Effectively Polynomial Simulations

Toni Pitassi (U of Toronto) Rahul Santhanam (U of Edinburgh)

Proof systems

Propositional

Poly time onto fn: $\{0,1\}^*$ \rightarrow TAUT (proofs) (prop. tautologies)

Quantified

Poly time onto fn: {0,1}* QTAUT (proofs) (valid quantified formulae)

Proof Systems and Complexity

- Theorem [Cook-Reckhow]: NP = coNP iff there is a propositional proof system which is *polynomially bounded* (every tautology has a proof of length polynomial in size of tautology)
- PSPACE = NP iff there is a quantified proof system which is polynomially bounded

p-Simulations

- P p-simulates Q if for all tautologies ϕ
 - If φ has Q-proofs of size n, then φ has P-proofs of size poly(n)
- If P p-simulates Q then proof size lower bounds for P translate to lower bounds for Q
- Extended Frege p-simulates Frege p-simulates Bounded-depth Frege p-simulates Resolution

Effectively p-simulations: Basic Idea

- Relaxed notion of simulation
- P effectively p-simulates Q if
 - $-\phi$ has small proofs in Q \rightarrow f(ϕ) has small proofs in P, where f is poly-time

Effectively p-simulations: Definition

Effectively p-simulation of Q by P

For all φ and m, φ is a tautology iff f(<φ,1^m>) is a tautology
If φ has Q-proofs of size at most m, then f(<φ,1^m>) has P-proofs of size at most poly(m)

Effectively p-simulation: Motivation

- When proof systems are used in SAT solvers, natural to allow poly-time preprocessing
- Allows us to
 - Compare proof systems of different kinds, eg. propositional vs quantified
 - Relate several pairs of proof systems not known to be related before
- Useful in studying *automatizability* (efficient proof search)

Automatizability

 "Proof" might not be in P, but in a different proof system. If proof produced is a P-proof, then "strongly automatizable"

Automatizability and Complexity

- Theorem: The following are equivalent
 - Every propositional proof system is automatizable
 - Every quantified proof system is automatizable
 - -P = NP

Automatizability and Effectively Polynomial Simulation

- Proposition: If P is automatizable and P effectively p-simulates Q, then Q is automatizable
- Proof: Given <φ,1^m>, automatization procedure for Q runs automatization procedure for P on f(<φ,1^m>) and returns the result

Proof Systems: Hilbert-style (Propositional)

- Axioms, rules of deduction, lines of proof are propositional
- Different proof systems depending on what the lines are
 - Clauses: Resolution
 - k-DNFs: k-Res
 - AC⁰: Bounded-depth Frege
 - Formulae: Frege
 - Circuits: EF

Proof Systems: Hilbert-style (Quantified)

- Axioms, rules of deduction, lines of proof are quantified Boolean formulae
- Key rule of deduction is *cut* rule (from A V B → C and A → B ∧ D, derive A → D V C)
- Different proof systems depending on type of B

- B is Σ_i formula: G_i

Proof Systems: Algebraic

- Manipulating systems of polynomial equations: Polynomial Calculus (PC), Nullstellensatz
- Manipulating systems of linear inequalities: Cutting Planes (CP), Lovasz-Schrijver (LS), LS+

p-Simulations: The Map

Effectively p-simulations: Examples (1)

- Proposition: If A and B are (quasi)automatizable, then each effectively (quasi)p-simulates the other
- Corollary: Nullstellensatz, PC and Tree Resolution effectively (quasi)p-simulate each other
- Theorem [CEI96]: Nullstellensatz does not (quasi)p-simulate PC
- Tree Resolution does not (quasi)p-simulate Nullstellensatz or PC

Effectively p-simulations: Examples (2)

- Linear Resolution: Resolution where one of the resolved clauses is the most recently derived
- Unknown whether Linear Resolution p-simulates Resolution
- Theorem [B-OP03]: Linear Resolution effectively p-simulates Resolution

Effectively p-simulations: Examples (3)

- Clause Learning: Variant of Resolution used extensively in SAT solvers
- Unknown whether Clause Learning p-simulates Resolution
- Theorem [BHPvG08]: Clause Learning effectively p-simulates Resolution

Effectively p-simulations: Examples (4)

- Theorem [ABE02]: Res does not p-simulate k-Res, for any k >= 2
- Theorem [AB04]: Res effectively p-simulates k-Res for any constant k
- Generalization: a proof system can effectively p-simulate any *local extension* of it

Effectively p-simulations: Examples (5)

- Unknown whether G_i p-simulates G_i, for j < i
- Theorem: G₀ effectively p-simulates *every* quantified proof system S
- Proof idea: Map ϕ to Refl_s $\rightarrow \phi$, and prove that if ϕ has small proofs in S, then Refl_s $\rightarrow \phi$ has small proofs in G₀

Re-drawing the Map

Lower Bounds on Effectively psimulations

- If A is automatizable and B is not, then B does not effectively p-simulate A
- Corollary: If Factoring is not in quasi-poly time, then Tree Resolution does not eff. p-sim EF
- But how about if neither A nor B is believed to be automatizable?

Lower Bounds (ctd)

- Theorem: If NP ∩ coNP ⊈ i.o.P, then there are prop. proof systems A and B such that
 - A is not automatizable
 - B is not automatizable
 - A does not effectively p-simulate B
- Analogue of Ladner's Theorem for proof complexity

Lower Bounds on Restricted Simulations

- Theorem: If Frege does not p-simulate EF, then there is no symmetric extensional effectively p-simulation of EF by Frege
- Uses result of [Clote-Kranakis91] about "poly-symmetric" functions

Open Problems

- More examples of effective p-simulations?
- Resolution does not effectively p-simulate EF, under natural assumption?
- Frege does not effectively p-simulate EF, for oblivious p-simulations?