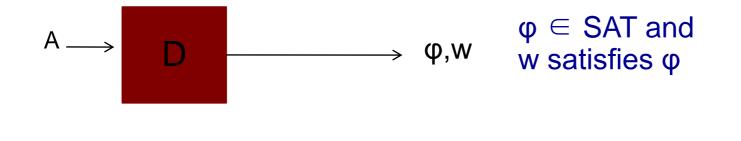
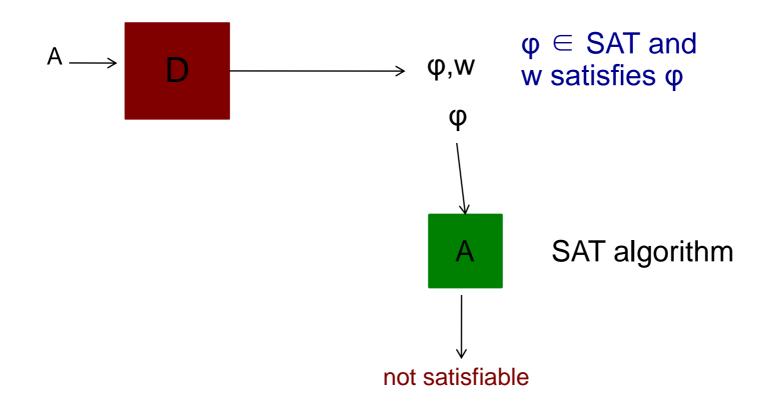
Hard instances for satisfiability and quasi-one-way functions

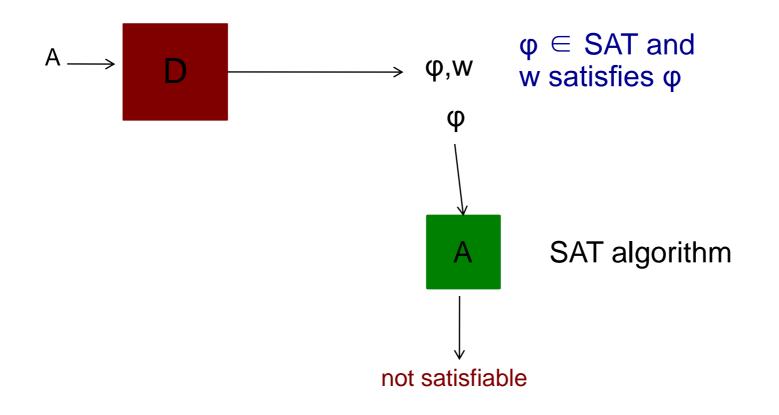
Andrej Bogdanov and Kunal Talwar and Andrew Wan

If $P \neq NP$, then A must fail.



SAT algorithm





"SAT solvers" are widely used in software verification, AI, and operations research.

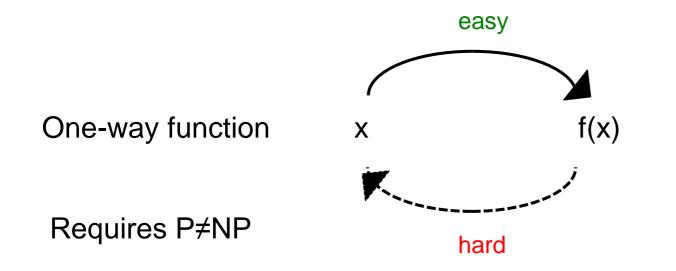
This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Construction of dreambreakers
- Dreambreakers and OWFs
- Dreambreakers and PRGs

Cryptography and Hardness Assumptions



Does P≠NP imply cryptography?

Impagliazzo's five worlds

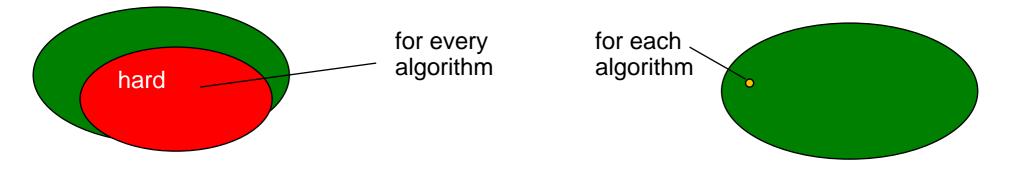
Impagliazzo's five worlds

Minicrypt thm her ma Cryptomania Pessiland Houristica Can we rule out Heuristica or Pessiland?

Cryptography and Hardness Assumptions

Enormous obstacle: Ruling out Heuristica [FF93, BT03, AGGM06]

i.e., obtaining *average*-case hardness from *worst*-case hardness



Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we turn this into a one-way function?

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND their solutions.

Given OWF f choose random "solution" x, and "problem" f(x)

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND their solutions.

Question: If we can sample hard instances, can we sample their solutions?

P≠NP and Heuristica revisited Super-Heuristica

[GST05]

 $P \neq NP$, but algorithm A that solves SAT on every efficiently samplable distribution D?



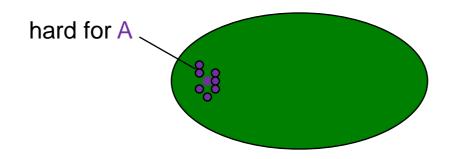
Super-Heuristica

[GST05]

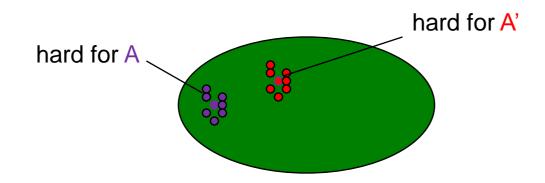
 $P \neq NP$, but algorithm A that solves SAT on every efficiently samplable distribution D?

Thm: If $P \neq NP$, for any decision algorithm A, there is an efficiently samplable distribution D_A that is hard for A.

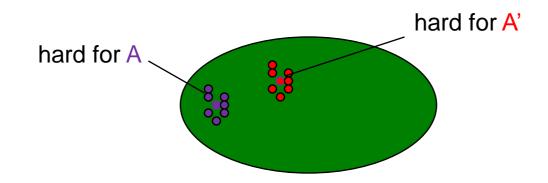
Thm: [GST05] If $P \neq NP$, for any decision algorithm A, there is an efficiently samplable distribution D_A that is hard for A



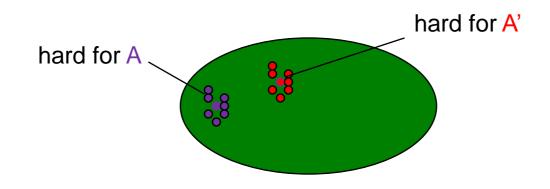
Thm: [GST05] If $P \neq NP$, for any decision algorithm A, there is an efficiently samplable distribution D_A that is hard for A, for A'



Thm: [GST05] If $P \neq NP$, for any decision algorithm A, there is an efficiently samplable distribution D_A that is hard for A, for A', etc.



Thm: [GST05] If $P \neq NP$, for any decision algorithm A, there is an efficiently samplable distribution D_A that is hard for A, for A', etc.



Open Question[GST05]*: (dreambreakers) Can we sample hard formulas AND their satisfying assignments?

* suggested by Adam Smith

Summary: cryptographic motivation

Does P≠NP imply OWFs?

If P≠NP: can we sample hard instances, and can we sample their solutions?

If P≠NP: can we weakly sample hard instances [GST05], and can we weakly sample their solutions?

Summary: cryptographic motivation

Does P≠NP imply OWFs?

If P≠NP: can we sample hard instances, and can we sample their solutions?

If P≠NP: can we weakly sample hard instances [GST05], and can we weakly sample their solutions?

Can we build dreambreakers?

Our work: construct dreambreakers

Thm: If P≠NP, there is poly-time procedure D, for any poly-time search algorithm A :

$$D(1^n, 1^{t(n)}, A) \rightarrow (\phi, w) \qquad |\phi|=n$$

And for infinitely many n,

- φ satisfied by w, and

Our work: dreambreakers exist

Thm: If P≠NP, there is poly-time procedure D, for any poly-time search algorithm A :

$$D(1^n, 1^{t(n)}, A) \rightarrow (\phi, w) \qquad |\phi|=n$$

And for infinitely many n,

- φ satisfied by w, and

Probabilistic version

Corollary: (Quasi-hard samplers) Sampler S which takes $1^n, 1^{t(n)}$ and outputs (ϕ, w) hard for every p.p.t. running in time t(n).

Sampling algorithms

In [GST05]: Diagonalize--Run A on formula that describes success of A on smaller instances.

Use A to find instances on which it fails.

We also use A to find solutions to instances on which it fails!

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Construction of Dreambreakers
- Dreambreakers and OWFs
- Dreambreakers and PRGs

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- 'Hard' distribution, but sampler S takes more time than the adversaries it fools
- compare to sampling in fixed polynomial time to fool all poly-time algorithms
- much weaker notion of avg case hardness

Quasi-hard samplers and Cryptography

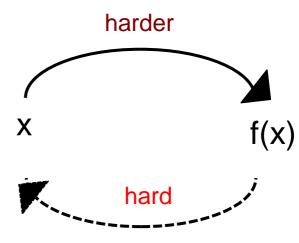
How does this relate to our cryptographic motivation?

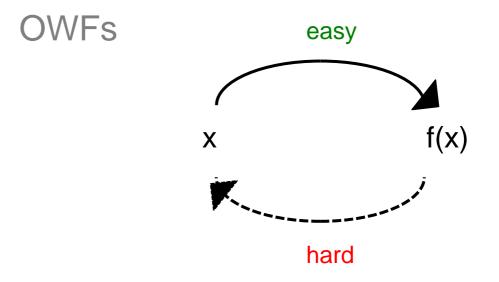
- 'Hard' distribution, but sampler S takes more time than the adversaries it fools
- compare to sampling in fixed polynomial time to fool all poly-time algorithms
- much weaker notion of avg case hardness

[GT07] This weaker notion still 'contradicts' barriers outlined in [BT,FF]

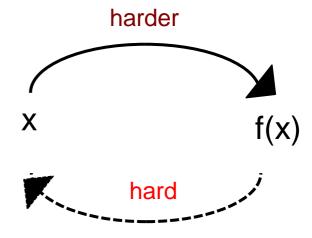
Can we achieve cryptographic primitives for this weaker notion of avg case hardness? How should we define them?

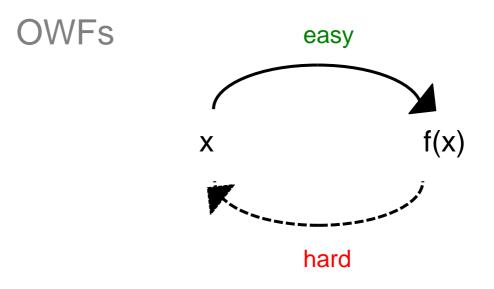
- . Somewhat hard to invert
- · Harder to compute



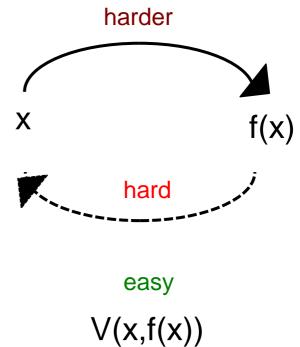


- · Somewhat hard to invert
- · Harder to compute
- . Useless?





- . Somewhat hard to invert
- · Harder to compute
- . Easy to verify

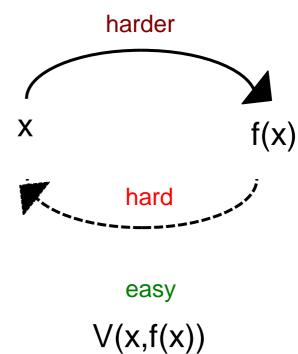


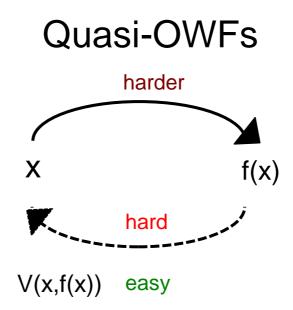
- . Somewhat hard to invert
- · Harder to compute
- . Easy to verify

Without verifier condition, exist unconditionally

Quasi-one-way functions imply P≠NP

Non-trivial aspect of easinesshardness contrast



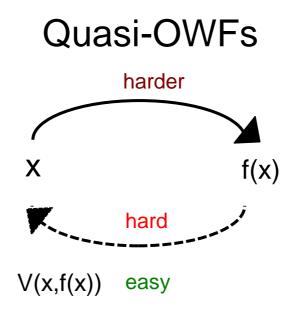


Def: Fix a polynomial $t_V(n)$ and let $t(n)>t_V(n)$. A poly-time function f is quasi-one-way against time t(n) with verifier V (running in time $t_V(n)$) if for every x:

(easy to verify) V(x,f(x))=1,

and for every algorithm A running in time t(n),

(hard to invert) $\Pr_{x}[V(A(f(x)),f(x))=1]<1/t(n).$



Def: Fix a polynomial $t_V(n)$ and let $t(n)>t_V(n)$. A poly-time randomized function f is quasi-one-way against time t(n) with verifier V (running in time $t_V(n)$) if for every x:

(easy to verify) V(x,f(x))=1,

and for every probabilistic algorithm A running in time t(n),

(hard to invert) $\Pr_{x,A}[V(A(f(x)),f(x))=1]<1/t(n).$

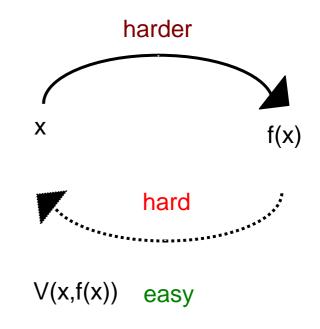
Thm: If NP $\not\subseteq$ BPP then for any poly t(n), quasi-OWFs against time t(n) exist.

f: $\{0,1\}^n \rightarrow \{0,1\}^{2n}$

Use quasi-hard sampler S:

 $S(1^{p(t(n))}) \rightarrow \phi, w$ $f(r) = (\phi, w+r)$

Verifier: V(r,(ϕ ,w)) accepts if (ϕ ,w)='0' or r+w satisfies ϕ



This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Construction of Dreambreakers
- Dreambreakers and OWFs
- Dreambreakers and PRGs

Quasi-OWFs and PRGs

PRG with stretch k: $G:\{0,1\}^n \rightarrow \{0,1\}^{n+k}$ $G(U_n) \approx U_{n+k}$

Generator more time than adversary

Well motivated application: algorithmic derandomization

Quasi-OWFs and PRGs

PRG with stretch k: $G:\{0,1\}^n \rightarrow \{0,1\}^{n+k}$ $G(U_n) \approx U_{n+k}$

Generator more time than adversary

Well motivated application: algorithmic derandomization

PRGs against time t(n) running in time poly(t) implies derandomization from P≠NP

Quasi-OWFs and PRGs

PRG with stretch k: $G:\{0,1\}^n \rightarrow \{0,1\}^{n+k}$ $G(U_n) \approx U_{n+k}$

Generator more time than adversary

Well motivated application: algorithmic derandomization

Can we use quasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Quasi-OWFs and PRGs

Can we use quasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Thm: Not using standard constructions (black box reductions from inverting to distinguishing)

Inverter needs to evaluate the OWF.

Summary/Conclusions

- Showed that dreambreakers exist, defined and constructed quasi-one-way functions
- Some methods we take for granted in normal setting (like OWF→ PRGs) don't work in this new setting

Open Problems

- Build PRGs using quasi-hard samplers?
- Applications? bit commitments, proof systems...
- Hard core predicates, uniform output, hardness amplification, stronger definitions of quasi-OWFs that give the adversary has more power?

This work

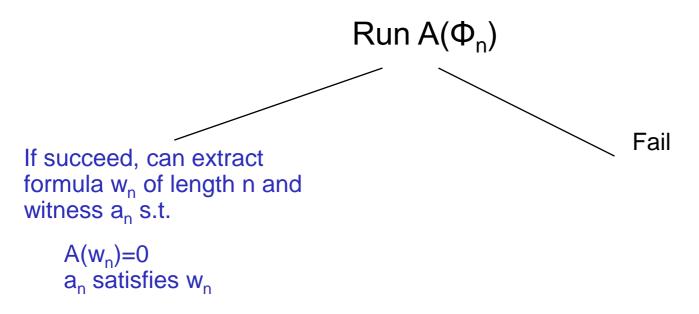
- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation
- Dreambreakers and OWFs
- Quasi-OWFs and PRGs
- Construction of dreambreakers

In [GSTS05]:

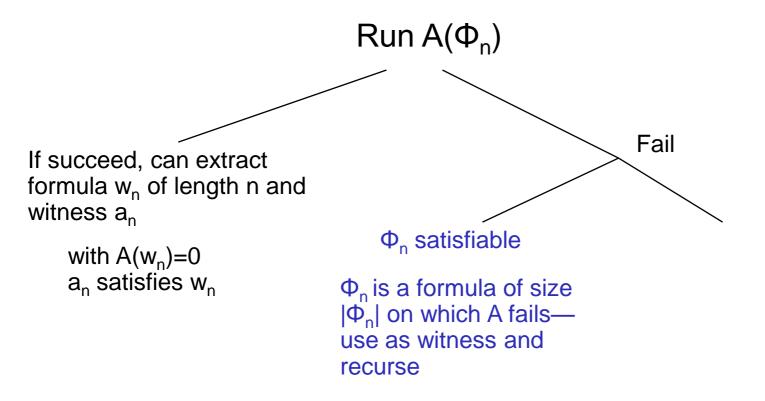
 Φ_n ≈ "There is a formula w_n of size n such that A(w_n)=0 but SAT(w_n)=1."



Warm up: deterministic case

In [GSTS05]:

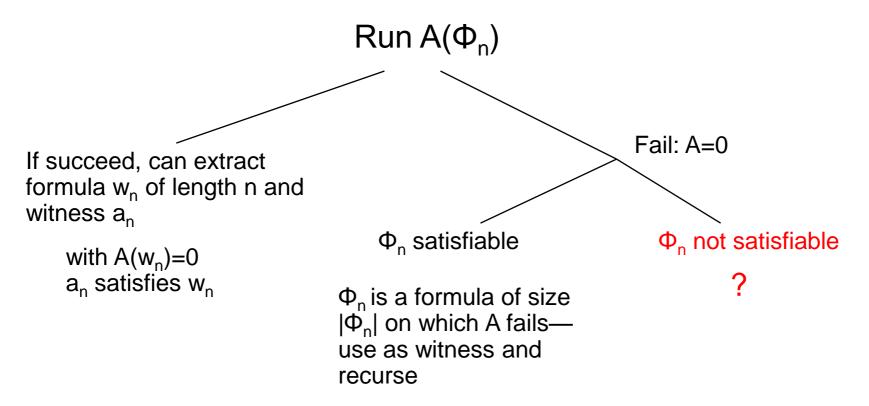
 $\Phi_n \approx$ "There is a formula w_n of size n such that A(w_n)=0 but SAT(w_n)=1."



Warm up: deterministic case

In [GSTS05]:

 $\Phi_n \approx$ "There is a formula w_n of size n such that A(w_n)=0 but SAT(w_n)=1."



 $P \neq NP \rightarrow \Phi_n$ is satisfiable i.o.

why would A succeed on these?

Solution: Redefine Φ_n so that when A fails on an instance of size n: all $\Phi_{n'}$ for n'>n are in SAT until A fails again.

 Φ_n = "There is a formula w_N of size N for $n^{1/k} < N \le n$ such that $A(w_N)=0$ but SAT $(w_N)=1$."

If Φ_n is of size q(n) set k so that q(x) < (x-1)^k

Solution: Redefine Φ_n so that when A fails on an instance of size n: all $\Phi_{n'}$ for n'>n are in SAT until A fails again.

 Φ_n = "There is a formula w_N of size N for $n^{1/k} < N \le n$ such that $A(w_N)=0$ but SAT $(w_N)=1$."

If Φ_n is of size q(n) set k so that q(x) < (x-1)^k

Two cases:

If A finds assignments to Φ_n infinitely often we are done.

Give a sampler for the case that A "fails" on almost all Φ_n .

Give a sampler for the case that A fails on almost all Φ_n .

A fails on all Φ_N for N > n₀

n' first input size > n_0 such that $\Phi_{n'} \in SAT$

Then A makes mistake on $\Phi_{n'}$, so $\Phi_{n'}$ is a good candidate witness:

If n" = $|\Phi_{n'}|$, then $\Phi_{n'}$ is a good partial assignment for $\Phi_{n''}$

Give a sampler for the case that A fails on almost all Φ_n .

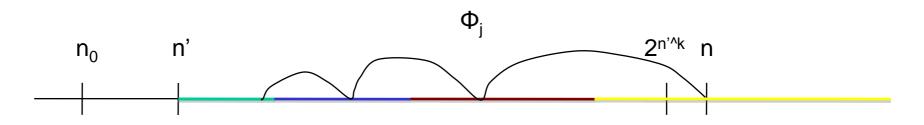
A fails on all Φ_N for N > n₀

n' first input size > n_0 such that $\Phi_{n'} \in SAT$

Sample for $n>2^{n'^k}$:

All $\Phi_{n'} \dots \Phi_n$ are in SAT.

Give a sampler for the case that A fails on almost all Φ_n .



A fails on all Φ_N for N > n₀

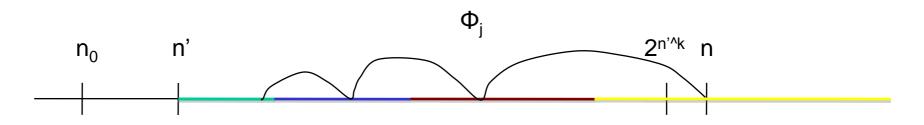
n' first input size > n_0 such that $\Phi_{n'} \in SAT$

Sample for $n>2^{n'^k}$:

All $\Phi_{n'} \dots \Phi_n$ are in SAT.

Can use Φ_i as witness for Φ_n when $n^{1/k} < q(j) \le n$.

Give a sampler for the case that A fails on almost all Φ_n .



A fails on all Φ_N for N > n₀

n' first input size > n_0 such that $\Phi_{n'} \in SAT$

Sample for $n>2^{n'^k}$:

All $\Phi_{n'} \dots \Phi_n$ are in SAT.

Can use Φ_i as witness for Φ_n when $n^{1/k} < q(j) \le n$.

Build with smaller Φ_i until exhaustive search.

Sampling for randomized algorithms

 $\Phi_{n,r} \approx$ "There is a formula w_N of size N for $n^{1/k} < N \le n$ such that A'(w_n, r)=0 and SAT(w_n)=1."

A'(w_n ,r) result of trying A many times. If A' fails, Pr[A(w_n)=0]>2/3

Two cases:

If A likely to succeed on significant fraction of $\Phi_{n,r}$ i.o. , we are done.

Build a sampler for case when A likely to fail on most $\Phi_{n,r}$ for almost all n.

Similar algorithm, choose each witness randomly.

What if A fails because $\Phi_{n,r} \notin SAT$ for most r?

Sampling if A almost always fails on most $\Phi_{n,r}$

A fails on $\Phi_{N,R}$ for N > n₀ and most R 1-p(N) A makes mistake at length n' \rightarrow most $\Phi_{n',r'}$ in SAT. 1-r(n') What about $\Phi_{q(n'),r''}$ -- what fraction is satisfiable?

A fails a 1-p(N) fraction of the time, but only 1-r(n') are satisfiable