of queries is $\tilde{O}(n^{\beta})$.

High Degree Structure - Power Law Network with *n* Nodes

- ▶ Degree distribution follows a power law, namely, prob(d) ∝ d^{-γ}, for d = 1, 2, ..., t.
- Question 2: Is it substantially easier to find such a structure in a social network than finding such a structure in an arbitrary network that contains the structure?
- Answer: Yes. Let G be a power Law network with an exponent $\gamma > 2$. Then there exist an algorithm that with $\tilde{O}(n^{\beta})$ Jump and Crawl queries finds a node which gives an approximation ratio of $O(n^{\frac{1}{\gamma}-\frac{\beta}{\gamma-1}})$, whp.

Power Law Network with *n* Nodes - Cont.

Algorithm sketch: Take Jump $\tilde{O}(n^{\beta})$ Jump queries and return the node with the highest degree between those found. Proof sketch:

► The probability of randomly sample a node of degree at least $n^{(\frac{\beta}{\gamma-1})}$ is $\theta(n^{-\beta})$ in a power law network with exponent γ .

• Highest degree in a power law network is $\theta(n^{\frac{1}{\gamma}})$.

The PA process creates a network with n nodes in the following way:

- Start with a connected subgraph on *m* nodes.
- In each time step add a new node u and m new links between u and previously added nodes.

< ロ > < 同 > < E > < E > < E > < 0 < 0</p>

• $prob((u, v)) \propto degree(v)$.

Preferential Attachment Network - Some Useful Properties

- **Expected** degree distribution is a power law of exponent 3.
- The realized degree is close to its expected value for degrees smaller than n¹/₁₁ (implied from a result by Chung and Lu).
- Maximum degree in a realization of the PA process is about \sqrt{n} whp (Flaxman, Frieze, Fenner).
- Corollary the previous result for power law networks holds for small degrees in the preferential attachment network : with Õ(n^β) queries achieves an approximation ratio of O(n^{1/2} - ^β/₂).

High Degree Structure - Preferential Attachment Network

• We can do better using lazy random walks.

- The Lazy Random Walk (LRW) stays put with probability ¹/₂ and with probability ¹/₂ uniformly crawl to a neighbor.
- LRW is mixing fast to the stationary distribution on a PA network.
- ▶ Let G be generated using the preferential attachment process. Then, there exists an algorithm that with $\tilde{O}(n^{\beta})$ Crawl queries finds a node which gives an approximation ratio of $O(n^{\frac{1}{2}-\beta})$, whp.

Algorithm idea: Sample $\tilde{O}(n^{\beta})$ times from the degree distribution by running the LRW.

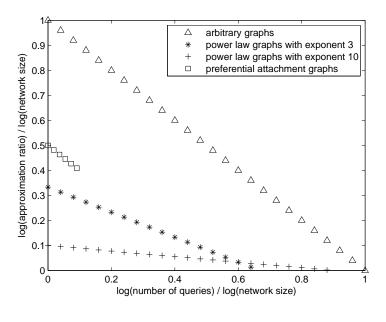


Figure: Achievable rates for all categories.

- < ⊡ >

The Clustering Coefficient Structure

Definition (Clustering Coefficient)

Given a vertex v with degree d, the clustering coefficient (CC) of v is defined as $CC(v) = \frac{\text{number of triangles containing } v}{\binom{d}{2}}$.

Definition (approximation of Clustering Coefficient)

Given a graph and a degree value d, let v^* be the vertex with the highest CC among vertices of degree d or more. We say that v is a (α, d, ϵ) -approximation to the maximum CC if $degree(v) \ge \alpha \cdot d$ and $CC(v^*) \le CC(v) + \epsilon$, for $0 < \alpha \le 1$ and $0 < \epsilon < 1$.

$(1, n^{\beta}, 1/2)$ Approximation is Impossible with $n^{1-\beta}$ Queries

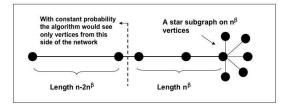


Figure: The line-star network

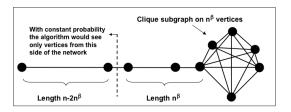


Figure: The line-clique network

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Clustering Coefficient Structure

Lower bound is tight if we allow logarithmic slack.

- ▶ There exists an algorithm that with $\tilde{O}(n^{1-\beta})$ Jump and Crawl queries returns a $(\frac{1}{\log n}, n^{\beta}, \epsilon)$ approximation to the maximum clustering coefficient, $\epsilon \to 0$.
- Proof is quite involved is given in the paper.
- For power law networks where the LRW is mixing fast, e.g. the PA network, we can do substantially better. There exists an algorithm that with Õ(n^{1−2β}) Jump and Crawl queries returns a (¹/_{log n}, n^β, ε) approximation to the maximum clustering coefficient.
- If β ≥ ¹/₂ algorithm uses only a poly-logarithmic number of queries for achieving such an approximation.

Future Work

Using sublinear number of Jump and Crawl queries:

- Find two nodes that are diameter distant from each other.
- Find a node with high betweenness centrality measure (measures how many shortest paths between other nodes are passing through the given node).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Other structural properties.
- ► Thank You