Hard instances for satisfiability and quasi-one-way functions

Andrej Bogdanov and Kunal Talwar and Andrew Wan
"Dreambreakers"

A SAT algorithm

If $\mathrm{P} \neq \mathrm{NP}$, then A must fail.
"Dreambreakers"

A SAT algorithm
"Dreambreakers"

"Dreambreakers"

"SAT solvers" are widely used in software verification, AI, and operations research.

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Construction of dreambreakers
- Dreambreakers and OWFs
- Dreambreakers and PRGs

Cryptography and Hardness Assumptions

Does $\mathrm{P} \neq \mathrm{NP}$ imply cryptography?

Impagliazzo's five worlds

Algorithmica Min

 no...022

Cryptomania

Impagliazzo's five worlds

Cryptography and Hardness Assumptions

Enormous obstacle: Ruling out Heuristica [FF93,BT03,AGGM06]
i.e., obtaining average-case hardness from worst-case hardness

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we turn this into a one-way function?

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND their solutions.

Given OWF f choose random "solution" x, and "problem" $\mathrm{f}(\mathrm{x})$

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND their solutions.

Question: If we can sample hard instances, can we sample their solutions?
$\mathrm{P} \neq \mathrm{NP}$ and Heuristica revisited
[GST05]
Super-Heuristica
$P \neq$ NP, but algorithm A that solves SAT on every efficiently samplable distribution D?
$\mathrm{P} \neq \mathrm{NP}$ and Algorithmica revisited
[GST05]
$\mathrm{P} \neq \mathrm{NP}$, but algorithm A that solves SAT on every efficiently samplable distribution D?

Thm: If $P \neq N P$, for any decision algorithm A, there is an efficiently samplable distribution D_{A} that is hard for A.
$\mathrm{P} \neq \mathrm{NP}$ and Algorithmica revisited
Thm: [GST05] If $P \neq N P$, for any decision algorithm A, there is an efficiently samplable distribution D_{A} that is hard for A

$\mathrm{P} \neq \mathrm{NP}$ and Algorithmica revisited
Thm: [GST05] If $P \neq N P$, for any decision algorithm A, there is an efficiently samplable distribution D_{A} that is hard for A, for A^{\prime}

$\mathrm{P} \neq \mathrm{NP}$ and Algorithmica revisited
Thm: [GST05] If $P \neq$ NP, for any decision algorithm A, there is an efficiently samplable distribution D_{A} that is hard for A, for A^{\prime}, etc.

$\mathrm{P} \neq \mathrm{NP}$ and Algorithmica revisited

Thm: [GST05] If $P \neq N P$, for any decision algorithm A, there is an efficiently samplable distribution D_{A} that is hard for A, for A^{\prime}, etc.

Open Question[GST05]*: (dreambreakers) Can we sample hard formulas AND their satisfying assignments?

Summary: cryptographic motivation

Does $\mathrm{P} \neq \mathrm{NP}$ imply OWFs?

If $\mathrm{P} \neq \mathrm{NP}$: can we sample hard instances, and can we sample their solutions?

If $\mathrm{P} \neq \mathrm{NP}$: can we weakly sample hard instances [GST05], and can we weakly sample their solutions?

Summary: cryptographic motivation

Does $\mathrm{P} \neq \mathrm{NP}$ imply OWFs?

If $\mathrm{P} \neq \mathrm{NP}$: can we sample hard instances, and can we sample their solutions?

If $\mathrm{P} \neq \mathrm{NP}$: can we weakly sample hard instances [GST05], and can we weakly sample their solutions?

Can we build dreambreakers?

Our work: construct dreambreakers

Thm: If $P \neq N P$, there is poly-time procedure D, for any poly-time search algorithm A:

$$
D\left(1^{\mathrm{n}}, 1^{1(n)}, A\right) \rightarrow(\varphi, w) \quad|\varphi|=n
$$

And for infinitely many n ,

- φ satisfied by w, and
- $A(\varphi)=0$

Our work: dreambreakers exist

Thm: If $\mathrm{P} \neq \mathrm{NP}$, there is poly-time procedure D , for any poly-time search algorithm A:

$$
D\left(1^{n}, 1^{t(n)}, A\right) \rightarrow(\varphi, w) \quad|\varphi|=n
$$

And for infinitely many n,

- φ satisfied by w, and
- $A(\varphi)=0$

Probabilistic version

Corollary: (Quasi-hard samplers) Sampler S which takes $1^{n}, 1^{(n)}$ and outputs (φ, w) hard for every p.p.t. running in time $t(n)$.

Sampling algorithms

In [GST05]: Diagonalize--Run A on formula that describes success of A on smaller instances.

Use A to find instances on which it fails.

We also use A to find solutions to instances on which it fails!

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Construction of Dreambreakers
- Dreambreakers and OWFs
- Dreambreakers and PRGs

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- 'Hard' distribution, but sampler S takes more time than the adversaries it fools
- compare to sampling in fixed polynomial time to fool all poly-time algorithms
- much weaker notion of avg case hardness

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- 'Hard' distribution, but sampler S takes more time than the adversaries it fools
- compare to sampling in fixed polynomial time to fool all poly-time algorithms
- much weaker notion of avg case hardness
[GT07] This weaker notion still 'contradicts' barriers outlined in [BT,FF]

Can we achieve cryptographic primitives for this weaker notion of avg case hardness? How should we define them?

Quasi-OWFs

. Somewhat hard to invert - Harder to compute

Quasi-OWFs

. Somewhat hard to invert

- Harder to compute

OWFs

Quasi-OWFs

. Somewhat hard to invert

- Harder to compute
. Easy to verify

$$
\begin{gathered}
\text { easy } \\
\mathrm{V}(\mathrm{x}, \mathrm{f}(\mathrm{x}))
\end{gathered}
$$

Quasi-OWFs

. Somewhat hard to invert

- Harder to compute
. Easy to verify

Without verifier condition, exist
unconditionally
easy
$\mathrm{V}(\mathrm{x}, \mathrm{f}(\mathrm{x}))$
Quasi-one-way functions imply $P \neq N P$

Non-trivial aspect of easinesshardness contrast

Quasi-OWFs

Def: Fix a polynomial $t_{V}(n)$ and let $t(n)>t_{V}(n)$. A poly-time function f is quasi-one-way against time $t(n)$ with verifier \vee (running in time $t_{V}(n)$) if for every x :
(easy to verify) $\quad V(x, f(x))=1$,
and for every algorithm A running in time $t(n)$,
(hard to invert)

$$
\operatorname{Pr}_{x}[V(A(f(x)), f(x))=1]<1 / t(n) .
$$

Quasi-OWFs

Def: Fix a polynomial $\mathrm{t}_{\mathrm{V}}(\mathrm{n})$ and let $\mathrm{t}(\mathrm{n})>\mathrm{t}_{\mathrm{v}}(\mathrm{n})$. A poly-time randomized function f is quasi-one-way against time $t(n)$ with verifier V (running in time $t_{v}(n)$) if for every x :

$$
\text { (easy to verify) } \quad V(x, f(x))=1
$$

and for every probabilistic algorithm A running in time $\mathrm{t}(\mathrm{n})$,
(hard to invert)

$$
\operatorname{Pr}_{x, A}[V(A(f(x)), f(x))=1]<1 / t(n) .
$$

Quasi-OWFs

Thm: If NP $\nsubseteq B P P$ then for any poly $t(n)$, quasi-OWFs against time $t(n)$ exist.
f: $\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$

Use quasi-hard sampler S:

$$
\begin{aligned}
& \mathrm{S}\left(1^{\mathrm{p}(t(\mathrm{n}))}\right) \rightarrow \varphi, \mathrm{w} \\
& \mathrm{f}(\mathrm{r})=(\varphi, \mathrm{w}+\mathrm{r})
\end{aligned}
$$

Verifier: $\mathrm{V}(\mathrm{r},(\varphi, \mathrm{w}))$ accepts if $(\varphi, \mathrm{w})={ }^{\prime} 0$ ’ or $\mathrm{r}+\mathrm{w}$ satisfies φ

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Construction of Dreambreakers
- Dreambreakers and OWFs
- Dreambreakers and PRGs

Quasi-OWFs and PRGs

PRG with stretch $k: \quad G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+k} \quad G\left(U_{n}\right) \approx U_{n+k}$
Generator more time than adversary

Well motivated application: algorithmic derandomization

Quasi-OWFs and PRGs

PRG with stretch $k: G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+k} \quad G\left(U_{n}\right) \approx U_{n+k}$
Generator more time than adversary

Well motivated application: algorithmic derandomization
PRGs against time $t(n)$ running in time poly (t) implies derandomization from $\mathrm{P} \neq \mathrm{NP}$

Quasi-OWFs and PRGs

PRG with stretch $k: G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+k} \quad G\left(U_{n}\right) \approx U_{n+k}$
Generator more time than adversary

Well motivated application: algorithmic derandomization

Can we use quasi-one-way functions to construct PRGs?
does this follow from [HILL] or other standard constructions?

Quasi-OWFs and PRGs

Can we use quasi-one-way functions to construct PRGs?
does this follow from [HILL] or other standard constructions?

Thm: Not using standard constructions (black box reductions from inverting to distinguishing)

Inverter needs to evaluate the OWF.

Summary/Conclusions

- Showed that dreambreakers exist, defined and constructed quasi-one-way functions
- Some methods we take for granted in normal setting (like OWF \rightarrow PRGs) don't work in this new setting

Open Problems

- Build PRGs using quasi-hard samplers?
- Applications? bit commitments, proof systems...
- Hard core predicates, uniform output, hardness amplification, stronger definitions of quasi-OWFs that give the adversary has more power?

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Dreambreakers and OWFs
- Quasi-OWFs and PRGs
- Construction of dreambreakers

Sampling algorithms

In [GSTS05]:
$\Phi_{\mathrm{n}} \approx$ "There is a formula w_{n} of size n such that $A\left(w_{n}\right)=0$ but $\operatorname{SAT}\left(w_{n}\right)=1$."

Sampling algorithms

Warm up: deterministic case
In [GSTS05]:
$\Phi_{n} \approx$ "There is a formula w_{n} of size n such that $A\left(w_{n}\right)=0$ but $\operatorname{SAT}\left(w_{n}\right)=1$."

Sampling algorithms

Warm up: deterministic case
In [GSTS05]:
$\Phi_{\mathrm{n}} \approx$ "There is a formula w_{n} of size n such that $\mathrm{A}\left(\mathrm{w}_{\mathrm{n}}\right)=0$ but $\operatorname{SAT}\left(w_{n}\right)=1$."

Sampling algorithms

$P \neq N P \rightarrow \Phi_{n}$ is satisfiable i.o.
why would A succeed on these?

Solution: Redefine Φ_{n} so that when A fails on an instance of size n : all Φ_{n}, for $\mathrm{n}>\mathrm{n}$ are in SAT until A fails again.
$\Phi_{\mathrm{n}}=$ "There is a formula w_{N} of size N for $\mathrm{n}^{1 / k}<\mathrm{N} \leq \mathrm{n}$ such that $A\left(w_{N}\right)=0$ but $\operatorname{SAT}\left(w_{N}\right)=1$."

If Φ_{n} is of size $\mathrm{q}(\mathrm{n})$ set k so that $\mathrm{q}(\mathrm{x})<(\mathrm{x}-1)^{\mathrm{k}}$

Sampling algorithms

Solution: Redefine Φ_{n} so that when A fails on an instance of size n : all $\Phi_{\mathrm{n}^{\prime}}$ for $\mathrm{n}>\mathrm{n}$ are in SAT until A fails again.
$\Phi_{\mathrm{n}}=$ "There is a formula w_{N} of size N for $\mathrm{n}^{1 / k}<\mathrm{N} \leq \mathrm{n}$ such that $A\left(w_{N}\right)=0$ but SAT $\left(w_{N}\right)=1$."

If Φ_{n} is of size $\mathrm{q}(\mathrm{n})$ set k so that $\mathrm{q}(\mathrm{x})<(\mathrm{x}-1)^{\mathrm{k}}$

Two cases:
If A finds assignments to Φ_{n} infinitely often we are done.
Give a sampler for the case that A "fails" on almost all Φ_{n}.

Sampling algorithms

Give a sampler for the case that A fails on almost all Φ_{n}.

A fails on all Φ_{N} for $\mathrm{N}>\mathrm{n}_{0}$
n ' first input size $>\mathrm{n}_{0}$ such that $\Phi_{\mathrm{n}^{\prime}} \in$ SAT

Then A makes mistake on $\Phi_{n^{\prime}}$, so $\Phi_{n^{\prime}}$ is a good candidate witness:

$$
\text { If } \mathrm{n}^{\prime \prime}=\left|\Phi_{\mathrm{n}^{\prime}}\right| \text {, then } \Phi_{\mathrm{n}}, \text { is a good partial assignment for } \Phi_{\mathrm{n} \prime}
$$

Sampling algorithms

Give a sampler for the case that A fails on almost all Φ_{n}.

A fails on all Φ_{N} for $\mathrm{N}>\mathrm{n}_{0}$
n ' first input size $>\mathrm{n}_{0}$ such that $\Phi_{\mathrm{n}^{\prime}} \in$ SAT

Sample for $n>2^{n \times k}$:
All $\Phi_{n^{\prime}} \ldots \Phi_{\mathrm{n}}$ are in SAT.

Sampling algorithms

Give a sampler for the case that A fails on almost all Φ_{n}.

A fails on all Φ_{N} for $\mathrm{N}>\mathrm{n}_{0}$
n ' first input size $>\mathrm{n}_{0}$ such that $\Phi_{\mathrm{n}^{\prime}} \in$ SAT

Sample for $n>2^{n n k}$:
All $\Phi_{n^{\prime}} \ldots \Phi_{\mathrm{n}}$ are in SAT.
Can use Φ_{j} as witness for Φ_{n} when $\mathrm{n}^{1 / k}<\mathrm{q}(\mathrm{j}) \leq \mathrm{n}$.

Sampling algorithms

Give a sampler for the case that A fails on almost all Φ_{n}.

A fails on all Φ_{N} for $\mathrm{N}>\mathrm{n}_{0}$
n ' first input size $>\mathrm{n}_{0}$ such that $\Phi_{\mathrm{n}^{\prime}} \in$ SAT

Sample for $n>2^{n \times k}$:
All $\Phi_{n^{\prime}} \ldots \Phi_{\mathrm{n}}$ are in SAT.
Can use Φ_{j} as witness for Φ_{n} when $\mathrm{n}^{1 / k}<\mathrm{q}(\mathrm{j}) \leq \mathrm{n}$.
Build with smaller Φ_{i} until exhaustive search.

Sampling for randomized algorithms

$\Phi_{n, r} \approx$ "There is a formula w_{N} of size N for $n^{1 / k}<N \leq n$ such that $A^{\prime}\left(w_{n}, r\right)=0$ and $\operatorname{SAT}\left(w_{n}\right)=1$."
$A^{\prime}\left(w_{n}, r\right)$ result of trying A many times. If A^{\prime} fails, $\operatorname{Pr}\left[A\left(w_{n}\right)=0\right]>2 / 3$
Two cases:
If A likely to succeed on significant fraction of $\Phi_{n, r}$ i.o. , we are done.
Build a sampler for case when A likely to fail on most $\Phi_{\mathrm{n}, \mathrm{r}}$ for almost all n .

Similar algorithm, choose each witness randomly.
What if A fails because $\Phi_{n, r} \notin$ SAT for most r ?

Sampling if A almost always fails on most $\Phi_{\mathrm{n}, \mathrm{r}}$

A fails on $\Phi_{N, R}$ for $N>n_{0}$ and most $R \quad 1-p(N)$
A makes mistake at length $n^{\prime} \rightarrow$ most $\Phi_{n^{\prime}, r^{\prime}}$ in SAT.
$1-r(n ')$
What about $\Phi_{\mathrm{q}\left(n^{\prime}\right), \mathrm{r}^{\prime--}}$ what fraction is satisfiable?

A fails a $1-\mathrm{p}(\mathrm{N})$ fraction of the time, but only 1 $r(n ')$ are satisfiable

