
Hard instances for satisfiability and

quasi-one-way functions

Andrej Bogdanov and Kunal Talwar and Andrew Wan

If P≠NP, then A must fail.

“Dreambreakers”

A SAT algorithm

“Dreambreakers”

A SAT algorithm

D
A φ,w

φ ∈ SAT and
w satisfies φ

“Dreambreakers”

A SAT algorithm

D
A φ,w

φ

not satisfiable

φ ∈ SAT and
w satisfies φ

“Dreambreakers”

A SAT algorithm

D
A φ,w

φ

not satisfiable

“SAT solvers” are widely used in software verification, AI, and
operations research.

φ ∈ SAT and
w satisfies φ

This work

- Construct dreambreakers

- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Construction of dreambreakers

- Dreambreakers and OWFs

- Dreambreakers and PRGs

Cryptography and Hardness Assumptions

easy

hard

x f(x)

Requires P≠NP

One-way function

Does P≠NP imply cryptography?

Impagliazzo‟s five worlds

Legend

Algorithmica P=NP

Heuristica P≠NP but NP is easy on

average

Pessiland NP is hard on average

Minicrypt one-way functions exist

Cryptomania public key encryption

Impagliazzo‟s five worlds

Cryptography and Hardness Assumptions

Enormous obstacle: Ruling out Heuristica [FF93,BT03,AGGM06]

hard

for each
algorithm

for every
algorithm

i.e., obtaining average-case hardness from worst-case hardness

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we
turn this into a one-way function?

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we
turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND
their solutions.

Given OWF f choose random “solution” x, and
“problem” f(x)

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we
turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND
their solutions.

Question: If we can sample hard instances,
can we sample their solutions?

P ≠ NP, but algorithm A that solves
SAT on every efficiently samplable
distribution D?

Super-Heuristica

[GST05]

P≠NP and Heuristica revisited

P ≠ NP, but algorithm A that solves
SAT on every efficiently samplable
distribution D?

Super-Heuristica

[GST05]

Thm: If P ≠ NP, for any decision
algorithm A, there is an efficiently
samplable distribution DA that is
hard for A.

P≠NP and Algorithmica revisited

hard for A

Thm: [GST05] If P ≠ NP, for any decision algorithm A, there is an
efficiently samplable distribution DA that is hard for A

P≠NP and Algorithmica revisited

hard for A

Thm: [GST05] If P ≠ NP, for any decision algorithm A, there is an
efficiently samplable distribution DA that is hard for A, for A‟

hard for A‟

P≠NP and Algorithmica revisited

hard for A

Thm: [GST05] If P ≠ NP, for any decision algorithm A, there is an
efficiently samplable distribution DA that is hard for A, for A‟, etc.

hard for A‟

P≠NP and Algorithmica revisited

hard for A

Thm: [GST05] If P ≠ NP, for any decision algorithm A, there is an
efficiently samplable distribution DA that is hard for A, for A‟, etc.

hard for A‟

Open Question[GST05]*: (dreambreakers) Can we sample hard
formulas AND their satisfying assignments?

* suggested by Adam Smith

P≠NP and Algorithmica revisited

Summary: cryptographic motivation

Does P≠NP imply OWFs?

If P≠NP: can we sample hard instances, and
can we sample their solutions?

If P≠NP:Ican we weakly sample hard instances [GST05], and
can we weakly sample their solutions?

Summary: cryptographic motivation

Does P≠NP imply OWFs?

If P≠NP: can we sample hard instances, and
can we sample their solutions?

If P≠NP:Ican we weakly sample hard instances [GST05], and
can we weakly sample their solutions?

Can we build dreambreakers?

Our work: construct dreambreakers

Thm: If P≠NP, there is poly-time procedure D, for any poly-time
search algorithm A :

And for infinitely many n,

D(1n, 1t(n), A) (φ,w) |φ|=n

- φ satisfied by w, and

- A(φ)=0

Our work: dreambreakers exist

Thm: If P≠NP, there is poly-time procedure D, for any poly-time
search algorithm A :

And for infinitely many n,

D(1n, 1t(n), A) (φ,w) |φ|=n

- φ satisfied by w, and

- A(φ)=0

Probabilistic version

Corollary: (Quasi-hard samplers) Sampler S which takes 1n,1t(n)

and outputs (φ,w) hard for every p.p.t. running in time t(n).

Sampling algorithms

In [GST05]: Diagonalize--Run A on formula that
describes success of A on smaller instances.

We also use A to find solutions to instances on which it fails!

Use A to find instances on which it fails.

This work

- Construct dreambreakers

- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Construction of Dreambreakers

- Dreambreakers and OWFs

- Dreambreakers and PRGs

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- „Hard‟ distribution, but sampler S takes more
time than the adversaries it fools

- compare to sampling in fixed polynomial
time to fool all poly-time algorithms

- much weaker notion of avg case
hardness

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- „Hard‟ distribution, but sampler S takes more
time than the adversaries it fools

- compare to sampling in fixed polynomial
time to fool all poly-time algorithms

[GT07] This weaker notion still „contradicts‟ barriers outlined in [BT,FF]

Can we achieve cryptographic primitives for this weaker notion of
avg case hardness? How should we define them?

- much weaker notion of avg case
hardness

Quasi-OWFs

• Somewhat hard to invert

• Harder to compute

hard

x f(x)

harder

easy

hard

x f(x)

OWFs

Quasi-OWFs

• Somewhat hard to invert

• Harder to compute

• Useless?
hard

x f(x)

harder

easy

hard

x f(x)

OWFs

Quasi-OWFs

• Somewhat hard to invert

• Harder to compute

• Easy to verify
hard

x f(x)

harder

V(x,f(x))

easy

Quasi-OWFs

• Somewhat hard to invert

• Harder to compute

• Easy to verify
hard

x f(x)

harder

V(x,f(x))

easyWithout verifier condition, exist
unconditionally

Quasi-one-way functions imply
P≠NP

Non-trivial aspect of easiness-
hardness contrast

Quasi-OWFs

Def: Fix a polynomial tV(n) and let t(n)>tV(n). A poly-time function f is
quasi-one-way against time t(n) with verifier V (running in time tV(n))
if for every x:

(easy to verify) V(x,f(x))=1,

(hard to invert) Prx[V(A(f(x)),f(x))=1]<1/t(n).

and for every algorithm A running in time t(n),

hard

x f(x)

harder

easyV(x,f(x))

Quasi-OWFs

Def: Fix a polynomial tV(n) and let t(n)>tV(n). A poly-time randomized
function f is quasi-one-way against time t(n) with verifier V (running in
time tV(n)) if for every x:

(easy to verify) V(x,f(x))=1,

(hard to invert) Prx,A[V(A(f(x)),f(x))=1]<1/t(n).

and for every probabilistic algorithm A running in time t(n),

hard

x f(x)

harder

easyV(x,f(x))

Quasi-OWFs

hard

x f(x)

harder

easy

Thm: If NP ⊄ BPP then for any poly t(n),
quasi-OWFs against time t(n) exist.

f(r) = (φ ,w+r)

S(1p(t(n)))φ,w

Use quasi-hard sampler S:

f: {0,1}n
{0,1}2n

Verifier: V(r,(φ,w)) accepts if (φ,w)=„0‟ or r+w satisfies φ

V(x,f(x))

This work

- Construct dreambreakers

- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Construction of Dreambreakers

- Dreambreakers and OWFs

- Dreambreakers and PRGs

Quasi-OWFs and PRGs

Generator more time than adversary

Well motivated application: algorithmic derandomization

G:{0,1}n
{0,1}n+k G(Un)≈Un+kPRG with stretch k:

Quasi-OWFs and PRGs

Generator more time than adversary

Well motivated application: algorithmic derandomization

G:{0,1}n
{0,1}n+k G(Un)≈Un+kPRG with stretch k:

PRGs against time t(n) running in time poly(t)
implies derandomization from P≠NP

Quasi-OWFs and PRGs

Can we use quasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Generator more time than adversary

Well motivated application: algorithmic derandomization

G:{0,1}n
{0,1}n+k G(Un)≈Un+kPRG with stretch k:

Quasi-OWFs and PRGs

Can we use quasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Thm: Not using standard constructions
(black box reductions from inverting to
distinguishing)

Inverter needs to evaluate the OWF.

Summary/Conclusions

 Showed that dreambreakers exist, defined and constructed quasi-one-way
functions

 Some methods we take for granted in normal setting (like OWF PRGs)
don‟t work in this new setting

Open Problems

 Build PRGs using quasi-hard samplers?

 Applications? bit commitments, proof systems…

 Hard core predicates, uniform output, hardness amplification, stronger
definitions of quasi-OWFs that give the adversary has more power?

This work

- Construct dreambreakers

- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Dreambreakers and OWFs

- Quasi-OWFs and PRGs

- Construction of dreambreakers

Sampling algorithms

Φn ≈ “There is a formula wn of size n such that A(wn)=0
but SAT(wn)=1.”

In [GSTS05]:

If succeed, can extract
formula wn of length n and
witness an s.t.

Run A(Φn)

Fail

A(wn)=0
an satisfies wn

Sampling algorithms

Φn ≈ “There is a formula wn of size n such that A(wn)=0
but SAT(wn)=1.”

Warm up: deterministic case

In [GSTS05]:

If succeed, can extract
formula wn of length n and
witness an

Run A(Φn)

Φn satisfiable

Fail

with A(wn)=0
an satisfies wn Φn is a formula of size

|Φn| on which A fails—
use as witness and
recurse

Sampling algorithms

Φn ≈ “There is a formula wn of size n such that A(wn)=0
but SAT(wn)=1.”

Warm up: deterministic case

In [GSTS05]:

If succeed, can extract
formula wn of length n and
witness an

Run A(Φn)

?

Φn satisfiable

Fail: A=0

with A(wn)=0
an satisfies wn

Φn not satisfiable

Φn is a formula of size
|Φn| on which A fails—
use as witness and
recurse

Sampling algorithms

P≠NP Φn is satisfiable i.o.

Solution: Redefine Φn so that when A fails on an instance of
size n: all Φn‟ for n‟>n are in SAT until A fails again.

Φn = “There is a formula wN of size N for n1/k < N ≤ n such that
A(wN)=0 but SAT(wN)=1.”

If Φn is of size q(n) set k so that q(x) < (x-1)k

why would A succeed on these?

Sampling algorithms

Solution: Redefine Φn so that when A fails on an instance of
size n: all Φn‟ for n‟>n are in SAT until A fails again.

Φn = “There is a formula wN of size N for n1/k < N ≤ n such that
A(wN)=0 but SAT(wN)=1.”

If Φn is of size q(n) set k so that q(x) < (x-1)k

If A finds assignments to Φn infinitely often we are done.

Give a sampler for the case that A “fails” on almost all Φn.

Two cases:

Sampling algorithms

Give a sampler for the case that A fails on almost all Φn.

n‟ first input size > n0 such that Φn‟ ∈ SAT

A fails on all ΦN for N > n0

n0 n‟ 2n‟^k n

Then A makes mistake on Φn‟ , so Φn‟ is a
good candidate witness:

If n‟‟ = |Φn‟|, then Φn‟ is a good partial assignment for Φn‟‟

Sampling algorithms

Give a sampler for the case that A fails on almost all Φn.

A fails on all ΦN for N > n0

n0 n‟ 2n‟^k n

Sample for n>2n‟^k:

All Φn‟ …Φn are in SAT.

A=0 A=0 A=0

n‟ first input size > n0 such that Φn‟ ∈ SAT

Sampling algorithms

Give a sampler for the case that A fails on almost all Φn.

A fails on all ΦN for N > n0

n0 n‟ 2n‟^k n

Sample for n>2n‟^k:

All Φn‟ …Φn are in SAT.

Can use Φj as witness for Φn when n1/k < q(j) ≤ n.

Φj

n‟ first input size > n0 such that Φn‟ ∈ SAT

Sampling algorithms

Give a sampler for the case that A fails on almost all Φn.

A fails on all ΦN for N > n0

n0 n‟ 2n‟^k n

Sample for n>2n‟^k:

All Φn‟ …Φn are in SAT.

Can use Φj as witness for Φn when n1/k < q(j) ≤ n.

Φj

Build with smaller Φi until exhaustive search.

n‟ first input size > n0 such that Φn‟ ∈ SAT

Sampling for randomized algorithms

Φn,r ≈ “There is a formula wN of size N for n1/k < N ≤ n
such that A‟(wn,r)=0 and SAT(wn)=1.”

A‟(wn,r) result of trying A many times. If A‟ fails, Pr[A(wn)=0]>2/3

If A likely to succeed on significant fraction of Φn,r i.o. , we
are done.

Build a sampler for case when A likely to fail on most Φn,r

for almost all n.

Similar algorithm, choose each witness randomly.

What if A fails because Φn,r ∉ SAT for most r?

Two cases:

Sampling if A almost always fails on most Φn,r

n0 n‟ 2n‟^k n

A makes mistake at length n‟ most Φn‟,r‟ in SAT.

A fails on ΦN,R for N > n0 and most R

What about Φq(n‟),r‟‟-- what fraction is satisfiable?

A fails a 1-p(N) fraction of the time, but only 1-
r(n‟) are satisfiable

1-p(N)

1-r(n‟)

