

Memory Consistency Conditions
for Self-Assembly Programming

Aaron Sterling
Laboratory for Nanoscale Self-Assembly

Department of Computer Science
Iowa State University

Take-away message
● Self-assembling systems can be simulated

by models of distributed shared memory.
● Types of error unique to algorithmic DNA

self-assembly can be simulated by weak
memory consistency conditions for those
DSM models.

● Hence, the theory of memory consistency,
and the theory of self-stabilization, can be
productively applied to questions of
algorithmic self-assembly.

Take-away message
● The theory of multiprocessor architecture

can be productively applied to biomolecular
computing architecture!

Overview
● Introduction to algorithmic DNA self-

assembly
● Introduction to distributed shared memory,

and memory consistency conditions
● Sketch of reduction from self-assembly

models to DSM models
● Two applications
● Conclusion, and preview of future work

DNA self-assembly

Key insight by Winfree [1995-8]:

Source: Strong 2004

Algorithmic DNA self-assembly
● Winfree's key insight [1995-8]:

– DNA nanostructures with four “sticky ends”
[Seeman] could be programmed by
approximating them as a model of
effectivized Wang tiling on the integer
plane.

A

C

BD

DNA tile self-assembly

Y1

Y0

0

Y1

The west side has
binding strength 0,
represented by a
dashed line.

The north side has glue type
“Y0” and binding strength 2,
represented by a double line.

The east side has glue
type “0” and binding

strength 1, represented
by a single line.

The south side has
glue type “Y1” and
binding strength 2.

This tile is
named “Y1”.

Programmable Self-Assembly

U
R

Programmable Self-Assembly

U

U

U

R

1

Programmable Self-Assembly

U

U

U

R R R

1

1

Programmable Self-Assembly

U

U

U

U

U

R R R

1

1

1

Programmable Self-Assembly

U

U

U

U

U

R R R R R

1

1

1 1

Programmable Self-Assembly

U

U

U

U

U

R R R R R R R

1

1

1 1 1

Programmable Self-Assembly

U

U

U

U

U

R R R R R R R

1

1

1

1 1 1

1

0

0

Programmable Self-Assembly

U

U

U

U

U

R R R R R R R

1

1

1

1 1 1

1 1

0

0 0 1

1

Programmable Self-Assembly

U

U

U

U

U

R R R R R R R

1

1

1

1

1 1 1

1 1

0

0

0

0

1

1

1

1

Programmable Self-Assembly

U

U

U

U

U

U

U

R R R R R R R

1

1

1

1

1

1

1 1 1

1 1 1

0

0

0

0

1

1

1

1

1

0

0

1

1

0

0

1 0

0

0

0

0

0

0

0

0

0

0 0

0

0

This set of eight tiles
computes exclusive-or
(addition mod 2), and is
colored only if the output of
the function is 1.

Programmable Self-Assembly

Rothemund et al., 2004

Tile Assembly Models
● Abstract Tile Assembly Model (aTAM) [Rothemund

and Winfree]
– Nondeterministic and error-free
– At each time step, one tile is placed

nondeterministically at the frontier
● Kinetic Tile Assembly Model (kTAM) [Winfree]

– Probabilistic and error-permitting
– At each time step, tiles on the frontier can bind

or dissociate, with probabilities based on
rate equations from chemical kinetics

Fundamental Questions
● Necessary and sufficient conditions to

produce a unique terminal assembly

● Fault tolerance / error correction

Fundamental Questions
● Necessary and sufficient conditions to

produce a unique terminal assembly
– Local determinism [Soloveichik and Winfree]

● Fault tolerance / error correction
– Proofreading [ChenGoel], [Soloveichik et al.]
– Protected Tile Mechanism [Fujibiyashi et al.]

Tile Assembly as
Distributed System

● Each agent has only local knowledge
● Behavior is asynchronous
● Goal is to build a global structure using only

local rules
● Researchers in distributed systems have been

designing algorithms for fault-tolerance for
thirty years.

Tile Assembly as
Distributed System

● Each agent has only local knowledge
● Behavior is asynchronous
● Goal is to build a global structure using only

local rules
● Researchers in distributed systems have been

designing algorithms for fault-tolerance for
thirty years.

● Binding errors in self-assembly are
fundamentally different from faults in
previously-studied distributed systems.

Tile Binding Errors

A mismatched tile is trapped in the assembly before it can dissociate.
[Fujibayashi et al.]

Binding Errors
as Inconsistent Registers

● Metaphor: an agent approaches the
assembly, “asks” whether the bonds in a
location are correct, “hears” incorrectly
what the bonds are, and binds at that
location.

Binding Errors
as Inconsistent Registers

● Metaphor: an agent approaches the
assembly, “asks” whether the bonds in a
location are correct, “hears” incorrectly
what the bonds are, and binds at that
location.

● Mathematics: simulate tile assembly
systems with systems of distributed
processors. The registers of these
processors can be faulty, i.e., can return
inconsistent values, to model binding errors

Memory Consistency Conditions
● Multiprocessor programming, and

architecture theory, have dealt with this
type of problem for years.

● Just because a processor “writes” to a
register, the register may not return that
value. For example, the value may be in a
cache, to be written to the register later.

● Programmers want guarantees of
consistency; designers of architecture and
compilers want flexibility for optimization.

Memory Consistency Conditions
● A memory consistency model specifies the

allowable behavior of memory.

Memory Consistency Conditions
● A memory consistency model specifies the

allowable behavior of memory.
● Sequentially consistent: operations of all

processors executed in sequential order,
and ops of each processor appear in the
order specified by its program.

Memory Consistency Conditions
● A memory consistency model specifies the

allowable behavior of memory.
● Sequentially consistent: operations of all

processors executed in sequential order,
and ops of each processor appear in the
order specified by its program.

● Causally consistent: for each processor,
the ops of that processor plus all writes
known to that processor appear in a total
order that respects potential causality.

Examples
Causally consistent, not sequentially
consistent:
p

1
: WRITE

x
(0) READ

x
(1)

p
2
: WRITE

x
(1) READ

x
(0)

Examples
Causally consistent, not sequentially
consistent:
p

1
: WRITE

x
(0) READ

x
(1)

p
2
: WRITE

x
(1) READ

x
(0)

Not causally consistent:
p

1
: WRITE

x
(0) WRITE

x
(1)

p
2
: READ

x
(1) WRITE

y
(2)

p
3
: READ

y
(2) READ

x
(0)

Simulation Theorem #1
● Theorem: There exists a class of causally

consistent distributed processors that
simulates the aTAM.

● “Simulate” means that each processor acts
like a location on the assembly surface,
and takes on a different state for each
possible tile type, or “EMPTY” to simulate
the absence of a tile.

Application #1
● A tile assembly system is locally

deterministic if, for any location in the
assembly, a unique tile type can be placed
legally in that assembly, given the
neighboring tiles that were placed there
previously in the assembly sequence.

● A multiprocessor program is concurrent-
write free if no legal program execution
permits conflicting writes to the same
register.

Application #1

A

B

C

Not locally deterministic

r

p
1
: write(1)

p
2
: write(2)

Not concurrent-write free

B
A

A
C

Application #1
● Theorem: T is a locally deterministic tile

assembly system iff it can be simulated by
a concurrent-write free program on a
system of distributed processors whose
behavior is entirely determined by local
binding rules.

Application #1
● Theorem: Local determinism iff simulation

is concurrent-write free.
● Consequence: Programming language

techniques (like types) to ensure
concurrent-write freedom will also enforce
local determinism when compiling tile
assembly systems.

Application #1
● Theorem: Local determinism iff simulation

is concurrent-write free.
● Consequence: Programming language

techniques (like types) to ensure
concurrent-write freedom will also enforce
local determinism when compiling tile
assembly systems.

● Consequence: Heuristics to check failure of
concurrent-write freedom can be applied to
self-assembly programming.

Simulation Theorem #2
● GWO (“global write-read-write order”) is the

condition that there is global agreement on
the order of any two writes, when a
processor can prove it has read one before
the other.

● Theorem: There exists a class of GWO-
consistent distributed processors that
simulates the kTAM.

Simulation Theorem #2
● Theorem: There exists a class of GWO-

consistent distributed processors that simulates
the kTAM.

Simulation Theorem #2
● Theorem: There exists a class of GWO-

consistent distributed processors that simulates
the kTAM.

● Intuition: In the kTAM, future bonds are causally
related to past bonds. So writes are globally
causally related, even though there is no
guarantee that registers will return the values
written.

Simulation Theorem #2
● Theorem: There exists a class of GWO-

consistent distributed processors that simulates
the kTAM.

● Intuition: In the kTAM, future bonds are causally
related to past bonds. So writes are globally
causally related, even though there is no
guarantee that registers will return the values
written.

● Note: This is the first “natural” distributed
system shown to obey GWO, and not anything
stronger. Errors in, e.g., sensor networks or
silicon architecture, are fundamentally different.

Application #2
● Self-stabilizing system: starting from any initial

state, it is guaranteed to converge to a
“legitimate” state.

Application #2
● Self-stabilizing system: starting from any initial

state, it is guaranteed to converge to a
“legitimate” state.

● Theorem: There exists a polynomial-time
algorithm that, given a locally deterministic T
for the kTAM, outputs a self-healing,
proofreading tile assembly system T'.

Application #2
● Self-stabilizing system: starting from any initial

state, it is guaranteed to converge to a
“legitimate” state.

● Theorem: There exists a polynomial-time
algorithm that, given a locally deterministic T
for the kTAM, outputs a self-healing,
proofreading tile assembly system T'.

● Note: This was already known, though not
published in this general form. The new
contribution is the proof technique of self-
stabilization.

Future Work
● “The greatest promise [of algorithmic DNA

self-assembly] may lie in applications
where DNA nanostructure templates have
been used to assemble other inorganic
components and functional groups.”
[Nanofabrication by DNA self-assembly, Li
et al.]

Future Work
● “The greatest promise [of algorithmic DNA

self-assembly] may lie in applications
where DNA nanostructure templates have
been used to assemble other inorganic
components and functional groups.”
[Nanofabrication by DNA self-assembly, Li
et al.]

– Models of “mixed media” self-assembly

Future Work
“For the forseeable future, self-assembly has to
deal with a significantly higher defect rate than
etching and similar methods; this presumably has
to be dealt with at the algorithmic level. Thus we
need a theory of fault-tolerant assembly, as well
as new fault-tolerant algorithms and architectures
for these models.” [The Computational Worldview
and the Sciences, Arora et al.]

Future Work
“For the forseeable future, self-assembly has to
deal with a significantly higher defect rate than
etching and similar methods; this presumably has
to be dealt with at the algorithmic level. Thus we
need a theory of fault-tolerant assembly, as well
as new fault-tolerant algorithms and architectures
for these models.” [The Computational Worldview
and the Sciences, Arora et al.]

– Self-stabilizing algorithms for self-
assembling agents with binding errors

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

