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 D-Wave is trying to sell me a 100 qubit quantum 

computer !

 How can I verify it’s indeed a quantum computer?

 Is it possible to delegate computations to an 

untrusted company? 

 How can an experimentalist check that his 

system is a quantum computer? 

Motivating questions
Assuming

BQPBPP
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Quantum physics is different! 

Seems impossible to test

To compute predictions 

we need a quantum 

computer!

Is QM (out of BPP)

falsifiable? [Vazirani’07]

Inability to test QM most 

interesting experiments

Theory Experiment
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Shor’s factoring Algorithm

 Shor’s factorization provides a partial 

answer to our questions.

 But:

 Not believed to be BQP complete.

 Factoring a 100 digit number is easy!

We want to test QM for universal 
quantum computation

BPPNP

Jones

Factoring

Complete

BQP
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Q-CIRCUIT: A BQP complete problem 

 Q-CIRCUIT:

Input: a quantum circuit given by 

gates:U=UT …U1, acting on n qubits. 

Output: distinguish between:
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Our goal:

Design a mechanism to test the correctness of 
the output of a polynomial Quantum circuit.

The problem:

How can we test the final answer, without 
simulating BQP efficiently?



New approach:

Treat interaction with quantum 

computers as

Interactive Proofs
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Shor’s Algorithm as an Interactive proof [GMR85]

ProverVerifier

BPP restricted BQP power 
suffices

Q: Convince me 
that the 3rd digit 

of the largest 
factor of N is 0 ? 

A: (x<y) s.t. N=xy
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New model:

Quantum Prover Interactive Proof (QPIP) 

ProverVerifier

BPP restricted BQP restricted*

+ O(1) qubits

101|101

111|111
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Our results

 Theorem (simplified): 

Any BQP language has a QPIP protocol.
(We show one for the complete problem Q-CIRCUIT)

 Main Result: Fault Tolerant QPIP

The above holds in the presence of noise.

 “Blind” QPIP: the same but the prover gains 

no information about neither the function 

being computed nor the input.



Simple QPIP for Q-CIRCUIT
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Main idea: Authentication

 We would like to force the prover to correctly 

perform a given computation.

 Let us first try something easier: force the prover 

to do nothing .

 How do we check that an unknown state is 

unaltered?

 This is exactly what

Quantum Authentication Scheme (QAS) does.
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 Alice wants to securely send   m   to Bob.

 Alice encodes   m using a shared secret key 

 Eve might try to interfere with the encoded message

 Security: Bob can detect with high probability any 

meaningful  intervention by Eve.

|m>

|m>

Quantum Authentication Scheme (QAS) 
[Barnum, Crépeau, Gottesman, Smith, Tapp]

m

m’

Verifier Prover

Alice Bob

|m>

Encoding

Verifying

Apply U† and check that last 
qubits are exactly |000>

000kU

state

|m’>

QAS solves the case of 
the identity circuit! 

Prover manages to 
convince verifier he did 

nothing
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Simple QPIP for Q-CIRCUIT
Use the prover as an untrusted storage device.

Initialization

ProverVerifier |x1

|x2

|xn
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ProverVerifier

Application 
of

Uij

Performing operations

Simple QPIP for Q-CIRCUIT
Use the prover as an untrusted storage device.

|xi

|xj

Checks that the 
state are 
correctly 

authenticated 
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Prover
|x1

Verifier

Retrieving  outcome

Simple QPIP for Q-CIRCUIT
Use the prover as an untrusted storage device.



Making a fault tolerant QPIP
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Fault tolerance

 The verifier cannot apply error correction since 

error correction must be applied in parallel and 

verifier can only work sequentially. 

 The prover cannot apply the computation, 

since he does not know the code!
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Fault tolerant QPIP:

Ingredients for the solution

 Our goal is to enable the prover to apply gates on 
encoded states without knowing the code!

 Then (almost) standard fault tolerant techniques could 
be used.

Recall similar questions were handled: 

 In [BGW] Multiparty computation, by using
Reed-Solomon codes. 

 For quantum multiparty computation, [CGS] used 
quantum RS codes

 Improved by [BCGHS06] using 
randomized quantum RS codes

 Constructions rely on the algebraic structure of the 
codes.
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QAS based on  Quantum Reed-Solomon codes
[BCGHS06] 
 The encoding of aFq is:

 For the QAS:

 Apply a random sign (±1) to each register

 Apply a random Pauli’s to each register

 The secret KEY is the sequence of Pauli’s and signes

 Main point:

 Prover can apply gates without knowing the key, ignoring randomization!

 Verifier modifies key to compensate for the prover ignorance.

 A universal set of gates can be applied this way (communication with 

prover is needed)

 )g(,)g(),g(|
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Reed-Solomon based QPIP

Initialization

ProverVerifier |x1

|x2

|xn

Applies gates 

Classical Communication

Update Keys 

Computation

Information from the 
prover is checked to 

be correctly 
authenticated

Now that all the computation is 
done by the prover, standard fault 

tolerant techniques are applied
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Making the QPIP blind

 Task:

Hide circuit and input from the prover

 Both QPIP hide the input from the prover.

 Solution:

Always apply a universal quantum 

circuit, plug the description of the circuit as 

part of the input.

Description 
of a circuit U

“input for U”

OutputUniversal 

circuit



Conclusions 

&

Open Questions
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To conclude:

The power of interaction

Shor’s algorithm provides partial

answers, but not enough.

We defined QPIP:

A model of interaction between

quantum and almost classical systems.

We provided a protocol for a BQP complete problem. 

It is fault tolerant, blind and allows tackling all our 

motivating questions

QPIP =  

BPPNP

Jones

Factoring

Complete

BQP

Partial solution 
to Aaronson 

25$-chalange
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Open Question

 Major open question: Do the same results hold with a 

completely Classical Verifier QPIP?

 A (possibly) easier question:

Classical Verifier two-prover QPIP?

 Independently: Broadbent, Fitzsimons & Kashefi 

[FOCS09] proved similar results. From very different 

motivations, using different techniques.

 They also made some advance on the above question: 

They proved the result with are entangled prover.
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