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Take-away message
● Self-assembling systems can be simulated 

by models of distributed shared memory.
● Types of error unique to algorithmic DNA 

self-assembly can be simulated by weak 
memory consistency conditions for those 
DSM models.

● Hence, the theory of memory consistency, 
and the theory of self-stabilization, can be 
productively applied to questions of 
algorithmic self-assembly.



  

Take-away message
● The theory of multiprocessor architecture 

can be productively applied to biomolecular 
computing architecture!



  

Overview
● Introduction to algorithmic DNA self-

assembly
● Introduction to distributed shared memory, 

and memory consistency conditions
● Sketch of reduction from self-assembly 

models to DSM models
● Two applications
● Conclusion, and preview of future work



  

DNA self-assembly

Key insight by Winfree [1995-8]:

Source: Strong 2004



  

Algorithmic DNA self-assembly
● Winfree's key insight [1995-8]: 

– DNA nanostructures with four “sticky ends” 
[Seeman] could be programmed by 
approximating them as a model of 
effectivized Wang tiling on the integer 
plane.
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DNA tile self-assembly
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The west side has 
binding strength 0, 
represented by a 
dashed line.

The north side has glue type 
“Y0” and binding strength 2, 
represented by a double line.

The east side has glue 
type “0” and binding 

strength 1, represented 
by a single line.

The south side has 
glue type “Y1” and 
binding strength 2.

This tile is 
named “Y1”.



  

Programmable Self-Assembly
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Programmable Self-Assembly
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Programmable Self-Assembly
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Programmable Self-Assembly
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Programmable Self-Assembly
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Programmable Self-Assembly
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Programmable Self-Assembly
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This set of eight tiles 
computes exclusive-or 
(addition mod 2), and is 
colored only if the output of 
the function is 1.



  

Programmable Self-Assembly

Rothemund et al., 2004



  

Tile Assembly Models
● Abstract Tile Assembly Model (aTAM) [Rothemund 

and Winfree]
– Nondeterministic and error-free
– At each time step, one tile is placed 

nondeterministically at the frontier
● Kinetic Tile Assembly Model (kTAM) [Winfree]

– Probabilistic and error-permitting
– At each time step, tiles on the frontier can bind 

or dissociate, with probabilities based on 
rate equations from chemical kinetics



  

Fundamental Questions
● Necessary and sufficient conditions to 

produce a unique terminal assembly

● Fault tolerance / error correction



  

Fundamental Questions
● Necessary and sufficient conditions to 

produce a unique terminal assembly
– Local determinism [Soloveichik and Winfree]

● Fault tolerance / error correction
– Proofreading [ChenGoel], [Soloveichik et al.]
– Protected Tile Mechanism [Fujibiyashi et al.]



  

Tile Assembly as
Distributed System

● Each agent has only local knowledge
● Behavior is asynchronous
● Goal is to build a global structure using only 

local rules
● Researchers in distributed systems have been 

designing algorithms for fault-tolerance for 
thirty years.



  

Tile Assembly as
Distributed System

● Each agent has only local knowledge
● Behavior is asynchronous
● Goal is to build a global structure using only 

local rules
● Researchers in distributed systems have been 

designing algorithms for fault-tolerance for 
thirty years.

● Binding errors in self-assembly are 
fundamentally different from faults in 
previously-studied distributed systems.



  

Tile Binding Errors

A mismatched tile is trapped in the assembly before it can dissociate.
[Fujibayashi et al.]



  

Binding Errors
as Inconsistent Registers

● Metaphor: an agent approaches the 
assembly, “asks” whether the bonds in a 
location are correct, “hears” incorrectly 
what the bonds are, and binds at that 
location.



  

Binding Errors
as Inconsistent Registers

● Metaphor: an agent approaches the 
assembly, “asks” whether the bonds in a 
location are correct, “hears” incorrectly 
what the bonds are, and binds at that 
location.

● Mathematics: simulate tile assembly 
systems with systems of distributed 
processors.  The registers of these 
processors can be faulty, i.e., can return 
inconsistent values, to model binding errors



  

Memory Consistency Conditions
● Multiprocessor programming, and 

architecture theory, have dealt with this 
type of problem for years.

● Just because a processor “writes” to a 
register, the register may not return that 
value.  For example, the value may be in a 
cache, to be written to the register later.

● Programmers want guarantees of 
consistency; designers of architecture and 
compilers want flexibility for optimization.



  

Memory Consistency Conditions
● A memory consistency model specifies the 

allowable behavior of memory.



  

Memory Consistency Conditions
● A memory consistency model specifies the 

allowable behavior of memory.
● Sequentially consistent: operations of all 

processors executed in sequential order, 
and ops of each processor appear in the 
order specified by its program.



  

Memory Consistency Conditions
● A memory consistency model specifies the 

allowable behavior of memory.
● Sequentially consistent: operations of all 

processors executed in sequential order, 
and ops of each processor appear in the 
order specified by its program.

● Causally consistent: for each processor, 
the ops of that processor plus all writes 
known to that processor appear in a total 
order that respects potential causality.



  

Examples
Causally consistent, not sequentially 
consistent:
p

1
: WRITE

x
(0) READ

x
(1)

p
2
: WRITE

x
(1) READ

x
(0)



  

Examples
Causally consistent, not sequentially 
consistent:
p

1
: WRITE

x
(0) READ

x
(1)

p
2
: WRITE

x
(1) READ

x
(0)

Not causally consistent:
p

1
: WRITE

x
(0) WRITE

x
(1)

p
2
:                    READ

x
(1)    WRITE

y
(2)

p
3
:                    READ

y
(2)    READ

x
(0)



  

Simulation Theorem #1
● Theorem: There exists a class of causally 

consistent distributed processors that 
simulates the aTAM.

● “Simulate” means that each processor acts 
like a location on the assembly surface, 
and takes on a different state for each 
possible tile type, or “EMPTY” to simulate 
the absence of a tile.



  

Application #1
● A tile assembly system is locally 

deterministic if, for any location in the 
assembly, a unique tile type can be placed 
legally in that assembly, given the 
neighboring tiles that were placed there 
previously in the assembly sequence.

● A multiprocessor program is concurrent-
write free if no legal program execution 
permits conflicting writes to the same 
register.



  

Application #1

A

B

C

Not locally deterministic

r

p
1
: write(1)

p
2
: write(2)

Not concurrent-write free

B
A

A
C



  

Application #1
● Theorem: T is a locally deterministic tile 

assembly system iff it can be simulated by 
a concurrent-write free program on a 
system of distributed processors whose 
behavior is entirely determined by local 
binding rules.



  

Application #1
● Theorem: Local determinism iff simulation 

is concurrent-write free.
● Consequence: Programming language 

techniques (like types) to ensure 
concurrent-write freedom will also enforce 
local determinism when compiling tile 
assembly systems.



  

Application #1
● Theorem: Local determinism iff simulation 

is concurrent-write free.
● Consequence: Programming language 

techniques (like types) to ensure 
concurrent-write freedom will also enforce 
local determinism when compiling tile 
assembly systems.

● Consequence: Heuristics to check failure of 
concurrent-write freedom can be applied to 
self-assembly programming.



  

Simulation Theorem #2
● GWO (“global write-read-write order”) is the 

condition that there is global agreement on 
the order of any two writes, when a 
processor can prove it has read one before 
the other.

● Theorem: There exists a class of GWO-
consistent distributed processors that 
simulates the kTAM.



  

Simulation Theorem #2
● Theorem: There exists a class of GWO-

consistent distributed processors that simulates 
the kTAM.



  

Simulation Theorem #2
● Theorem: There exists a class of GWO-

consistent distributed processors that simulates 
the kTAM.

● Intuition: In the kTAM, future bonds are causally 
related to past bonds. So writes are globally 
causally related, even though there is no 
guarantee that registers will return the values 
written.



  

Simulation Theorem #2
● Theorem: There exists a class of GWO-

consistent distributed processors that simulates 
the kTAM.

● Intuition: In the kTAM, future bonds are causally 
related to past bonds. So writes are globally 
causally related, even though there is no 
guarantee that registers will return the values 
written.

● Note: This is the first “natural” distributed 
system shown to obey GWO, and not anything 
stronger.  Errors in, e.g., sensor networks or 
silicon architecture, are fundamentally different.



  

Application #2
● Self-stabilizing system: starting from any initial 

state, it is guaranteed to converge to a 
“legitimate” state.



  

Application #2
● Self-stabilizing system: starting from any initial 

state, it is guaranteed to converge to a 
“legitimate” state.

● Theorem: There exists a polynomial-time 
algorithm that, given a locally deterministic T 
for the kTAM, outputs a self-healing, 
proofreading tile assembly system T'.



  

Application #2
● Self-stabilizing system: starting from any initial 

state, it is guaranteed to converge to a 
“legitimate” state.

● Theorem: There exists a polynomial-time 
algorithm that, given a locally deterministic T 
for the kTAM, outputs a self-healing, 
proofreading tile assembly system T'.

● Note: This was already known, though not 
published in this general form. The new 
contribution is the proof technique of self-
stabilization.



  

Future Work
● “The greatest promise [of algorithmic DNA 

self-assembly] may lie in applications 
where DNA nanostructure templates have 
been used to assemble other inorganic 
components and functional groups.” 
[Nanofabrication by DNA self-assembly, Li 
et al.]



  

Future Work
● “The greatest promise [of algorithmic DNA 

self-assembly] may lie in applications 
where DNA nanostructure templates have 
been used to assemble other inorganic 
components and functional groups.” 
[Nanofabrication by DNA self-assembly, Li 
et al.]

– Models of “mixed media” self-assembly



  

Future Work
“For the forseeable future, self-assembly has to 
deal with a significantly higher defect rate than 
etching and similar methods; this presumably has 
to be dealt with at the algorithmic level.  Thus we 
need a theory of fault-tolerant assembly, as well 
as new fault-tolerant algorithms and architectures 
for these models.” [The Computational Worldview 
and the Sciences, Arora et al.]



  

Future Work
“For the forseeable future, self-assembly has to 
deal with a significantly higher defect rate than 
etching and similar methods; this presumably has 
to be dealt with at the algorithmic level.  Thus we 
need a theory of fault-tolerant assembly, as well 
as new fault-tolerant algorithms and architectures 
for these models.” [The Computational Worldview 
and the Sciences, Arora et al.]

– Self-stabilizing algorithms for self-
assembling agents with binding errors



  

Thank you!
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