Interactive Proofs For Quantum Computation

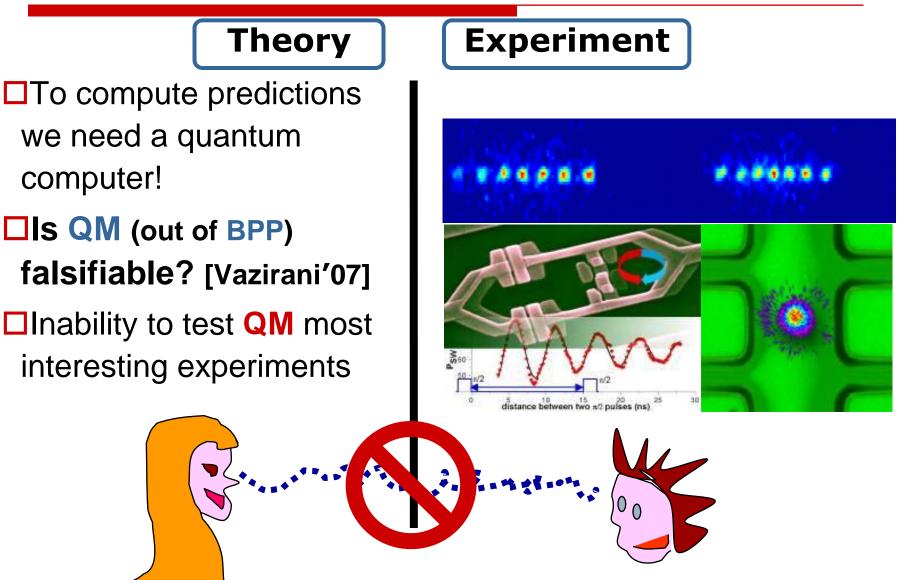
Elad Eban The Hebrew University of Jerusalem

Joint work with Dorit Aharonov and Michael Ben-Or

Motivating questions

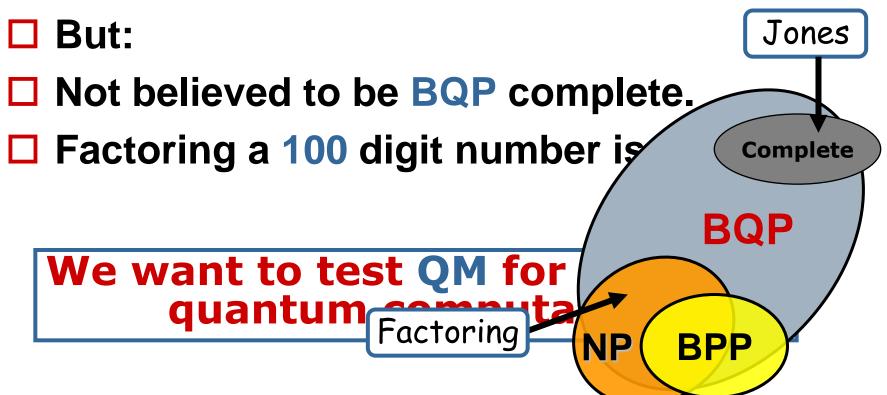
- D-Wave is trying to sell me a 100 qubit quantum computer !
- How can I verify it's indeed a quantum computer?
- Is it possible to delegate computations to an untrusted company?
- How can an experimentalist check that his system is a quantum computer?

Quantum physics is different! Seems impossible to test

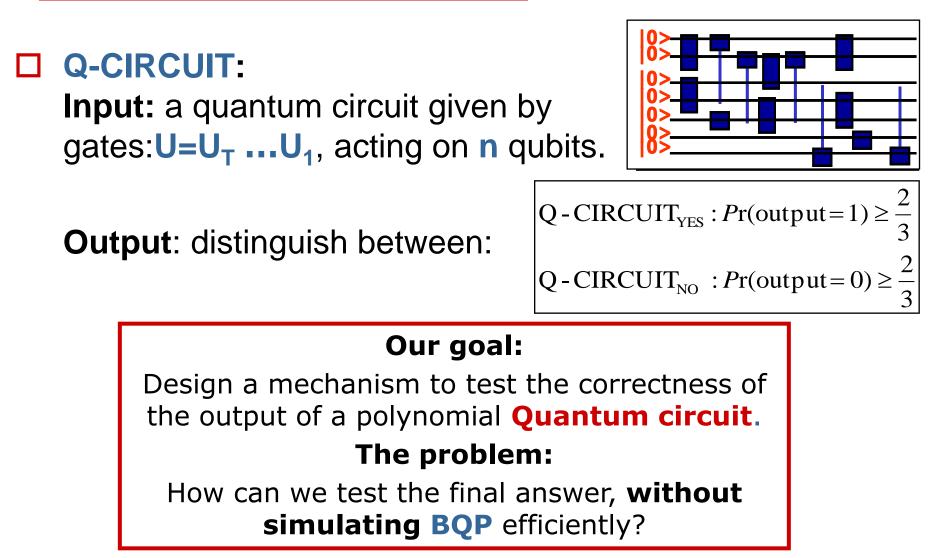


Shor's factoring Algorithm

Shor's factorization provides a partial answer to our questions.

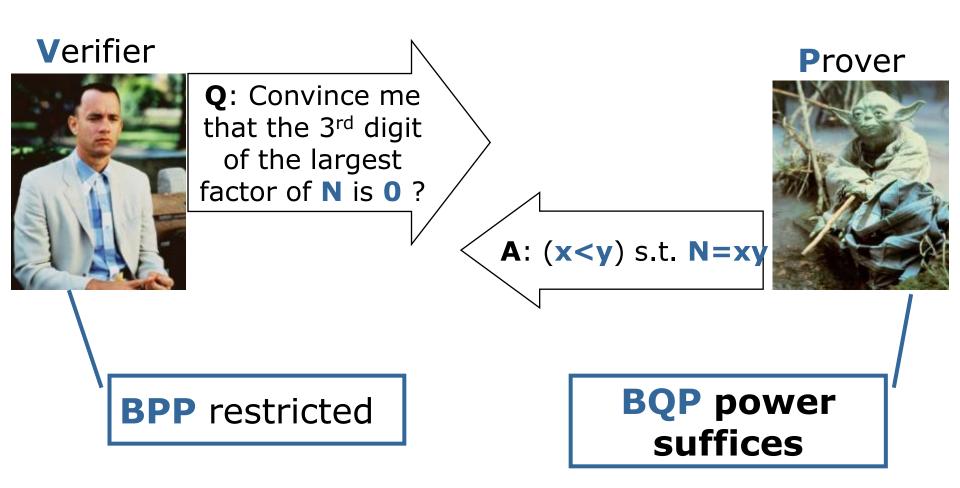


Q-CIRCUIT: A BQP complete problem

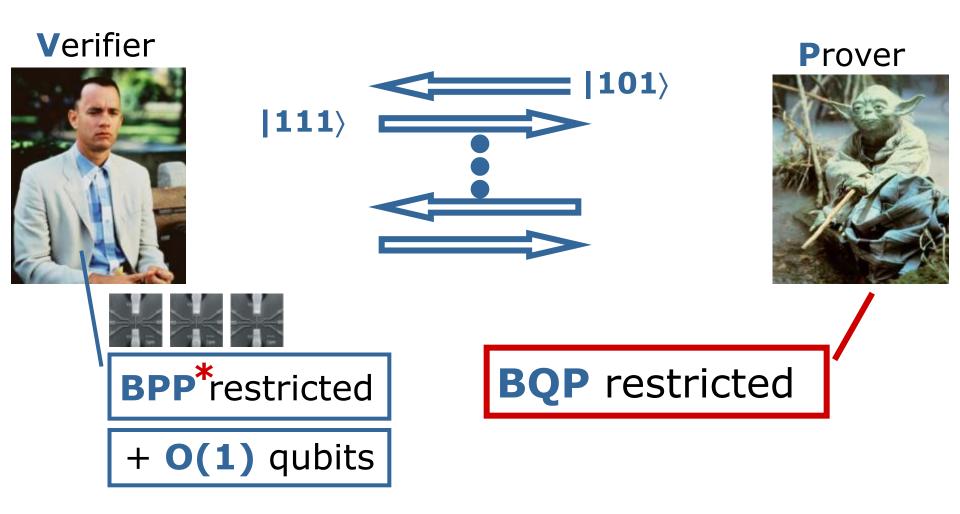


New approach: Treat interaction with quantum computers as Interactive Proofs

Shor's Algorithm as an Interactive proof [GMR85]



New model: Quantum Prover Interactive Proof (**QPIP**)



Our results

Theorem (simplified):

Any **BQP** language has a **QPIP** protocol. (We show one for the complete problem **Q-CIRCUIT**)

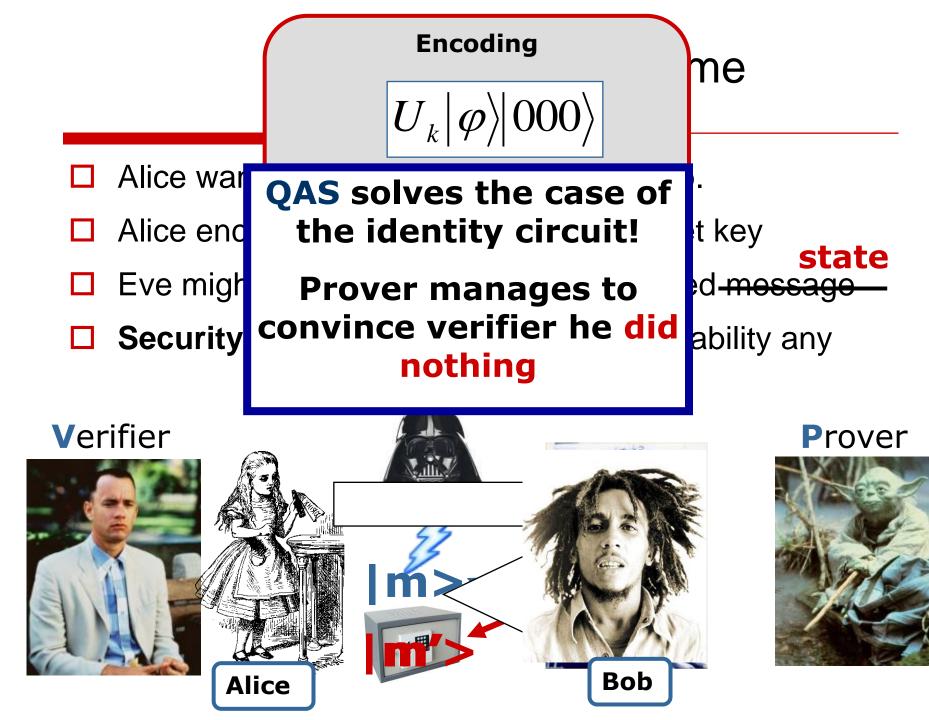
□ Main Result: Fault Tolerant QPIP The above holds in the presence of noise.

"Blind" QPIP: the same but the prover gains no information about neither the function being computed nor the input.

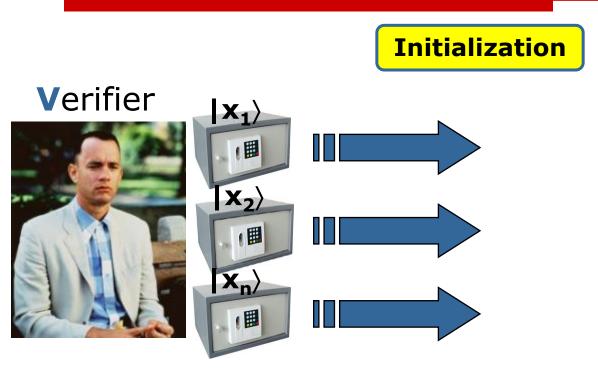
Main idea: Authentication

- We would like to force the prover to correctly perform a given computation.
- Let us first try something easier: force the prover to do nothing.
- How do we check that an unknown state is unaltered?
- □ This is exactly what

Quantum Authentication Scheme (QAS) does.



Use the prover as an untrusted storage device.

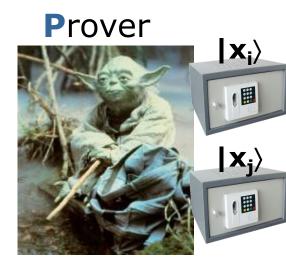


Prover

Use the prover as an untrusted storage device.

Performing operations

Verifier



Checks that the state are correctly authenticated

Use the prover as an untrusted storage device.

Retrieving outcome

Verifier

Making a fault tolerant **QPIP**

Fault tolerance

The verifier cannot apply error correction since error correction must be applied in parallel and verifier can only work sequentially.

□ The **prover cannot apply the computation**, since he does not know the code!

Fault tolerant QPIP: Ingredients for the solution

- Our goal is to enable the prover to apply gates on encoded states without knowing the code!
- Then (almost) standard fault tolerant techniques could be used.

Recall similar questions were handled:

- In [BGW] Multiparty computation, by using Reed-Solomon codes.
- For quantum multiparty computation, [CGS] used quantum RS codes
- Improved by [BCGHS06] using randomized quantum RS codes
- Constructions rely on the algebraic structure of the codes.

QAS based on Quantum Reed-Solomon codes

q-1

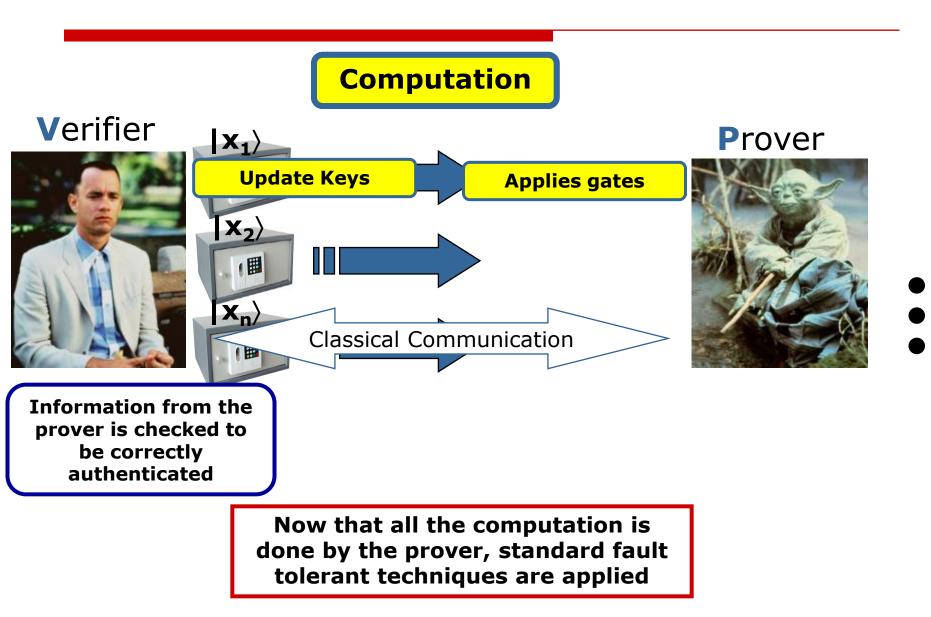
a

C

[BCGHS06]

- The encoding of $\mathbf{a} \in \mathbf{F}_{q}$ is:
- $|s_a\rangle = \sum_{\substack{\text{g:deg(g)} \leq d\\g(0)=a}} |g(\alpha_1), g(\alpha_2), \dots, g(\alpha_m)\rangle$
 - For the QAS:
 - Apply a random sign (±1) to each register
 - Apply a random Pauli's to each register
 - The secret KEY is the sequence of Pauli's and signes
 - □ Main point:
 - Prover can apply gates without knowing the key, ignoring randomization!
 - Verifier modifies key to compensate for the prover ignorance.
 - A universal set of gates can be applied this way (communication with prover is needed)

Reed-Solomon based **QPIP**



Making the **QPIP** blind

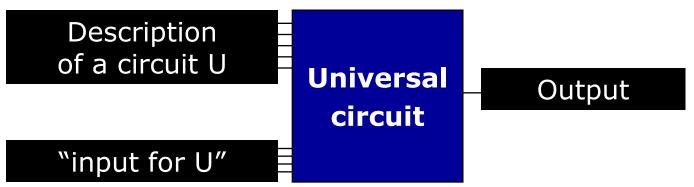
□ Task:

Hide circuit and input from the prover

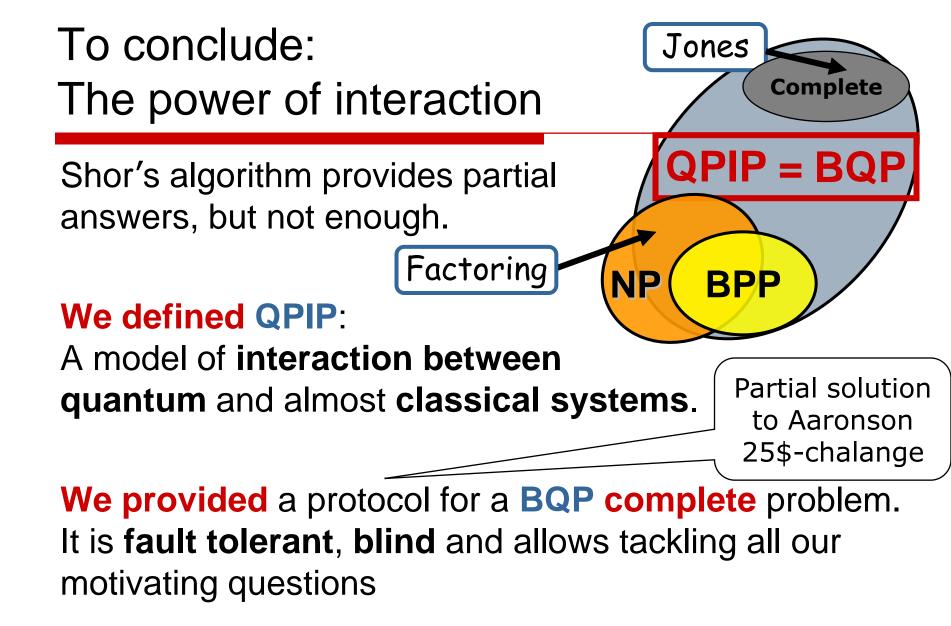
Both **QPIP** hide the **input** from the prover.

□ Solution:

Always apply a **universal quantum circuit**, plug the description of the circuit as part of the input.



Conclusions & Open Questions



Open Question

- Major open question: Do the same results hold with a completely Classical Verifier QPIP?
- A (possibly) easier question:
 Classical Verifier two-prover QPIP?
 - Independently: Broadbent, Fitzsimons & Kashefi [FOCS09] proved similar results. From very different motivations, using different techniques.
 - They also made some advance on the above question: They proved the result with are **entangled** prover.

The End thank you

©Taken Jan 3rd, by Michal Feldman at -22^c

Bibliography

- **[AB96] [AB99]** Fault tolerant Quantum computation with constant error.
- **[AS06]** P. Arrighi and L. Salvail. Blind Quantum Computation.
- [BCG02] H. Barnum, C. Cr'epeau, D. Gottesman, A. Smith, and A. Tapp. Authentication of Quantum Messages.
- **[BFK08]** A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computation.
- [BCGHS06] M. Ben-Or, C. Cr´epeau, D. Gottesman, A. Hassidim, and A. Smith. Secure Multiparty Quantum Computation with (Only) a Strict Honest Majority.
- **[BGW]** Completeness theorems for non-cryptographic fault-tolerant distributed computation
- **[Chi01]** A.M. Childs. Secure assisted quantum computation.
- [GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems.
- [Vaz07] U. Vazirani. Computational constraints on scientific theories: insights from quantum computing. http://www.cs.caltech.edu/~schulman/Workshops/CS-Lens-2/cs-lens-2.html, 2007.
- [Sho97] PW Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.