Hard instances for satisfiability and
guasi-one-way functions

Andre] Bogdanov and Kunal Talwar and Andrew Wan

“Dreambreakers”

- SAT algorithm

If PZNP, then A must fall.

“Dreambreakers”

¢ € SAT and
PW w satisfies @

- SAT algorithm

“Dreambreakers”

A ¢ € SAT and
- PW w satisfies ¢
¢
SAT algorithm

|

not satisfiable

“Dreambreakers”

¢ € SAT and
PW W satisfies ¢

¢

SAT algorithm

|

not satisfiable

“SAT solvers” are widely used in software verification, Al, and
operations research.

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Construction of dreambreakers
- Dreambreakers and OWFs

- Dreambreakers and PRGs

Cryptography and Hardness Assumptions

One-way function X f(x)

,,,,,
N

Requires P#ZNP

Does P#NP imply cryptography?

Impagliazzo’s five worlds

> Algofrimﬂ@a P=NP \

Heuristica P#NP but NP is easy on \J
T average ", | L. [

Pessiland N‘P‘-isb hard an ‘average:
Minicrypt one-way functions exist
Cryptomania public key encryption 4

>

\\ \r . .4"" " ~

Impagliazzo’s five worlds

Can fe rule out Heunstlca or
Pessﬂand’? o

[

Cryptography and Hardness Assumptions

Enormous obstacle: Ruling out Heuristica [FF93,BT03,AGGMO06]

l.e., obtaining average-case hardness from -case hardness

for every for each
algorithm algorithm

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we
turn this into a one-way function?

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we
turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND
their solutions.

Given OWF f choose random “solution” x, and
“problem” f(x)

Other Barriers: ruling out Pessiland

[Imp95] Pessiland--average-case hardness but no cryptography.

May have a hard distribution over SAT, but how can we
turn this into a one-way function?

Fact: OWFs imply ability to sample hard instances of problems AND
their solutions.

Question: If we can sample hard instances,
can we sample their solutions?

PZNP and Heuristica revisited

Super-Heuristica
[GSTO5]

P # NP, but algorithm A that solves
SAT on every efficiently samplable
distribution D?

P#NP and Algorithmica revisited

Super-Heuristica
[GSTO5]

P # NP, but algorithm A that solves
SAT on every efficiently samplable
distribution D?

Thm: If P # NP, for any decision
algorithm A, there is an efficiently
samplable distribution D, that is
hard for A.

P#NP and Algorithmica revisited

Thm: [GSTO5] If P # NP, for any decision algorithm A, there is an
efficiently samplable distribution D, that is hard for A

hard for A

P#NP and Algorithmica revisited
Thm: [GSTO5] If P # NP, for any decision algorithm A, there is an
efficiently samplable distribution D, that is hard for A, for A

hard for A
hard for A

P#NP and Algorithmica revisited
Thm: [GSTO5] If P # NP, for any decision algorithm A, there is an
efficiently samplable distribution D, that is hard for A, for A, etc.

hard for A
hard for A

P#NP and Algorithmica revisited
Thm: [GSTO5] If P # NP, for any decision algorithm A, there is an
efficiently samplable distribution D, that is hard for A, for A, etc.

hard for A
hard for A

Open Question[GSTO5]*: (dreambreakers) Can we sample hard
formulas AND their satisfying assignments?

* suggested by Adam Smith

Summary: cryptographic motivation

Does P#NP imply OWFs?

If PZNP: can we sample hard instances, and
can we sample their solutions?

If PZNP: can we weakly sample hard instances [GSTO05], and
can we weakly sample their solutions?

Summary: cryptographic motivation

Does P#NP imply OWFs?

If PZNP: can we sample hard instances, and
can we sample their solutions?

If PZNP: can we weakly sample hard instances [GSTO05], and
can we weakly sample their solutions?

Can we build dreambreakers?

Our work: construct dreambreakers

Thm: If PZNP, there is poly-time procedure D, for any poly-time
search algorithm A :

D(1", 1M, A) = (¢p,w) lp|=n
And for infinitely many n,

- ¢ satisfied by w, and
- A(9)=0

Our work: dreambreakers exist

Thm: If PZNP, there is poly-time procedure D, for any poly-time
search algorithm A :

D(1", 1M, A) = (¢p,w) lp|=n
And for infinitely many n,

- ¢ satisfied by w, and
- A(9)=0

Probabilistic version

Corollary: (Quasi-hard samplers) Sampler S which takes 1",11"
and outputs (¢,w) hard for every p.p.t. running in time t(n).

Sampling algorithms

In [GSTO5]: Diagonalize--Run A on formula that
describes success of A on smaller instances.

Use A to find instances on which it fails.

We also use A to find solutions to instances on which it fails!

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Construction of Dreambreakers
- Dreambreakers and OWFs

- Dreambreakers and PRGs

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- ‘Hard’ distribution, but sampler S takes more
time than the adversaries it fools

- compare to sampling in fixed polynomial
time to fool all poly-time algorithms

- much weaker notion of avg case
hardness

Quasi-hard samplers and Cryptography

How does this relate to our cryptographic motivation?

- ‘Hard’ distribution, but sampler S takes more
time than the adversaries it fools

- compare to sampling in fixed polynomial
time to fool all poly-time algorithms

- much weaker notion of avg case
hardness

[GTO7] This weaker notion still ‘contradicts’ barriers outlined in [BT,FF]

Can we achieve cryptographic primitives for this weaker notion of
avg case hardness? How should we define them?

Quasi-OWFs

. Somewhat hard to invert

. Harder to compute

OWFs

harder

X f(x)
K\ hard A
easy
X f(x)
"

~ -
~~--——_——

Quasi-OWFs

. Somewhat hard to invert

. Harder to compute
. Useless?

OWFs

harder

X f(x)
K\ hard A
easy
X f(x)
"

~ -
~~--——_——

Quasi-OWFs

. Somewhat hard to invert

. Harder to compute
. Easy to verify

harder

~ -
-~ -
i ——

Quasi-OWFs

. Somewhat hard to invert
. Harder to compute
. Easy to verify

Without verifier condition, exist
unconditionally

Quasi-one-way functions imply
P#NP

Non-trivial aspect of easiness-
hardness contrast

harder

~ -
-~y -
-

Quasi-OWFs

harder
X f(x)
K hard /i

~ -
~ -
i ——

V(x,f(x)) easy

Def: Fix a polynomial t,,(n) and let t(n)>t,(n). A poly-time function f is
quasi-one-way against time t(n) with verifier V (running in time t,,(n))
If for every x:
(easy to verify) V(x,f(x))=1,
and for every algorithm A running in time t(n),

(hard to invert) Pr,[V(A(f(x)),f(x))=1]<1/t(n).

Quasi-OWFs

harder
X f(x)
K hard /i

~ -
~ -
i ——

V(x,f(x)) easy

Def: Fix a polynomial t,,(n) and let t(n)>t,(n). A poly-time randomized
function f is quasi-one-way against time t(n) with verifier V. (running in
time t,(n)) If for every x:

(easy to verify) V(x,f(x))=1,
and for every probabilistic algorithm A running in time t(n),

(hard to invert) Pr, AlV(A(f(x)),f(x))=1]<1/t(n).

Quasi-OWFs

harder
Thm: If NP ¢ BPP then for any poly t(n), /\
guasi-OWFs against time t(n) exist.
X f(x)
f: {0,1}">{0,1}2"
047204 y. hard

*
. o
G .
a, *
G .

Use quasi-hard sampler S: Vxf(x) easy

S(1PM) >,
f(r) = (¢ ,w+r)

Verifier: V(r,(@,w)) accepts if (¢,w)='0" or r+w satisfies ¢

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Construction of Dreambreakers
- Dreambreakers and OWFs

- Dreambreakers and PRGs

Quasi-OWFs and PRGs

PRG with stretch k: G:{0,1}"=>{0,1}+k G(U,)=U, .\

Generator more time than adversary

Well motivated application: algorithmic derandomization

Quasi-OWFs and PRGs

PRG with stretch k: G:{0,1}"=>{0,1}+k G(U,)=U, .\
Generator more time than adversary

Well motivated application: algorithmic derandomization

PRGs against time t(n) running in time poly(t)
implies derandomization from P#ZNP

Quasi-OWFs and PRGs

PRG with stretch k: G:{0,1}"=>{0,1}+k G(U,)=U, .\
Generator more time than adversary
Well motivated application: algorithmic derandomization

Can we use gquasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Quasi-OWFs and PRGs

Can we use gquasi-one-way functions to construct PRGs?

does this follow from [HILL] or other standard constructions?

Thm: Not using standard constructions
(black box reductions from inverting to
distinguishing)

Inverter needs to evaluate the OWF.

Summary/Conclusions

« Showed that dreambreakers exist, defined and constructed quasi-one-way
functions

. Some methods we take for granted in normal setting (like OWF-> PRGS)
don’t work in this new setting

Open Problems

« Build PRGs using quasi-hard samplers?
« Applications? bit commitments, proof systems...

. Hard core predicates, uniform output, hardness amplification, stronger
definitions of quasi-OWFs that give the adversary has more power?

This work

- Construct dreambreakers
- Explore relationship to cryptography

Outline

- Cryptographic motivation

- Dreambreakers and OWFs

- Quasi-OWFs and PRGs

- Construction of dreambreakers

Sampling algorithms

In [GSTSO05]:

@, = “There is a formula w,, of size n such that A(w,)=0
but SAT(w,)=1.”

Run A(®,)

If succeed, can extract
formula w, of length n and
witness a,, S.t.

A(w,)=0
a, satisfies w,

Sampling algorithms
Warm up: deterministic case

In [GSTSO05].

@, = “There is a formula w,, of size n such that A(w,)=0
but SAT(w,)=1.”

Run A(®,)

/

If succeed, can extract
formula w, of length n and

Falil

witness a,
: @, satisfiable
with A(w,)=0 "
a, satisfies w, @, is a formula of size

|®, | on which A fails—
use as witness and
recurse

Sampling algorithms
Warm up: deterministic case

In [GSTSO05].

@, = “There is a formula w,, of size n such that A(w,)=0
but SAT(w,)=1.”

Run A(®,)

/

If succeed, can extract
formula w, of length n and

witness a,
. ®_ satisfiable @ _ not satisfiable
with A(w,)=0 n "
a, satisfies w, ?

®, is a formula of size
|®,| on which A fails—
use as witness and
recurse

Sampling algorithms
P#NP - ©_ is satisfiable i.o.

why would A succeed on these?

Solution: Redefine @, so that when A fails on an instance of
size n: all @, for n">n are in SAT until A fails again.

®, = “There is a formula wy, of size N for n¥k < N < n such that
A(w,)=0 but SAT(wy)=1."

If @, is of size g(n) set k so that q(x) < (x-1)K

Sampling algorithms

Solution: Redefine @, so that when A fails on an instance of
size n: all @, for n">n are in SAT until A fails again.

®, = “There is a formula wy, of size N for n¥k < N < n such that
A(w,)=0 but SAT(wy)=1."

If @, is of size q(n) set k so that g(x) < (x-1)k

Two cases:

If A finds assignments to @, infinitely often we are done.

Give a sampler for the case that A “fails” on almost all ..

Sampling algorithms
Give a sampler for the case that A fails on almost all ..

N, n’ 2"k n

A fails on all @ for N > n,

n’ first input size > n, such that @, € SAT

Then A makes mistakeon ®., ,so ®, isa
good candidate witness:

Ifn” =|®,,|, then @ is agood partial assignment for O,

Sampling algorithms

Give a sampler for the case that A fails on almost all ..

No n’ A=0 A=0 A=0 ok

I I I | |

A fails on all @ for N > n,

n’ first input size > n, such that @, € SAT

Sample for n>2n":

Al D, ...0, are in SAT.

Sampling algorithms

Give a sampler for the case that A fails on almost all ..

P,
N, n "k on

A fails on all @ for N > n,

n’ first input size > n, such that @, € SAT

Sample for n>2n";
Al D, ...0, are in SAT.

Can use @, as witness for ®, when nt* < q(j) < n.

Sampling algorithms

Give a sampler for the case that A fails on almost all ..

P,
N, n "k on

A fails on all @ for N > n,

n’ first input size > n, such that @, € SAT

Sample for n>2n";
Al D, ...0, are in SAT.

Can use @, as witness for ®, when nt* < q(j) < n.

Build with smaller ®, until exhaustive search.

Sampling for randomized algorithms

®, .= “There is a formula wy, of size N for ntk <N < n
such that A'(w,,r)=0 and SAT(w,)=1."

A'(w,,,r) result of trying A many times. If A’ fails, Pr[A(w,)=0]>2/3

Two cases:

If A likely to succeed on significant fraction of @, i.0. , we
are done.

Build a sampler for case when A likely to fail on most ©,,,
for almost all n.

Similar algorithm, choose each witness randomly.

What if A fails because @, , ¢ SAT for most r?

Sampling if A almost always fails on most @, ,

N, n’ 2"k n
I I ||
I I I
A fails on @y for N > nyand most R 1-p(N)
A makes mistake at length n” > most @, . in SAT. 1-r(n’)

What about @, --- what fraction is satisfiable?

A fails a 1-p(N) fraction of the time, but only 1-
r(n’) are satisfiable

