
Interactive Proofs For Quantum

Computation

Elad Eban

The Hebrew University of Jerusalem

Joint work with Dorit Aharonov and Michael Ben-Or

2

 D-Wave is trying to sell me a 100 qubit quantum

computer !

 How can I verify it’s indeed a quantum computer?

 Is it possible to delegate computations to an

untrusted company?

 How can an experimentalist check that his

system is a quantum computer?

Motivating questions
Assuming

BQPBPP

3

Quantum physics is different!

Seems impossible to test

To compute predictions

we need a quantum

computer!

Is QM (out of BPP)

falsifiable? [Vazirani’07]

Inability to test QM most

interesting experiments

Theory Experiment

4

Shor’s factoring Algorithm

 Shor’s factorization provides a partial

answer to our questions.

 But:

 Not believed to be BQP complete.

 Factoring a 100 digit number is easy!

We want to test QM for universal
quantum computation

BPPNP

Jones

Factoring

Complete

BQP

5

Q-CIRCUIT: A BQP complete problem

 Q-CIRCUIT:

Input: a quantum circuit given by

gates:U=UT …U1, acting on n qubits.

Output: distinguish between:

3

2
0)r(output : CIRCUIT-Q

3

2
1)r(output : CIRCUIT-Q

NO

YES





P

P

|0>
|0>

|0>
|0>

|0>
|0>

|0>

|0>
|0>

|0>
|0>

|0>
|0>

|0>

|0>
|0>

|0>
|0>

|0>
|0>

|0>

Our goal:

Design a mechanism to test the correctness of
the output of a polynomial Quantum circuit.

The problem:

How can we test the final answer, without
simulating BQP efficiently?

New approach:

Treat interaction with quantum

computers as

Interactive Proofs

7

Shor’s Algorithm as an Interactive proof [GMR85]

ProverVerifier

BPP restricted BQP power
suffices

Q: Convince me
that the 3rd digit

of the largest
factor of N is 0 ?

A: (x<y) s.t. N=xy

8

New model:

Quantum Prover Interactive Proof (QPIP)

ProverVerifier

BPP restricted BQP restricted*

+ O(1) qubits

101|101

111|111

9

Our results

 Theorem (simplified):

Any BQP language has a QPIP protocol.
(We show one for the complete problem Q-CIRCUIT)

 Main Result: Fault Tolerant QPIP

The above holds in the presence of noise.

 “Blind” QPIP: the same but the prover gains

no information about neither the function

being computed nor the input.

Simple QPIP for Q-CIRCUIT

11

Main idea: Authentication

 We would like to force the prover to correctly

perform a given computation.

 Let us first try something easier: force the prover

to do nothing .

 How do we check that an unknown state is

unaltered?

 This is exactly what

Quantum Authentication Scheme (QAS) does.

12

 Alice wants to securely send m to Bob.

 Alice encodes m using a shared secret key

 Eve might try to interfere with the encoded message

 Security: Bob can detect with high probability any

meaningful intervention by Eve.

|m>

|m>

Quantum Authentication Scheme (QAS)
[Barnum, Crépeau, Gottesman, Smith, Tapp]

m

m’

Verifier Prover

Alice Bob

|m>

Encoding

Verifying

Apply U† and check that last
qubits are exactly |000>

000kU

state

|m’>

QAS solves the case of
the identity circuit!

Prover manages to
convince verifier he did

nothing

13

Simple QPIP for Q-CIRCUIT
Use the prover as an untrusted storage device.

Initialization

ProverVerifier |x1

|x2

|xn

14

ProverVerifier

Application
of

Uij

Performing operations

Simple QPIP for Q-CIRCUIT
Use the prover as an untrusted storage device.

|xi

|xj

Checks that the
state are
correctly

authenticated

15

Prover
|x1

Verifier

Retrieving outcome

Simple QPIP for Q-CIRCUIT
Use the prover as an untrusted storage device.

Making a fault tolerant QPIP

17

Fault tolerance

 The verifier cannot apply error correction since

error correction must be applied in parallel and

verifier can only work sequentially.

 The prover cannot apply the computation,

since he does not know the code!

18

Fault tolerant QPIP:

Ingredients for the solution

 Our goal is to enable the prover to apply gates on
encoded states without knowing the code!

 Then (almost) standard fault tolerant techniques could
be used.

Recall similar questions were handled:

 In [BGW] Multiparty computation, by using
Reed-Solomon codes.

 For quantum multiparty computation, [CGS] used
quantum RS codes

 Improved by [BCGHS06] using
randomized quantum RS codes

 Constructions rely on the algebraic structure of the
codes.

19

QAS based on Quantum Reed-Solomon codes
[BCGHS06]
 The encoding of aFq is:

 For the QAS:

 Apply a random sign (±1) to each register

 Apply a random Pauli’s to each register

 The secret KEY is the sequence of Pauli’s and signes

 Main point:

 Prover can apply gates without knowing the key, ignoring randomization!

 Verifier modifies key to compensate for the prover ignorance.

 A universal set of gates can be applied this way (communication with

prover is needed)

)g(,)g(),g(|

ag(0)
 ddeg(g) :g

21




 mas 

randomized

20

Reed-Solomon based QPIP

Initialization

ProverVerifier |x1

|x2

|xn

Applies gates

Classical Communication

Update Keys

Computation

Information from the
prover is checked to

be correctly
authenticated

Now that all the computation is
done by the prover, standard fault

tolerant techniques are applied

21

Making the QPIP blind

 Task:

Hide circuit and input from the prover

 Both QPIP hide the input from the prover.

 Solution:

Always apply a universal quantum

circuit, plug the description of the circuit as

part of the input.

Description
of a circuit U

“input for U”

OutputUniversal

circuit

Conclusions

&

Open Questions

23

To conclude:

The power of interaction

Shor’s algorithm provides partial

answers, but not enough.

We defined QPIP:

A model of interaction between

quantum and almost classical systems.

We provided a protocol for a BQP complete problem.

It is fault tolerant, blind and allows tackling all our

motivating questions

QPIP =

BPPNP

Jones

Factoring

Complete

BQP

Partial solution
to Aaronson

25$-chalange

24

Open Question

 Major open question: Do the same results hold with a

completely Classical Verifier QPIP?

 A (possibly) easier question:

Classical Verifier two-prover QPIP?

 Independently: Broadbent, Fitzsimons & Kashefi

[FOCS09] proved similar results. From very different

motivations, using different techniques.

 They also made some advance on the above question:

They proved the result with are entangled prover.

25©Taken Jan 3rd, by Michal Feldman at -22c

2626

Bibliography

 [AB96] [AB99] Fault tolerant Quantum computation with constant error.

 [AS06] P. Arrighi and L. Salvail. Blind Quantum Computation.

 [BCG02] H. Barnum, C. Cr´epeau, D. Gottesman, A. Smith, and A. Tapp. Authentication of

Quantum Messages.

 [BFK08] A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computation.

 [BCGHS06] M. Ben-Or, C. Cr´epeau, D. Gottesman, A. Hassidim, and A. Smith. Secure

Multiparty Quantum Computation with (Only) a Strict Honest Majority.

 [BGW] Completeness theorems for non-cryptographic fault-tolerant distributed computation

 [Chi01] A.M. Childs. Secure assisted quantum computation.

 [GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof-systems.

 [Vaz07] U. Vazirani. Computational constraints on scientific theories: insights from quantum

computing. http://www.cs.caltech.edu/˜schulman/Workshops/CS-Lens-2/cs-lens-2.html, 2007.

 [Sho97] PW Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer.

