Circuit Lower Bounds, Help Functions, and the Remote Point Problem

V Arvind and Srikanth Srinivasan

The Institute of Mathematical Sciences, Chennai, India.

January 7, 2010

Srikanth Srinivasan (IMSc)

Help functions and RPP

January 7, 2010 1 / 32

Outline

Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP

Algebraic Branching Programs with Help polynomials

- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results

Outline

Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP

2 Algebraic Branching Programs with Help polynomials

- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results

3 Summary

Boolean circuits

- Set of variables $X = \{x_1, x_2, \dots, x_n\}.$
- Directed acyclic graph (DAG) with labels from $X \cup \overline{X} \cup \{\land, \lor\} \cup \{0, 1\}.$
- Computes a function $f: \{0,1\}^n \rightarrow \{0,1\}.$

▶ ∢ ⊒

Boolean circuits - parameters

- Size of a circuit number of vertices.
- Depth of a circuit The length of the longest path in the circuit.
- Circuits of interest: Constant depth circuits of small size.

• Notation: Size(s(n)) – families of functions $\{f_n : \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}}$ that can be computed by circuits of size s(n). Similarly SizeDepth(s(n), d(n)).

• $AC^0 = SizeDepth(n^{O(1)}, O(1)).$

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.
- Current status: EXP \nsubseteq Size(n^c) for any fixed c > 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Notation: Size(s(n)) families of functions $\{f_n : \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}}$ that can be computed by circuits of size s(n). Similarly SizeDepth(s(n), d(n)).
- $AC^0 = SizeDepth(n^{O(1)}, O(1)).$
- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.
- Current status: EXP \nsubseteq Size(n^c) for any fixed c > 0.

イロト イヨト イヨト

• Notation: Size(s(n)) – families of functions $\{f_n : \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}}$ that can be computed by circuits of size s(n). Similarly SizeDepth(s(n), d(n)).

•
$$AC^0 = SizeDepth(n^{O(1)}, O(1))$$
.

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.
- Current status: EXP \nsubseteq Size(n^c) for any fixed c > 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Notation: Size(s(n)) – families of functions $\{f_n : \{0,1\}^n \rightarrow \{0,1\}\}_{n \in \mathbb{N}}$ that can be computed by circuits of size s(n). Similarly SizeDepth(s(n), d(n)).

•
$$AC^0 = SizeDepth(n^{O(1)}, O(1))$$
.

- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.
- Current status: EXP \nsubseteq Size(n^c) for any fixed c > 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Better lower bounds for restricted classes of circuits.

- ► Monotone boolean circuits (Razborov, Alon-Boppana): 2^{n^{u(1)}} lower bound for CLIQUE.
- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity ∉ SizeDepth(2^{nΩ(1)}, O(1)).
- Constant-depth circuits with Mod_p gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...
- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_m gates (with m composite)?

< ロ > < 同 > < 回 > < 回 > < 回

- Better lower bounds for restricted classes of circuits.
 - Monotone boolean circuits (Razborov, Alon-Boppana): 2^{n^{Ω(1)}} lower bound for CLIQUE.
 - Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity ∉ SizeDepth(2^{n^{Ω(1)}}, O(1)).
 - Constant-depth circuits with Mod_p gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...
- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_m gates (with m composite)?

< ロ > < 四 > < 回 > < 回 > < 回

- Better lower bounds for restricted classes of circuits.
 - Monotone boolean circuits (Razborov, Alon-Boppana): 2^{n^{Ω(1)}} lower bound for CLIQUE.
 - Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity ∉ SizeDepth(2^{n^{Ω(1)}}, O(1)).
 - Constant-depth circuits with Mod_p gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...
- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_m gates (with m composite)?

< ロ > < 四 > < 回 > < 回 > < 回

- Better lower bounds for restricted classes of circuits.
 - Monotone boolean circuits (Razborov, Alon-Boppana): 2^{n^{Ω(1)}} lower bound for CLIQUE.
 - Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity ∉ SizeDepth(2^{n^{Ω(1)}}, O(1)).
 - Constant-depth circuits with Mod_p gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...
- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_m gates (with m composite)?

- 4 同 6 4 日 6 4 日

- Better lower bounds for restricted classes of circuits.
 - Monotone boolean circuits (Razborov, Alon-Boppana): 2^{n^{Ω(1)}} lower bound for CLIQUE.
 - Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity ∉ SizeDepth(2^{n^{Ω(1)}}, O(1)).
 - Constant-depth circuits with Mod_p gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...
- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_m gates (with m composite)?

• Fix $h_1, h_2, \ldots, h_m : \{0, 1\}^n \to \{0, 1\}$ $(m \approx n^{O(1)} \text{ or } 2^{(\log n)^{O(1)}}).$

- What can constant-depth circuits do when given the ability to compute H = {h₁, h₂,..., h_m} (on the given input) for "free"?
- Example: Consider constant-depth boolean circuits that, along with x_1, x_2, \ldots, x_n , are also given $\bigoplus_{i=1}^n x_i$ as input. Can they compute $\bigoplus_{i \le n/2} x_i$?

イロト イヨト イヨト イヨト

- Fix $h_1, h_2, \ldots, h_m : \{0, 1\}^n \to \{0, 1\}$ $(m \approx n^{O(1)} \text{ or } 2^{(\log n)^{O(1)}}).$
- What can constant-depth circuits do when given the ability to compute H = {h₁, h₂, ..., h_m} (on the given input) for "free"?
- Example: Consider constant-depth boolean circuits that, along with x_1, x_2, \ldots, x_n , are also given $\bigoplus_{i=1}^n x_i$ as input. Can they compute $\bigoplus_{i \le n/2} x_i$?

イロト イヨト イヨト イヨト

- Fix $h_1, h_2, \ldots, h_m : \{0, 1\}^n \to \{0, 1\}$ $(m \approx n^{O(1)} \text{ or } 2^{(\log n)^{O(1)}}).$
- What can constant-depth circuits do when given the ability to compute H = {h₁, h₂,..., h_m} (on the given input) for "free"?
- Example: Consider constant-depth boolean circuits that, along with x_1, x_2, \ldots, x_n , are also given $\bigoplus_{i=1}^n x_i$ as input. Can they compute $\bigoplus_{i \le n/2} x_i$?

イロト イヨト イヨト

- Fix $h_1, h_2, \ldots, h_m : \{0, 1\}^n \to \{0, 1\}$ $(m \approx n^{O(1)} \text{ or } 2^{(\log n)^{O(1)}}).$
- What can constant-depth circuits do when given the ability to compute H = {h₁, h₂, ..., h_m} (on the given input) for "free"?
- Example: Consider constant-depth boolean circuits that, along with x_1, x_2, \ldots, x_n , are also given $\bigoplus_{i=1}^n x_i$ as input. Can they compute $\bigoplus_{i \le n/2} x_i$?

(日) (周) (日) (日)

SizeDepth_H(s, d) functions computable by circuits of size s and depth d that take functions from H as input.

• The Help functions problem: another way of extending known circuit lower bounds.

• The (m(n), s(n), d)-Help function problem:

- INPUT: A collection of boolean functions
 - $H = \{h_1, h_2, \dots, h_m : \{0, 1\}^n \to \{0, 1\}\}.$
- ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \rightarrow \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s, d)$.
- Interesting for d = O(1), $m = n^{O(1)}$ or $2^{(\log n)^{O(1)}}$, and $s = 2^{(\log n)^a}$ or $2^{n^{\Omega(1)}}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The Help functions problem: another way of extending known circuit lower bounds.
- The (m(n), s(n), d)-Help function problem:
 - ▶ INPUT: A collection of boolean functions $H = \{h_1, h_2, \dots, h_m : \{0, 1\}^n \to \{0, 1\}\}.$
 - ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \rightarrow \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s, d)$.
- Interesting for d = O(1), $m = n^{O(1)}$ or $2^{(\log n)^{O(1)}}$, and $s = 2^{(\log n)^a}$ or $2^{n^{\Omega(1)}}$.

イロト 不得下 イヨト イヨト 二日

- The Help functions problem: another way of extending known circuit lower bounds.
- The (m(n), s(n), d)-Help function problem:
 - ▶ INPUT: A collection of boolean functions $H = \{h_1, h_2, \dots, h_m : \{0, 1\}^n \rightarrow \{0, 1\}\}.$
 - ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \rightarrow \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s, d)$.
- Interesting for d = O(1), $m = n^{O(1)}$ or $2^{(\log n)^{O(1)}}$, and $s = 2^{(\log n)^a}$ or $2^{n^{\Omega(1)}}$.

- The Help functions problem: another way of extending known circuit lower bounds.
- The (m(n), s(n), d)-Help function problem:
 - ► INPUT: A collection of boolean functions $H = \{h_1, h_2, \dots, h_m : \{0, 1\}^n \rightarrow \{0, 1\}\}.$
 - ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \rightarrow \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s,d)$.
- Interesting for d = O(1), $m = n^{O(1)}$ or $2^{(\log n)^{O(1)}}$, and $s = 2^{(\log n)^a}$ or $2^{n^{\Omega(1)}}$.

- The Help functions problem: another way of extending known circuit lower bounds.
- The (m(n), s(n), d)-Help function problem:
 - ► INPUT: A collection of boolean functions $H = \{h_1, h_2, \dots, h_m : \{0, 1\}^n \to \{0, 1\}\}.$
 - ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \to \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s, d)$.
- Interesting for d = O(1), $m = n^{O(1)}$ or $2^{(\log n)^{O(1)}}$, and $s = 2^{(\log n)^a}$ or $2^{n^{\Omega(1)}}$.

Previous work

• Has been studied by Jin-Yi Cai (1991) and Satya Lokam (1995).

• Cai proves "almost-explicit" lower bounds when $H = \{x_1, \dots, x_n\} \cup \{h_1, h_2, \dots, h_k\}$, and $k \le n^{1/5-\epsilon}$

Lokam: connections to problems in communication complexity.

(日) (同) (日) (日)

Previous work

- Has been studied by Jin-Yi Cai (1991) and Satya Lokam (1995).
- Cai proves "almost-explicit" lower bounds when $H = \{x_1, \ldots, x_n\} \cup \{h_1, h_2, \ldots, h_k\}$, and $k \le n^{1/5-\varepsilon}$.
- Lokam: connections to problems in communication complexity.

・ 同 ト ・ ヨ ト ・ ヨ ト

Previous work

- Has been studied by Jin-Yi Cai (1991) and Satya Lokam (1995).
- Cai proves "almost-explicit" lower bounds when $H = \{x_1, \ldots, x_n\} \cup \{h_1, h_2, \ldots, h_k\}$, and $k \le n^{1/5-\varepsilon}$.
- Lokam: connections to problems in communication complexity.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Suspected: EXP \nsubseteq Size $(n^{O(1)})$.

- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth(n^{O(1)}, O(1)) (a.k.a. AC⁰).
- To prove a lower bound, we want an L ∈ EXP such that L does not polynomial-time reduce to SizeDepth(n^{O(1)}, O(1)).
- Define L(x) by diagonalization. Defining $L_n: \{0,1\}^n \to \{0,1\}$:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Suspected: EXP \nsubseteq Size $(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth(n^{O(1)}, O(1)) (a.k.a. AC⁰).
- To prove a lower bound, we want an L ∈ EXP such that L does not polynomial-time reduce to SizeDepth(n^{O(1)}, O(1)).
- Define L(x) by diagonalization. Defining $L_n: \{0,1\}^n \to \{0,1\}$:

イロト イポト イヨト イヨト 二日

- Suspected: EXP \nsubseteq Size $(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth(n^{O(1)}, O(1)) (a.k.a. AC⁰).
- To prove a lower bound, we want an L ∈ EXP such that L does not polynomial-time reduce to SizeDepth(n^{O(1)}, O(1)).
- Define L(x) by diagonalization. Defining $L_n : \{0,1\}^n \to \{0,1\}$:

• Suspected: EXP \nsubseteq Size $(n^{O(1)})$.

 R_1 R_2 R_3

Rn

- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth(n^{O(1)}, O(1)) (a.k.a. AC⁰).
- To prove a lower bound, we want an L ∈ EXP such that L does not polynomial-time reduce to SizeDepth(n^{O(1)}, O(1)).
- Define L(x) by diagonalization. Defining $L_n: \{0,1\}^n \to \{0,1\}$:

$$\boxed{x} \\ |x| = n$$

- Suspected: EXP \nsubseteq Size $(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth(n^{O(1)}, O(1)) (a.k.a. AC⁰).
- To prove a lower bound, we want an L ∈ EXP such that L does not polynomial-time reduce to SizeDepth(n^{O(1)}, O(1)).
- Define L(x) by diagonalization. Defining $L_n: \{0,1\}^n \to \{0,1\}$:

- Suspected: EXP \nsubseteq Size $(n^{O(1)})$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth(n^{O(1)}, O(1)) (a.k.a. AC⁰).
- To prove a lower bound, we want an L ∈ EXP such that L does not polynomial-time reduce to SizeDepth(n^{O(1)}, O(1)).
- Define L(x) by diagonalization. Defining $L_n: \{0,1\}^n \to \{0,1\}$:

Our observation

A solution to the Help Function problem (for constant-depth circuits) would follow from a "good" solution to the Remote Point Problem.

The Remote Point Problem (RPP)

• Define the (k(N), r(N))-Remote Point Problem (RPP) as follows:

- ▶ INPUT: A basis for a subspace V of \mathbb{F}_2^N of dimension at most k = k(N).
- ▶ SOLUTION: A vector $u \in \mathbb{F}_2^N$ such that $\Delta(u, v) \ge r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y: that is, $|\{i \in [n] \mid x_i \neq y_i\}|.$

- 4 同 6 4 日 6 4 日 6

The Remote Point Problem (RPP)

• Define the (k(N), r(N))-Remote Point Problem (RPP) as follows:

- ► INPUT: A basis for a subspace V of F^N₂ of dimension at most k = k(N).
- ▶ SOLUTION: A vector $u \in \mathbb{F}_2^N$ such that $\Delta(u, v) \ge r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y: that is, $|\{i \in [n] \mid x_i \neq y_i\}|.$

(4 個) トイヨト イヨト

- Define the (k(N), r(N))-Remote Point Problem (RPP) as follows:
 - ► INPUT: A basis for a subspace V of F^N₂ of dimension at most k = k(N).
 - ▶ SOLUTION: A vector $u \in \mathbb{F}_2^N$ such that $\Delta(u, v) \ge r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y: that is, $|\{i \in [n] \mid x_i \neq y_i\}|$.

- Define the (k(N), r(N))-Remote Point Problem (RPP) as follows:
 - ► INPUT: A basis for a subspace V of F^N₂ of dimension at most k = k(N).
 - ▶ SOLUTION: A vector $u \in \mathbb{F}_2^N$ such that $\Delta(u, v) \ge r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y: that is, $|\{i \in [n] \mid x_i \neq y_i\}|.$

- Define the (k(N), r(N))-Remote Point Problem (RPP) as follows:
 - ► INPUT: A basis for a subspace V of 𝔽^N₂ of dimension at most k = k(N).
 - ▶ SOLUTION: A vector $u \in \mathbb{F}_2^N$ such that $\Delta(u, v) \ge r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y: that is, $|\{i \in [n] \mid x_i \neq y_i\}|$.

- Define the (k(N), r(N))-Remote Point Problem (RPP) as follows:
 - ► INPUT: A basis for a subspace V of 𝔽^N₂ of dimension at most k = k(N).
 - ▶ SOLUTION: A vector $u \in \mathbb{F}_2^N$ such that $\Delta(u, v) \ge r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y: that is, $|\{i \in [n] \mid x_i \neq y_i\}|.$

Introduced by Alon, Panigrahy, and Yekhanin (2008).

- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: (k(N) = N/10, r(N) = N/10). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The (k, N^{log k}/_k)-RPP has a polynomial-time algorithm for k ≤ N/2.

(日) (同) (三) (三)

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: (k(N) = N/10, r(N) = N/10). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The (k, N^{log k}/_k)-RPP has a polynomial-time algorithm for k ≤ N/2.

・ロト ・聞ト ・ヨト ・ヨト

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: (k(N) = N/10, r(N) = N/10). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The (k, N^{log k}/_k)-RPP has a polynomial-time algorithm for k ≤ N/2.

・ロン ・四 ・ ・ ヨン

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: (k(N) = N/10, r(N) = N/10). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The (k, N^{log k}/_k)-RPP has a polynomial-time algorithm for k ≤ N/2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: (k(N) = N/10, r(N) = N/10). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The (k, N^{log k}/_k)-RPP has a polynomial-time algorithm for k ≤ N/2.

・ロン ・四 ・ ・ ヨン

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: (k(N) = N/10, r(N) = N/10). Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The (k, N log k/k)-RPP has a polynomial-time algorithm for k ≤ N/2.

- 4 同 6 4 日 6 4 日 6

- The (m(n), s(n), d)-Help function problem:
 - INPUT: A collection of boolean functions
 - $H = \{h_1, h_2, \ldots, h_m : \{0, 1\}^n \to \{0, 1\}\}.$
 - ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \rightarrow \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s, d)$.
- C small constant-depth boolean circuit with m inputs.
- Using low-degree polynomial approximations to AC^0 (Razborov, Smolensky, Tarui), there is a polynomial p_0 of small degree (at most $\ell = \log^{O(1)}(m)$) such that,

$$\Pr_{x \sim \{0,1\}^n} [p_0(h_1(x), \dots, h_m(x)) = C(h_1(x), \dots, h_m(x))] > 1 - \varepsilon$$

イロト イポト イヨト イヨト

- The (m(n), s(n), d)-Help function problem:
 - INPUT: A collection of boolean functions
 - $H = \{h_1, h_2, \ldots, h_m : \{0, 1\}^n \to \{0, 1\}\}.$
 - ▶ QUESTION: Find a boolean function $F : \{0,1\}^n \rightarrow \{0,1\}$ such that $F \notin \text{SizeDepth}_H(s, d)$.
- C small constant-depth boolean circuit with m inputs.
- Using low-degree polynomial approximations to AC^0 (Razborov, Smolensky, Tarui), there is a polynomial p_0 of small degree (at most $\ell = \log^{O(1)}(m)$) such that,

$$\Pr_{x \sim \{0,1\}^n} [p_0(h_1(x), \dots, h_m(x)) = C(h_1(x), \dots, h_m(x))] > 1 - \varepsilon$$

(人間) とうりょうり うう

- N = 2ⁿ. Let V be the subspace of 𝔽^N₂ of all degree ≤ ℓ polynomials in h₁, h₂,..., h_m.
- Any function F such that Δ(F, V) ≥ εN cannot be computed by a small constant-depth circuit using h₁, h₂,..., h_m.
- An $(m^{\ell}, \varepsilon N)$ -solution to the RPP would give such a function.

- N = 2ⁿ. Let V be the subspace of 𝔽^N₂ of all degree ≤ ℓ polynomials in h₁, h₂, ..., h_m.
- Any function F such that Δ(F, V) ≥ εN cannot be computed by a small constant-depth circuit using h₁, h₂,..., h_m.
- An $(m^{\ell}, \varepsilon N)$ -solution to the RPP would give such a function.

イロト イポト イヨト イヨト

- N = 2ⁿ. Let V be the subspace of 𝔽^N₂ of all degree ≤ ℓ polynomials in h₁, h₂,..., h_m.
- Any function F such that Δ(F, V) ≥ εN cannot be computed by a small constant-depth circuit using h₁, h₂,..., h_m.
- An $(m^{\ell}, \varepsilon N)$ -solution to the RPP would give such a function.

3

イロト イポト イヨト イヨト

- N = 2ⁿ. Let V be the subspace of 𝔽^N₂ of all degree ≤ ℓ polynomials in h₁, h₂, ..., h_m.
- Any function F such that Δ(F, V) ≥ εN cannot be computed by a small constant-depth circuit using h₁, h₂, ..., h_m.
- An $(m^{\ell}, \varepsilon N)$ -solution to the RPP would give such a function.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a (k, N log k/k)-solution. Need a (k, N 1/ko(1))-solution.
- However, interesting that a *restriction* of the rigidity question already implies some nontrivial lower bounds.
- Also, in the *algebraic* setting, this point of view does give some non-obvious results.

- 4 同 6 4 日 6 4 日 6

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $(k, N \frac{\log k}{k})$ -solution. Need a $(k, N \frac{1}{k^{o(1)}})$ -solution.
- However, interesting that a *restriction* of the rigidity question already implies some nontrivial lower bounds.
- Also, in the *algebraic* setting, this point of view does give some non-obvious results.

(4 冊) (4 日) (4 日)

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $(k, N \frac{\log k}{k})$ -solution. Need a $(k, N \frac{1}{k^{o(1)}})$ -solution.
- However, interesting that a *restriction* of the rigidity question already implies some nontrivial lower bounds.
- Also, in the *algebraic* setting, this point of view does give some non-obvious results.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $(k, N \frac{\log k}{k})$ -solution. Need a $(k, N \frac{1}{k^{o(1)}})$ -solution.
- However, interesting that a *restriction* of the rigidity question already implies some nontrivial lower bounds.
- Also, in the *algebraic* setting, this point of view does give some non-obvious results.

(4 個) トイヨト イヨト

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $(k, N \frac{\log k}{k})$ -solution. Need a $(k, N \frac{1}{k^{o(1)}})$ -solution.
- However, interesting that a *restriction* of the rigidity question already implies some nontrivial lower bounds.
- Also, in the *algebraic* setting, this point of view does give some non-obvious results.

Outline

Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP

Algebraic Branching Programs with Help polynomials

- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results

3 Summary

- Field \mathbb{F} . Set of variables $X = \{x_1, x_2, \dots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1 x_2 \neq x_2 x_1$.

3

(日) (同) (三) (三)

- Field \mathbb{F} . Set of variables $X = \{x_1, x_2, \dots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

- Field \mathbb{F} . Set of variables $X = \{x_1, x_2, \dots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

▲ @ ▶ ▲ @ ▶ ▲

- Field \mathbb{F} . Set of variables $X = \{x_1, x_2, \dots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

3

イロト イヨト イヨト

- Field \mathbb{F} . Set of variables $X = \{x_1, x_2, \dots, x_n\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X \rangle$. $x_1x_2 \neq x_2x_1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- An ABP with *d* layers computes homogeneous (degree *d*) polynomials in the noncommutative ring 𝔽⟨X⟩.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of *noncommutative* polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.

▶ The RMP

(日) (同) (日) (日)

- An ABP with *d* layers computes homogeneous (degree *d*) polynomials in the noncommutative ring 𝔽⟨X⟩.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of *noncommutative* polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.

▶ The RMP

(日) (同) (日) (日)

- An ABP with *d* layers computes homogeneous (degree *d*) polynomials in the noncommutative ring 𝔽⟨X⟩.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of *noncommutative* polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.

▶ The RMP

3

イロト イポト イヨト イヨト

- An ABP with *d* layers computes homogeneous (degree *d*) polynomials in the noncommutative ring 𝔽⟨X⟩.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of *noncommutative* polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.

▶ The RMP

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- An ABP with *d* layers computes homogeneous (degree *d*) polynomials in the noncommutative ring 𝔽⟨X⟩.
- Size of an ABP A: the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of *noncommutative* polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.

► The RMP

(4 個) トイヨト イヨト

Noncommutative ABPs with help polynomials

- Fix H = {h₁, h₂,..., h_m}, a set of arbitrary polynomials from the noncommutative ring 𝔼⟨X⟩.
- ABPs with help polynomials *H* Same as standard ABPs, except we allow the *h_i* in the linear forms.

The ABP with help polynomials lower bound question: Given
 H = {h₁, h₂,..., h_m}, compute a polynomial F such that F cannot be computed by a small ABP using H.

▶ The RMP

・ロン ・四 ・ ・ ヨン

Noncommutative ABPs with help polynomials

- Fix H = {h₁, h₂,..., h_m}, a set of arbitrary polynomials from the noncommutative ring 𝔼⟨X⟩.
- ABPs with help polynomials *H* Same as standard ABPs, except we allow the *h_i* in the linear forms.

 The ABP with help polynomials lower bound question: Given H = {h₁, h₂,..., h_m}, compute a polynomial F such that F cannot be computed by a small ABP using H.

▶ The RMP

イロト イポト イヨト イヨト 二日

Noncommutative ABPs with help polynomials

- Fix H = {h₁, h₂,..., h_m}, a set of arbitrary polynomials from the noncommutative ring 𝔼⟨X⟩.
- ABPs with help polynomials *H* Same as standard ABPs, except we allow the *h_i* in the linear forms.

 The ABP with help polynomials lower bound question: Given *H* = {*h*₁, *h*₂,..., *h_m*}, compute a polynomial *F* such that *F* cannot be computed by a small ABP using *H*.

▶ The RMP

The communication matrix $M_k(f)$

• Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree *d*.

- $Mon_{\ell}(X)$ monic monomials of degree ℓ .
- f(m) coefficient of monomial m in f.
- For 0 ≤ k ≤ d, the matrix M_k(f) is an n^k × n^{d-k} matrix over F such that:
 - The rows are labelled by elements of $Mon_k(X)$.
 - The columns are labelled by elements of $Mon_{d-k}(X)$.
 - The (m_1, m_2) th entry is $f(m_1m_2)$.

- 4 @ > - 4 @ > - 4 @ >

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree *d*.
- $Mon_{\ell}(X)$ monic monomials of degree ℓ .
- f(m) coefficient of monomial m in f.
- For 0 ≤ k ≤ d, the matrix M_k(f) is an n^k × n^{d-k} matrix over 𝔽 such that:
 - The rows are labelled by elements of $Mon_k(X)$.
 - The columns are labelled by elements of $Mon_{d-k}(X)$.
 - The (m_1, m_2) th entry is $f(m_1m_2)$.

- 4 同 6 4 日 6 4 日 6

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree *d*.
- $Mon_{\ell}(X)$ monic monomials of degree ℓ .
- f(m) coefficient of monomial m in f.
- For $0 \le k \le d$, the matrix $M_k(f)$ is an $n^k \times n^{d-k}$ matrix over \mathbb{F} such that:
 - The rows are labelled by elements of $Mon_k(X)$.
 - The columns are labelled by elements of $Mon_{d-k}(X)$.
 - The (m_1, m_2) th entry is $f(m_1m_2)$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Fix $f \in \mathbb{F}\langle X \rangle$ homogeneous of degree d.
- $Mon_{\ell}(X)$ monic monomials of degree ℓ .
- f(m) coefficient of monomial m in f.
- For $0 \le k \le d$, the matrix $M_k(f)$ is an $n^k \times n^{d-k}$ matrix over \mathbb{F} such that:
 - The rows are labelled by elements of $Mon_k(X)$.
 - The columns are labelled by elements of $Mon_{d-k}(X)$.
 - The (m_1, m_2) th entry is $f(m_1m_2)$.

< 回 > < 三 > < 三 >

超 ト イヨ ト イヨ ト 二 ヨ

• Say we have a small ABP A computing f using H.

• Then, $M_{d/2}(f) = M' + M$, where:

- ► *M*′ small rank.
- M ∈ V(H), where V(H) a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M₀ such that rank(M₀ − M) is large for every M ∈ V(H). Then, choose F ∈ 𝔽⟨X⟩ so that:

$$M_{d/2}(F) = M_0$$

• F cannot be computed by small ABPs using H.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Say we have a small ABP A computing f using H.

• Then,
$$M_{d/2}(f) = M' + M$$
, where:

- ► *M*′ small rank.
- M ∈ V(H), where V(H) a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M₀ such that rank(M₀ − M) is large for every M ∈ V(H). Then, choose F ∈ 𝔽⟨X⟩ so that:

 $M_{d/2}(F) = M_0$

• F cannot be computed by small ABPs using H.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Say we have a small ABP A computing f using H.

• Then,
$$M_{d/2}(f) = M' + M$$
, where:

- ► *M*′ small rank.
- M ∈ V(H), where V(H) a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M_0 such that rank $(M_0 M)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}\langle X \rangle$ so that:

$$M_{d/2}(F)=M_0$$

• F cannot be computed by small ABPs using H.

(日) (周) (日) (日)

• Say we have a small ABP A computing f using H.

• Then,
$$M_{d/2}(f) = M' + M$$
, where:

- ► *M*′ small rank.
- M ∈ V(H), where V(H) a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M_0 such that rank $(M_0 M)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}\langle X \rangle$ so that:

$$M_{d/2}(F) = M_0$$

• F cannot be computed by small ABPs using H.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let $\Delta_{\mathsf{rank}}(M_1, M_2) = \mathsf{rank}(M_1 - M_2).$

- The (*k*(*N*), *r*(*N*))-Remote Matrix Problem (RMP) is defined as follows:
 - ▶ INPUT: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - ▶ SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text{rank}}(M M') \ge r$ for each $M' \in \text{span}(M_1, M_2, \dots, M_k)$.
- Easy parameters: The (k, N/(k+1))-RMP has an easy solution.
- Interesting parameters: k = N²/10, r = N/10. Random point is a solution w.h.p..

< ロ > < 同 > < 回 > < 回 > < 回

- Let $\Delta_{\text{rank}}(M_1, M_2) = \text{rank}(M_1 M_2)$.
- The (k(N), r(N))-Remote Matrix Problem (RMP) is defined as follows:
 - ▶ INPUT: A collection of matrices $M_1, M_2, \ldots, M_k \in \mathbb{F}^{N \times N}$.
 - ▶ SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{rank}(M M') \ge r$ for each $M' \in span(M_1, M_2, ..., M_k)$.
- Easy parameters: The (k, N/(k+1))-RMP has an easy solution.
- Interesting parameters: k = N²/10, r = N/10. Random point is a solution w.h.p..

(日) (同) (三) (三)

- Let $\Delta_{\mathsf{rank}}(M_1, M_2) = \mathsf{rank}(M_1 M_2).$
- The (k(N), r(N))-Remote Matrix Problem (RMP) is defined as follows:
 - ▶ INPUT: A collection of matrices $M_1, M_2, ..., M_k \in \mathbb{F}^{N \times N}$.
 - ► SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{rank}(M M') \ge r$ for each $M' \in span(M_1, M_2, ..., M_k)$.
- Easy parameters: The (k, N/(k+1))-RMP has an easy solution.
- Interesting parameters: k = N²/10, r = N/10. Random point is a solution w.h.p..

・ロン ・四 ・ ・ ヨン

- Let $\Delta_{\mathsf{rank}}(M_1, M_2) = \mathsf{rank}(M_1 M_2)$.
- The (k(N), r(N))-Remote Matrix Problem (RMP) is defined as follows:
 - ▶ INPUT: A collection of matrices $M_1, M_2, ..., M_k \in \mathbb{F}^{N \times N}$.
 - ► SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{rank}(M M') \ge r$ for each $M' \in span(M_1, M_2, ..., M_k)$.
- Easy parameters: The (k, N/(k+1))-RMP has an easy solution.
- Interesting parameters: k = N²/10, r = N/10. Random point is a solution w.h.p..

・ロン ・四 ・ ・ ヨン

- Let $\Delta_{\mathsf{rank}}(M_1, M_2) = \mathsf{rank}(M_1 M_2).$
- The (k(N), r(N))-Remote Matrix Problem (RMP) is defined as follows:
 - ▶ INPUT: A collection of matrices $M_1, M_2, ..., M_k \in \mathbb{F}^{N \times N}$.
 - ► SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{rank}(M M') \ge r$ for each $M' \in span(M_1, M_2, ..., M_k)$.
- Easy parameters: The (k, N/(k+1))-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, r = N/10. Random point is a solution w.h.p..

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Let $\Delta_{\mathsf{rank}}(M_1, M_2) = \mathsf{rank}(M_1 M_2).$
- The (k(N), r(N))-Remote Matrix Problem (RMP) is defined as follows:
 - ▶ INPUT: A collection of matrices $M_1, M_2, ..., M_k \in \mathbb{F}^{N \times N}$.
 - ► SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{rank}(M M') \ge r$ for each $M' \in span(M_1, M_2, ..., M_k)$.
- Easy parameters: The (k, N/(k+1))-RMP has an easy solution.
- Interesting parameters: $k = N^2/10$, r = N/10. Random point is a solution w.h.p..

(日) (周) (日) (日)

Results

Results

Lemma

The (k, N/(k+1))-RMP can be solved in polynomial time.

Theorem

There is an explicit lower bound F against ABPs using H if:

• H is not too large.

• *H* is a set of help polynomials with minimum degree $\geq d(1/2 + \varepsilon)$.

Theorem

If the $(k, N/k^{1/2-\varepsilon})$ -RMP can be solved in polynomial time, then there is an explicit lower bound F against ABPs using H, for any H that is not too large.

A (10) × (10) × (10)

Results

Lemma

The (k, N/(k+1))-RMP can be solved in polynomial time.

Theorem

There is an explicit lower bound F against ABPs using H if:

• H is not too large.

• *H* is a set of help polynomials with minimum degree $\geq d(1/2 + \varepsilon)$.

Theorem

If the $(k, N/k^{1/2-\varepsilon})$ -RMP can be solved in polynomial time, then there is an explicit lower bound F against ABPs using H, for any H that is not too large.

- 4 同 6 4 日 6 4 日

Results

Lemma

The (k, N/(k+1))-RMP can be solved in polynomial time.

Theorem

There is an explicit lower bound F against ABPs using H if:

• H is not too large.

• *H* is a set of help polynomials with minimum degree $\geq d(1/2 + \varepsilon)$.

Theorem

If the $(k, N/k^{1/2-\varepsilon})$ -RMP can be solved in polynomial time, then there is an explicit lower bound F against ABPs using H, for any H that is not too large.

3

イロト イポト イヨト イヨト

Other Results

Following the general proof structure of the result of Alon, Panigrahy, and Yekhanin's result on the RPP:

Theorem

The $(N, \log N)$ -RMP can be solved in polynomial time, for constant-sized fields.

Outline

Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP

2 Algebraic Branching Programs with Help polynomials

- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}, O(1)$).
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.

A (10) < A (10) </p>

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}, O(1)$).
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.

- 4 同 ト - 4 三 ト - 4 三

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}, O(1)$).
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.

- 4 同 ト - 4 三 ト - 4 三

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth($n^{O(1)}, O(1)$).
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.

A (10) < A (10) </p>

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - Is there a small H such that SizeDepth_H(n^{O(1)}, O(1)) contains all the parities?
 - If H contains only parities, then does SizeDepth_H(n^{O(1)}, O(1)) contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.

< 🗇 🕨 <

Algorithms with better parameters for the RPP and RMP.

- Specific cases of the Help functions question:
 - Is there a small H such that SizeDepth_H(n^{O(1)}, O(1)) contains all the parities?
 - ► If H contains only parities, then does SizeDepth_H(n^{O(1)}, O(1)) contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.

A 回下 < 三下 </p>

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - ► Is there a small H such that SizeDepth_H(n^{O(1)}, O(1)) contains all the parities?
 - ► If H contains only parities, then does SizeDepth_H(n^{O(1)}, O(1)) contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.

A (10) < A (10) </p>

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - ► Is there a small H such that SizeDepth_H(n^{O(1)}, O(1)) contains all the parities?
 - ► If H contains only parities, then does SizeDepth_H(n^{O(1)}, O(1)) contain the inner-product function?

 Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
 - ► Is there a small H such that SizeDepth_H(n^{O(1)}, O(1)) contains all the parities?
 - ► If H contains only parities, then does SizeDepth_H(n^{O(1)}, O(1)) contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.

Thank you

3

<ロ> (日) (日) (日) (日) (日)