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“SAT solvers” are widely used in software verification, AI, and 
operations research.
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w satisfies φ 
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Cryptography and Hardness Assumptions

easy 

hard

x f(x)

Requires P≠NP

One-way function

Does P≠NP imply cryptography? 



Impagliazzo‟s five worlds

Legend

Algorithmica P=NP

Heuristica P≠NP but NP is easy on 

average 

Pessiland NP is hard on average

Minicrypt one-way functions exist

Cryptomania public key encryption



Impagliazzo‟s five worlds



Cryptography and Hardness Assumptions

Enormous obstacle: Ruling out Heuristica [FF93,BT03,AGGM06]

hard

for each
algorithm

for every 
algorithm

i.e., obtaining average-case hardness from worst-case hardness
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Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we 
turn this into a one-way function?  

Fact: OWFs imply ability to sample hard instances of problems AND 
their solutions.

Question: If we can sample hard instances, 
can we sample their solutions?
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samplable distribution DA that is 
hard for A. 
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hard for A

Thm: [GST05] If P ≠ NP, for any decision algorithm A, there is an 
efficiently samplable distribution DA that is hard for A, for A‟, etc.  

hard for A‟

Open Question[GST05]*: (dreambreakers) Can we sample hard 
formulas AND their satisfying assignments?

* suggested by Adam Smith

P≠NP and Algorithmica revisited
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Summary: cryptographic motivation

Does P≠NP imply OWFs?

If P≠NP: can we sample hard instances, and
can we sample their solutions?

If P≠NP:Ican we weakly sample hard instances [GST05], and
can we weakly sample their solutions? 

Can we build dreambreakers?
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Our work: dreambreakers exist

Thm: If P≠NP, there is poly-time procedure D, for any poly-time 
search algorithm A :

And for infinitely many n, 

D(1n, 1t(n), A)  (φ,w) |φ|=n

- φ satisfied by w, and

- A(φ)=0

Probabilistic version 

Corollary: (Quasi-hard samplers) Sampler S which takes 1n,1t(n) 

and outputs (φ,w) hard for every p.p.t. running in time t(n).  



Sampling algorithms

In [GST05]: Diagonalize--Run A on formula that 
describes success of A on smaller instances.  

We also use A to find solutions to instances on which it fails! 

Use A to find instances on which it fails. 
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- „Hard‟ distribution, but sampler S takes more 
time than the adversaries it fools

- compare to sampling in fixed polynomial 
time to fool all poly-time algorithms

- much weaker notion of avg case 
hardness



Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation? 

- „Hard‟ distribution, but sampler S takes more 
time than the adversaries it fools

- compare to sampling in fixed polynomial 
time to fool all poly-time algorithms

[GT07]  This weaker notion still „contradicts‟ barriers outlined in [BT,FF]

Can we achieve cryptographic primitives for this weaker notion of 
avg case hardness? How should we define them?  

- much weaker notion of avg case 
hardness
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Quasi-OWFs

• Somewhat hard to invert

• Harder to compute

• Easy to verify
hard

x f(x)

harder

V(x,f(x))

easyWithout verifier condition, exist 
unconditionally

Quasi-one-way functions imply 
P≠NP

Non-trivial aspect of easiness-
hardness contrast



Quasi-OWFs

Def: Fix a polynomial tV(n) and let  t(n)>tV(n).  A poly-time function f is 
quasi-one-way against time t(n) with verifier V (running in time tV(n)) 
if for every x: 

(easy to verify)       V(x,f(x))=1, 

(hard to invert)        Prx[V(A(f(x)),f(x))=1]<1/t(n).

and for every algorithm A running in time t(n),
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Quasi-OWFs

Def: Fix a polynomial tV(n) and let  t(n)>tV(n).  A poly-time randomized
function f is quasi-one-way against time t(n) with verifier V (running in 
time tV(n)) if for every x: 

(easy to verify)       V(x,f(x))=1, 

(hard to invert)        Prx,A[V(A(f(x)),f(x))=1]<1/t(n).

and for every probabilistic algorithm A running in time t(n),

hard

x f(x)

harder

easyV(x,f(x))



Quasi-OWFs

hard

x f(x)

harder

easy

Thm: If NP ⊄ BPP then for any poly t(n), 
quasi-OWFs against time t(n) exist. 

f(r) = (φ ,w+r)

S(1p(t(n)))φ,w

Use quasi-hard sampler S:

f: {0,1}n
{0,1}2n

Verifier: V(r,(φ,w)) accepts if (φ,w)=„0‟ or r+w satisfies φ 

V(x,f(x))



This work

- Construct dreambreakers

- Explore relationship to cryptography 

Outline 

- Cryptographic motivation

- Construction of Dreambreakers

- Dreambreakers and OWFs

- Dreambreakers and PRGs



Quasi-OWFs and PRGs

Generator more time than adversary 

Well motivated application: algorithmic derandomization

G:{0,1}n
{0,1}n+k G(Un)≈Un+kPRG with stretch k:



Quasi-OWFs and PRGs

Generator more time than adversary 

Well motivated application: algorithmic derandomization

G:{0,1}n
{0,1}n+k G(Un)≈Un+kPRG with stretch k:

PRGs against time t(n) running in time poly(t)
implies derandomization from P≠NP



Quasi-OWFs and PRGs

Can we use quasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Generator more time than adversary 

Well motivated application: algorithmic derandomization

G:{0,1}n
{0,1}n+k G(Un)≈Un+kPRG with stretch k:



Quasi-OWFs and PRGs

Can we use quasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Thm: Not using standard constructions
(black box reductions from inverting to  
distinguishing) 

Inverter needs to evaluate the OWF.



Summary/Conclusions

 Showed that dreambreakers exist, defined and constructed quasi-one-way 
functions  

 Some methods we take for granted in normal setting (like OWF PRGs) 
don‟t work in this new setting

Open Problems

 Build PRGs using quasi-hard samplers?

 Applications? bit commitments, proof systems…

 Hard core predicates, uniform output, hardness amplification, stronger 
definitions of quasi-OWFs that give the adversary has more power?  
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Sampling algorithms

Φn ≈  “There is a formula wn of size n such that A(wn)=0 
but SAT(wn)=1.” 

Warm up: deterministic case

In [GSTS05]:

If succeed, can extract 
formula wn of length n and 
witness an

Run A(Φn)

?

Φn satisfiable 

Fail: A=0

with A(wn)=0
an satisfies wn

Φn not satisfiable 

Φn is a formula of size 
|Φn| on which A fails—
use as witness and 
recurse    



Sampling algorithms

P≠NP  Φn is satisfiable i.o.

Solution: Redefine Φn so that when A fails on an instance of 
size n: all Φn‟ for n‟>n are in SAT until A fails again. 

Φn = “There is a formula wN of size N for n1/k < N ≤ n such that 
A(wN)=0 but SAT(wN)=1.”

If Φn is of size q(n) set k so that q(x) < (x-1)k

why would A succeed on these? 
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Sampling algorithms

Give a sampler for the case that A fails on almost all Φn. 

n‟ first input size > n0 such that  Φn‟ ∈ SAT 

A fails on all ΦN for N > n0

n0 n‟ 2n‟^k n

Then  A makes mistake on Φn‟ , so Φn‟ is a 
good candidate witness: 

If n‟‟ = |Φn‟|, then Φn‟ is a good partial assignment for Φn‟‟
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Sampling algorithms

Give a sampler for the case that A fails on almost all Φn. 

A fails on all ΦN for N > n0

n0 n‟ 2n‟^k n

Sample for n>2n‟^k:

All Φn‟ …Φn are in SAT. 

Can use Φj as witness for Φn when n1/k < q(j) ≤ n. 

Φj

Build with smaller Φi until exhaustive search. 

n‟ first input size > n0 such that  Φn‟ ∈ SAT 



Sampling for randomized algorithms

Φn,r ≈  “There is a formula wN of size N for n1/k < N ≤ n 
such that A‟(wn,r)=0 and SAT(wn)=1.”  

A‟(wn,r) result of trying A many times.  If A‟ fails, Pr[A(wn)=0]>2/3

If A likely to succeed on significant fraction of Φn,r i.o. , we 
are done. 

Build a sampler for case when A likely to fail on most Φn,r 

for almost all n. 

Similar algorithm, choose each witness randomly.

What if A fails because Φn,r ∉ SAT for most r?  

Two cases:



Sampling if A almost always fails on most Φn,r

n0 n‟ 2n‟^k n

A makes mistake at length n‟  most Φn‟,r‟ in SAT.

A fails on ΦN,R for N > n0 and most R 

What about Φq(n‟),r‟‟-- what fraction is satisfiable?   

A fails a 1-p(N) fraction of the time, but only 1-
r(n‟) are satisfiable 

1-p(N)

1-r(n‟)


