On the power of a unique quantum witness

Shengyu Zhang

The Chinese University of Hong Kong

(Joint work with Rahul Jain, Iordanis Kerenidis, Greg Kuperberg, Miklos Santha, Or Sattash)

Role of # of witnesses in NP

- NP: Problems that can be verified in poly. time.
- Obs: # of witnesses for positive instances can be widely varying from 1 to exponentially high.
- *Question*: Is hardness of NP due to this variation?
- [Theorem^{*1}] $NP \subseteq RP^{UP}$
 - RP: like BPP, but without error on negative instances.
 - UP: problems in NP with promise that each positive instance has a unique witness

*1: Valiant, Vazirani, TCS, 1986.

Proof of V-V

 Main idea: Set a filter to let each potential witness pass w.p. Θ(1/D).

– D: # of witnesses.

• Then w.c.p. exactly one witness passes

- Other issues:
 - # of witnesses: Guess it. Double the guess.
 - Efficiency of the filter: 2 universal-hashing

The case for MA

- UMA: A yes instance has
 - a unique witness with accepting prob. > 2/3,
 - all other witnesses with accepting prob. < 1/3.

• *Question*1*: Can we reduce MA to UMA?

*1. Aharonov, Ben-Or, Brandao, Sattath, arXiv/0810.4840, 2008.

The difficulty for MA

- Difficulty: A yes instance of MA may have many "grey" witnesses with accepting prob. in (1/3, 2/3).
- Still random filter? Kills all good witnesses before killing all grey ones.

The idea for MA*1

- Evenly cut [0,1] into m subintervals.
 m=poly(n): length of witness
- One of them has

good witnesses

≥ 1/2

grey witnesses

Yes

 Observe that constant fraction is enough to make VV work.

*1. Aharonov, Ben-Or, Brandao, Sattath, arXiv/0810.4840, 2008.

QMA

တ ဝဉ်သ တ

0

Unique QMA

*1. Aharonov, Ben-Or, Brandao, Sattath, arXiv/0810.4840, 2008.

Difficulty for QMA

- Your new witness w/ acc prob = $\Theta(1)$ Consider the simple set of Yes Your new witness S instances*1: w/ acc prob = 1Yes W 1 Two perfectly good 2/3witnesses 1/3 All rest are If the universe of witnesses is 3-dim ... perfectly bad
 - Natural analog of random selection --- Random Projection
- *1. Aharonov, Ben-Or, Brandao, Sattath, arXiv/0810.4840, 2008.

000000

0

Difficulty for QMA

- Unfortunately $dim(H) = 2^m = exp(n)$.
- Random Projection fails: The whole 2-dim subspace W gets projected onto the random subspace S almost uniformly

- Largest and smallest scales are esp. close

"... which we believe captures the difficulty of the problem."
"A new idea seems to be required."
--- Aharonov, Ben-Or, Brandao, Sattath, arXiv/0810.4840, 2008.

1st step: "Think out of the box", literally

2nd step: Adding proper constraints

$$\begin{split} & [\text{Fact] There are } 2^m \\ & \text{orthonormal vectors } |\psi_i\rangle, \text{ s.t.} \\ & \forall |\psi\rangle {=} \sum \alpha_i |\psi_i\rangle, \\ & \|U_x |\psi \mathbf{0}\rangle\|^2 = \sum |\alpha_i|^2 {\cdot} \|U_x |\psi_i \mathbf{0}\rangle\|^2 \end{split}$$

2nd Step: Adding proper constraints

W H

d = dim(W)

- ∃ a unique vector
 |Ψ*⟩∈W^{⊗d} passing Test
 w.p. 1. And it's still |Ψ*⟩.
- Any other $|\Phi\rangle \perp |\Psi^*\rangle$: after passing Test the state has one component in W[⊥].

d copies of original circuit

Reminder of symmetric and alternating subspaces

In $H^{\otimes d}$ where dim(H) = n:

- $S_{ij} = \{ |\psi\rangle \in H^d: \pi_{ij} |\psi\rangle = |\psi\rangle \},$
- $A_{ij} = \{ |\psi\rangle \in H^d: \pi_{ij} |\psi\rangle = -|\psi\rangle \}$
- [Fact] H^{⊗d}= S_{ij}⊕A_{ij}

– A basis:

 $\{\sum_{\pi} sign(\pi) | i_{\pi(1)} \rangle | i_{\pi(2)} \rangle \dots | i_{\pi(d)} \rangle: distinct i_1, \dots, i_d \in [n] \}$

[Fact] Alt($H^{\otimes d}$) $\cap W^{\otimes d} = Alt(W^{\otimes d})$

W H M

d = dim(W)

Alternating Test

On potential witness ρ in H^{⊗d}:

- Attach $\sum_{\pi \in S_d} |\pi\rangle$ *1
- Permute ρ according to π (in superposition)
- Accept if the attached reg is $\sum_{\pi} \operatorname{sign}(\pi) |\pi\rangle$ by $|0\rangle \rightarrow \sum_{\pi} |\pi\rangle$ $\rightarrow \sum_{\pi} \operatorname{sign}(\pi) |\pi\rangle$
 - *1: A normalization factor of (d!)^{-1/2} is omitted.

- $\begin{array}{c} \rho \\ \rightarrow \sum_{\pi} |\pi\rangle \ \rho \end{array}$
- $\rightarrow \sum_{\pi} \lvert \pi \rangle \: \pi(\rho)$
- = $(\sum_{\pi} sign(\pi) |\pi\rangle) \otimes \rho'?$

For alternating states

Recall: $|\psi\rangle \in Alt(H \otimes d)$ means $\pi_{ij} |\psi\rangle = - |\psi\rangle$

On ρ in H^{⊗d}

- Attach $\sum_{\pi} |\pi\rangle$
- Permute ρ according to π (in superposition)
- Accept if the attached reg is Σ_πsign(π)|π>

 $\begin{array}{c} |\psi\rangle \\ \rightarrow \sum_{\pi} |\pi\rangle \, |\psi\rangle \end{array}$

- $\rightarrow \sum_{\pi} |\pi\rangle \; \pi (|\psi\rangle)$
- = $\sum_{\pi} |\pi\rangle \, sign(\pi) |\psi\rangle$
- = $(\sum_{\pi} sign(\pi) |\pi\rangle) \otimes |\psi\rangle$

For Alt(H^{⊗d})[⊥]

- Recall that $H^{\otimes d} = S_{ij} \oplus A_{ij}$
- So $(\bigcap_{i \neq j} A_{ij})^{\perp} = \sum A_{ij}^{\perp} = \sum S_{ij}^{\perp} = \sum (\psi_{ij})^{\perp}$ - i.e. any state in $(\bigcap_{i \neq j} A_{ij})^{\perp}$ is $|\psi\rangle = \sum |\psi_{ij}\rangle$, where $|\psi_{ij}\rangle \in S_{ij}$.

On ρ in $H^{\otimes d}$

- Attach $\sum_{\pi} |\pi\rangle$
- Permute ρ according to π -(in superposition)

 $\begin{array}{c} |\Psi_{ij}\rangle \\ \rightarrow \sum_{\pi} |\pi\rangle |\Psi_{ij}\rangle \end{array}$

$$ightarrow \sum_{\pi} |\pi
angle \pi (|\psi_{ij}
angle)$$

• Accept if the attached reg [Fact] The attached reg is is $\sum_{\pi} sign(\pi) |\pi\rangle$ orthogonal to $\sum_{\pi} sign(\pi) |\pi\rangle$

$\sum_{\pi} |\pi\rangle \ \pi(|\psi_{ij}\rangle) \quad \perp \quad \sum_{\pi} sign(\pi) |\pi\rangle$

- $\sum_{\pi} |\pi\rangle \pi (|\psi_{ij}\rangle)$ projected on $\sum_{\sigma} sign(\sigma) |\sigma\rangle \otimes H^{\otimes d}$
- $= \left(\sum_{\sigma} \operatorname{sign}(\sigma) | \sigma \right) \left(\sum_{\sigma} \operatorname{sign}(\sigma) \langle \sigma |\right) \sum_{\pi} | \pi \rangle \pi(| \psi_{ij} \rangle)$
- = $\sum_{\sigma,\pi} sign(\sigma) sign(\pi) |\sigma\rangle \pi(|\psi_{ij}\rangle) \equiv a$

• Let
$$\pi = \pi' \circ \pi_{ij}$$
, then

$$a = \sum_{\sigma,\pi} \operatorname{sign}(\sigma) \underbrace{\operatorname{sign}(\pi)}_{= -\operatorname{sign}(\pi')} |\sigma\rangle \pi' \circ \pi_{ij}(|\psi_{ij}\rangle)$$

$$= -\operatorname{sign}(\pi') = |\psi_{ij}\rangle$$

$$= -\sum_{\sigma,\pi'} \operatorname{sign}(\sigma) \operatorname{sign}(\pi') |\sigma\rangle \pi'(|\psi_{ij}\rangle) = -a$$
• So $a = 0$.

What we have shown?

 $\label{eq:Recall:Alt(H^{\otimes d}) = span\{\sum_{\pi} sign(\pi) | i_{\pi(1)} \rangle | i_{\pi(2)} \rangle \dots | i_{\pi(d)} \rangle : \mbox{ distinct } i_1, \ \dots, \ i_d \in [2^m] \}$

Concluding remarks

- This paper reduces FewQMA to UQMA.
 - Idea of using 1-dim alternating subspace is quite different than the classical V-V.
- Open:
 Open:

- General (exp.) case?

- Gap generation?

Strong Amplification

Thanks!