Circuit Lower Bounds, Help Functions, and the Remote Point Problem

V Arvind and Srikanth Srinivasan

The Institute of Mathematical Sciences, Chennai, India.

January 7, 2010

Outline

(1) Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP
(2) Algebraic Branching Programs with Help polynomials
- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results
(3) Summary

Outline

(1) Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP
(2) Algebraic Branching Programs with Help polynomials
- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results
(3) Summary

Boolean circuits

- Set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Directed acyclic graph (DAG) with labels from $X \cup \bar{X} \cup\{\wedge, \vee\} \cup\{0,1\}$.
- Computes a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$.

Boolean circuits - parameters

- Size of a circuit - number of vertices.
- Depth of a circuit - The length of the longest path in the circuit.
- Circuits of interest: Constant depth circuits of small size.

Boolean circuit lower bounds

- Notation: $\operatorname{Size}(s(n))$ - families of functions $\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{N}}$ that can be computed by circuits of size $s(n)$. Similarly SizeDepth $(s(n), d(n))$.

Boolean circuit lower bounds

- Notation: $\operatorname{Size}(s(n))$ - families of functions
$\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{N}}$ that can be computed by circuits of size $s(n)$. Similarly SizeDepth $(s(n), d(n))$.
- $\mathrm{AC}^{0}=\operatorname{SizeDepth}\left(n^{O(1)}, O(1)\right)$.

Boolean circuit lower bounds

- Notation: $\operatorname{Size}(s(n))$ - families of functions $\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{N}}$ that can be computed by circuits of size $s(n)$. Similarly SizeDepth $(s(n), d(n))$.
- $\mathrm{AC}^{0}=\operatorname{SizeDepth}\left(n^{O(1)}, O(1)\right)$.
- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.

Boolean circuit lower bounds

- Notation: $\operatorname{Size}(s(n))$ - families of functions $\left\{f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}_{n \in \mathbb{N}}$ that can be computed by circuits of size $s(n)$. Similarly SizeDepth $(s(n), d(n))$.
- $\mathrm{AC}^{0}=\operatorname{SizeDepth}\left(n^{O(1)}, O(1)\right)$.
- AIM: To come up with an explicit (say, computable in EXP) family of boolean functions that cannot be computed by subexponential-sized boolean circuits.
- Current status: EXP $\nsubseteq \operatorname{Size}\left(n^{c}\right)$ for any fixed $c>0$.

Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.

Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.
- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{n(1)}}$ lower bound for CLIQUE.

Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.
- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{n(1)}}$ lower bound for CLIQUE.
- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity $\notin \operatorname{SizeDepth}\left(2^{n^{\Omega_{(1)}^{(1)}}}, O(1)\right)$.

Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.
- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{n(1)}}$ lower bound for CLIQUE.
- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity $\notin \operatorname{SizeDepth}\left(2^{n^{\Omega_{(1)}^{(1)}}}, O(1)\right)$.
- Constant-depth circuits with Mod_{p} gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...

Boolean circuit lower bounds (contd.)

- Better lower bounds for restricted classes of circuits.
- Monotone boolean circuits (Razborov, Alon-Boppana): $2^{n^{n(1)}}$ lower bound for CLIQUE.
- Constant-depth circuits (Furst-Saxe-Sipser, Yao, Håstad): Parity $\notin \operatorname{SizeDepth}\left(2^{n^{\Omega(1)}}, O(1)\right)$.
- Constant-depth circuits with Mod_{p} gates and a few Majority gates (Razborov, Smolensky, Aspnes-Beigel-Furst-Rudich) ...
- Currently unknown: Does all of EXP have polynomial-sized constant depth circuits with Mod_{m} gates (with m composite)?

The Help functions problem

- Fix $h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\left(m \approx n^{O(1)}\right.$ or $\left.2^{(\log n)^{O(1)}}\right)$.
- What can constant-depth circuits do when given the ability to - Example: Consider constant-depth boolean circuits that, along with

The Help functions problem

- Fix $h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\left(m \approx n^{O(1)}\right.$ or $\left.2^{(\log n)^{O(1)}}\right)$.
- What can constant-depth circuits do when given the ability to compute $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ (on the given input) for "free"?

The Help functions problem

- Fix $h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\left(m \approx n^{O(1)}\right.$ or $\left.2^{(\log n)^{O(1)}}\right)$.
- What can constant-depth circuits do when given the ability to compute $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ (on the given input) for "free"?
- Example: Consider constant-depth boolean circuits that, along with $x_{1}, x_{2}, \ldots, x_{n}$, are also given $\bigoplus_{i=1}^{n} x_{i}$ as input.

The Help functions problem

- Fix $h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\left(m \approx n^{O(1)}\right.$ or $\left.2^{(\log n)^{O(1)}}\right)$.
- What can constant-depth circuits do when given the ability to compute $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ (on the given input) for "free"?
- Example: Consider constant-depth boolean circuits that, along with $x_{1}, x_{2}, \ldots, x_{n}$, are also given $\bigoplus_{i=1}^{n} x_{i}$ as input. Can they compute $\bigoplus_{i \leq n / 2} x_{i}$?

The Help functions problem (contd.)

SizeDepth $_{H}(s, d)$ functions computable by circuits of size s and depth d that take functions from H as input.

The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.

The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The $(m(n), s(n), d)$-Help function problem:

The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The $(m(n), s(n), d)$-Help function problem:
- INPUT: A collection of boolean functions

$$
H=\left\{h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\right\} .
$$

The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The $(m(n), s(n), d)$-Help function problem:
- INPUT: A collection of boolean functions $H=\left\{h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$.
- QUESTION: Find a boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $F \notin \operatorname{SizeDepth}_{H}(s, d)$.

The Help functions problem (contd.)

- The Help functions problem: another way of extending known circuit lower bounds.
- The ($m(n), s(n), d)$-Help function problem:
- INPUT: A collection of boolean functions

$$
H=\left\{h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\right\} .
$$

- QUESTION: Find a boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $F \notin \operatorname{SizeDepth}_{H}(s, d)$.
- Interesting for $d=O(1), m=n^{O(1)}$ or $2^{(\log n)^{O(1)}}$, and $s=2^{(\log n)^{a}}$ or $2^{n^{\Omega(1)}}$.

Previous work

- Has been studied by Jin-Yi Cai (1991) and Satya Lokam (1995).
- Cai proves "almost-explicit" ower bounds when
- Lokam: connections to problems in communication complexity.

Previous work

- Has been studied by Jin-Yi Cai (1991) and Satya Lokam (1995).
- Cai proves "almost-explicit" lower bounds when $H=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$, and $k \leq n^{1 / 5-\varepsilon}$.

Previous work

- Has been studied by Jin-Yi Cai (1991) and Satya Lokam (1995).
- Cai proves "almost-explicit" lower bounds when $H=\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{h_{1}, h_{2}, \ldots, h_{k}\right\}$, and $k \leq n^{1 / 5-\varepsilon}$.
- Lokam: connections to problems in communication complexity.

An application to standard questions

- Suspected: EXP $\nsubseteq \operatorname{Size}\left(n^{O(1)}\right)$.

An application to standard questions

- Suspected: EXP $\nsubseteq \operatorname{Size}\left(n^{O(1)}\right)$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$ (a.k.a. $\left.\mathrm{AC}^{0}\right)$.

An application to standard questions

- Suspected: EXP $\nsubseteq \operatorname{Size}\left(n^{O(1)}\right)$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$ (a.k.a. $\left.\mathrm{AC}^{0}\right)$.
- To prove a lower bound, we want an $L \in$ EXP such that L does not polynomial-time reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$.

An application to standard questions

- Suspected: EXP $\nsubseteq \operatorname{Size}\left(n^{O(1)}\right)$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$ (a.k.a. $\left.\mathrm{AC}^{0}\right)$.
- To prove a lower bound, we want an $L \in$ EXP such that L does not polynomial-time reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$.
- Define $L(x)$ by diagonalization. Defining $L_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$:

$$
\begin{aligned}
& R_{1} \\
& R_{2} \\
& R_{3}
\end{aligned}
$$

x	R_{n}
$\|x\|=n$	\vdots

An application to standard questions

- Suspected: EXP $\nsubseteq \operatorname{Size}\left(n^{O(1)}\right)$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$ (a.k.a. $\left.\mathrm{AC}^{0}\right)$.
- To prove a lower bound, we want an $L \in$ EXP such that L does not polynomial-time reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$.
- Define $L(x)$ by diagonalization. Defining $L_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$:

An application to standard questions

- Suspected: EXP $\nsubseteq \operatorname{Size}\left(n^{O(1)}\right)$.
- Weaker statement: EXP does not polynomial-time many-one reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)\left(\right.$ a.k.a. $\left.\mathrm{AC}^{0}\right)$.
- To prove a lower bound, we want an $L \in$ EXP such that L does not polynomial-time reduce to SizeDepth $\left(n^{O(1)}, O(1)\right)$.
- Define $L(x)$ by diagonalization. Defining $L_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$:

Our observation

A solution to the Help Function problem (for constant-depth circuits) would follow from a "good" solution to the Remote Point Problem.

The Remote Point Problem (RPP)

- Define the $(k(N), r(N))$-Remote Point Problem (RPP) as follows:

The Remote Point Problem (RPP)

- Define the $(k(N), r(N))$-Remote Point Problem (RPP) as follows:
- INPUT: A basis for a subspace V of \mathbb{F}_{2}^{N} of dimension at most $k=k(N)$.

The Remote Point Problem (RPP)

- Define the $(k(N), r(N))$-Remote Point Problem (RPP) as follows:
- INPUT: A basis for a subspace V of \mathbb{F}_{2}^{N} of dimension at most $k=k(N)$.
- SOLUTION: A vector $u \in \mathbb{F}_{2}^{N}$ such that $\Delta(u, v) \geq r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y : that is, $\left|\left\{i \in[n] \mid x_{i} \neq y_{i}\right\}\right|$.

The Remote Point Problem (RPP)

- Define the $(k(N), r(N))$-Remote Point Problem (RPP) as follows:
- INPUT: A basis for a subspace V of \mathbb{F}_{2}^{N} of dimension at most $k=k(N)$.
- SOLUTION: A vector $u \in \mathbb{F}_{2}^{N}$ such that $\Delta(u, v) \geq r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y : that is, $\left|\left\{i \in[n] \mid x_{i} \neq y_{i}\right\}\right|$.

The Remote Point Problem (RPP)

- Define the $(k(N), r(N))$-Remote Point Problem (RPP) as follows:
- INPUT: A basis for a subspace V of \mathbb{F}_{2}^{N} of dimension at most $k=k(N)$.
- SOLUTION: A vector $u \in \mathbb{F}_{2}^{N}$ such that $\Delta(u, v) \geq r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y : that is, $\left|\left\{i \in[n] \mid x_{i} \neq y_{i}\right\}\right|$.

The Remote Point Problem (RPP)

- Define the $(k(N), r(N))$-Remote Point Problem (RPP) as follows:
- INPUT: A basis for a subspace V of \mathbb{F}_{2}^{N} of dimension at most $k=k(N)$.
- SOLUTION: A vector $u \in \mathbb{F}_{2}^{N}$ such that $\Delta(u, v) \geq r(N)$ for all $v \in V$.
- Here, $\Delta(x, y)$ is the Hamming distance between x and y : that is, $\left|\left\{i \in[n] \mid x_{i} \neq y_{i}\right\}\right|$.

Motivation and previous work

- Introduced by Alon, Panigrahy, and Yekhanin (2008).

Motivation and previous work

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.

Motivation and previous work

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.

Motivation and previous work

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: $(k(N)=N / 10, r(N)=N / 10)$. Random point is a solution w.h.p..

Motivation and previous work

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: $(k(N)=N / 10, r(N)=N / 10)$. Random point is a solution w.h.p.. Need a deterministic solution.

Motivation and previous work

- Introduced by Alon, Panigrahy, and Yekhanin (2008).
- An interesting "restriction" of the Matrix Rigidity question.
- The Matrix Rigidity question may be phrased in terms of small hitting sets for the RPP.
- Interesting parameters: $(k(N)=N / 10, r(N)=N / 10)$. Random point is a solution w.h.p.. Need a deterministic solution.
- Current best solution (Alon-Panigrahy-Yekhanin): The $\left(k, N \frac{\log k}{k}\right)$-RPP has a polynomial-time algorithm for $k \leq N / 2$.

The connection to the Help functions problem

- The $(m(n), s(n), d)$-Help function problem:
- INPUT: A collection of boolean functions
$H=\left\{h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\right\}$.
- QUESTION: Find a boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $F \notin \operatorname{SizeDepth}_{H}(s, d)$.

The connection to the Help functions problem

- The $(m(n), s(n), d)$-Help function problem:
- INPUT: A collection of boolean functions

$$
H=\left\{h_{1}, h_{2}, \ldots, h_{m}:\{0,1\}^{n} \rightarrow\{0,1\}\right\} .
$$

- QUESTION: Find a boolean function $F:\{0,1\}^{n} \rightarrow\{0,1\}$ such that $F \notin \operatorname{SizeDepth}_{H}(s, d)$.
- C - small constant-depth boolean circuit with m inputs.
- Using low-degree polynomial approximations to AC^{0} (Razborov, Smolensky, Tarui), there is a polynomial p_{0} of small degree (at most $\left.\ell=\log ^{O(1)}(m)\right)$ such that,

$$
\operatorname{Pr}_{x \sim\{0,1\}^{n}}\left[p_{0}\left(h_{1}(x), \ldots, h_{m}(x)\right)=C\left(h_{1}(x), \ldots, h_{m}(x)\right)\right]>1-\varepsilon
$$

The connection to the Help functions problem (contd.)

$C\left(h_{1}(x), \ldots, h_{m}(x)\right)$

Hamming distance $<\varepsilon 2^{n}$.

$C\left(h_{1}(x), \ldots, h_{m}(x)\right)$
Hamming distance $<\varepsilon 2^{n}$.

0	0	,	0	0	1	.	\cdot		1	1	0		$p_{0}\left(h_{1}(x)\right.$,

- $N=2^{n}$. Let V be the subspace of \mathbb{F}_{2}^{N} of all degree $\leq \ell$ polynomials in $h_{1}, h_{2}, \ldots, h_{m}$.

The connection to the Help functions problem (contd.)

$C\left(h_{1}(x), \ldots, h_{m}(x)\right)$
Hamming distance $<\varepsilon 2^{n}$.

0	0	0	0	1	\ldots	\ldots	1	1	

- $N=2^{n}$. Let V be the subspace of \mathbb{F}_{2}^{N} of all degree $\leq \ell$ polynomials in $h_{1}, h_{2}, \ldots, h_{m}$.
- Any function F such that $\Delta(F, V) \geq \varepsilon N$ cannot be computed by a small constant-depth circuit using $h_{1}, h_{2}, \ldots, h_{m}$.

The connection to the Help functions problem (contd.)

$C\left(h_{1}(x), \ldots, h_{m}(x)\right)$
Hamming distance $<\varepsilon 2^{n}$.

$p_{0}\left(h_{1}(x), \ldots, h_{m}(x)\right)$

- $N=2^{n}$. Let V be the subspace of \mathbb{F}_{2}^{N} of all degree $\leq \ell$ polynomials in $h_{1}, h_{2}, \ldots, h_{m}$.
- Any function F such that $\Delta(F, V) \geq \varepsilon N$ cannot be computed by a small constant-depth circuit using $h_{1}, h_{2}, \ldots, h_{m}$.
- An ($m^{\ell}, \varepsilon N$)-solution to the RPP would give such a function.

Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?

Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a ($k, N \frac{\log k}{k}$)-solution.

Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $\left(k, N \frac{\log k}{k}\right)$-solution. Need a $\left(k, N \frac{1}{k^{(1)}}\right)$-solution.

- A'so, in the algebraic setting, this point of view does give some

Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a $\left(k, N \frac{\log k}{k}\right)$-solution. Need a $\left(k, N \frac{1}{k^{(1)}}\right)$-solution.
- However, interesting that a restriction of the rigidity question already implies some nontrivial lower bounds.

Does this help?

- Does the connection to the RPP give us a non-trivial solution to the Help functions problem?
- Not really. The best solution currently (Alon et. al.) is a ($k, N \frac{\log k}{k}$)-solution. Need a $\left(k, N \frac{1}{k^{0(1)}}\right)$-solution.
- However, interesting that a restriction of the rigidity question already implies some nontrivial lower bounds.
- Also, in the algebraic setting, this point of view does give some non-obvious results.

Outline

(1) Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP
(2) Algebraic Branching Programs with Help polynomials
- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results
(3) Summary

Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X\rangle . x_{1} x_{2} \neq x_{2} x_{1}$.

Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X\rangle . x_{1} x_{2} \neq x_{2} x_{1}$.

Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X\rangle . x_{1} x_{2} \neq x_{2} x_{1}$.

$\ell=\sum_{i} \alpha_{i} x_{i}$

Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X\rangle . x_{1} x_{2} \neq x_{2} x_{1}$.

Noncommutative Algebraic Branching Programs (ABPs)

- Field \mathbb{F}. Set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.
- Noncommutative ring of polynomials $\mathbb{F}\langle X\rangle . x_{1} x_{2} \neq x_{2} x_{1}$.

$$
\begin{gathered}
\bigcirc \xrightarrow{\ell} \bigcirc \\
\ell=\sum_{i} \alpha_{i} x_{i} \\
f_{\gamma}=\ell_{1} \ell_{2} \cdots \ell_{d} \\
f=\sum_{\gamma \in \mathcal{P}_{s t}} f_{\gamma}
\end{gathered}
$$

Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X\rangle$.

Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X\rangle$.
- Size of an ABP A : the number of vertices in the underlying graph.

Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X\rangle$.
- Size of an ABP A : the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
\square

Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X\rangle$.
- Size of an ABP A : the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.

Properties

- An ABP with d layers computes homogeneous (degree d) polynomials in the noncommutative ring $\mathbb{F}\langle X\rangle$.
- Size of an ABP A : the number of vertices in the underlying graph.
- ABPs at least as powerful as arithmetic formulas.
- Nisan proved exponential lower bounds for the size of ABPs computing a whole range of noncommutative polynomials, such as the Determinant, the Permanent, etc.
- Only explicit lower bounds for the noncommutative arithmetic model. Lower bounds for general noncommutative arithmetic circuits unknown.

Noncommutative ABPs with help polynomials

- Fix $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, a set of arbitrary polynomials from the noncommutative ring $\mathbb{F}\langle X\rangle$.
allow the h_{i} in the linear forms.

- The ABP with help polynomials lower bound question: Given be computed by a small $A B P$ using H.

Noncommutative ABPs with help polynomials

- Fix $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, a set of arbitrary polynomials from the noncommutative ring $\mathbb{F}\langle X\rangle$.
- ABPs with help polynomials H - Same as standard ABPs, except we allow the h_{i} in the linear forms.

$$
\ell=\begin{aligned}
& \ell \\
& \bigcirc=\sum_{i} \alpha_{i} x_{i}+\sum_{j} \beta_{j} h_{j}
\end{aligned}
$$

Noncommutative ABPs with help polynomials

- Fix $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, a set of arbitrary polynomials from the noncommutative ring $\mathbb{F}\langle X\rangle$.
- ABPs with help polynomials H - Same as standard ABPs, except we allow the h_{i} in the linear forms.

$$
\ell=\stackrel{\ell}{\bigcirc}
$$

- The ABP with help polynomials lower bound question: Given $H=\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$, compute a polynomial F such that F cannot be computed by a small ABP using H.

The communication matrix $M_{k}(f)$

- Fix $f \in \mathbb{F}\langle X\rangle$ homogeneous of degree d.

The communication matrix $M_{k}(f)$

- Fix $f \in \mathbb{F}\langle X\rangle$ homogeneous of degree d.
- $\operatorname{Mon}_{\ell}(X)$ - monic monomials of degree ℓ.
- The rows are labelled by elements of $\operatorname{Mon}_{k}(X)$.
- The columns are labelled by elements of Mon $_{d-k}(X)$
- The (m_{1}, m_{2}) th entry is $f\left(m_{1} m_{2}\right)$

The communication matrix $M_{k}(f)$

- Fix $f \in \mathbb{F}\langle X\rangle$ homogeneous of degree d.
- Mon $_{\ell}(X)$ - monic monomials of degree ℓ.
- $f(m)$ - coefficient of monomial m in f.

The communication matrix $M_{k}(f)$

- Fix $f \in \mathbb{F}\langle X\rangle$ homogeneous of degree d.
- $\operatorname{Mon}_{\ell}(X)$ - monic monomials of degree ℓ.
- $f(m)$ - coefficient of monomial m in f.
- For $0 \leq k \leq d$, the matrix $M_{k}(f)$ is an $n^{k} \times n^{d-k}$ matrix over \mathbb{F} such that:
- The rows are labelled by elements of $\operatorname{Mon}_{k}(X)$.
- The columns are labelled by elements of $\operatorname{Mon}_{d-k}(X)$.
- The $\left(m_{1}, m_{2}\right)$ th entry is $f\left(m_{1} m_{2}\right)$.

The communication matrix $M_{k}(f)$

The approach to lower bounds

- Say we have a small ABP A computing f using H.

The approach to lower bounds

- Say we have a small ABP A computing f using H.
- Then, $M_{d / 2}(f)=M^{\prime}+M$, where:
- M^{\prime} small rank.
- $M \in V(H)$, where $V(H)$ a small dimensional vector space depending only on H.

The approach to lower bounds

- Say we have a small ABP A computing f using H.
- Then, $M_{d / 2}(f)=M^{\prime}+M$, where:
- M^{\prime} small rank.
- $M \in V(H)$, where $V(H)$ a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M_{0} such that $\operatorname{rank}\left(M_{0}-M\right)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}\langle X\rangle$ so that:

$$
M_{d / 2}(F)=M_{0}
$$

The approach to lower bounds

- Say we have a small ABP A computing f using H.
- Then, $M_{d / 2}(f)=M^{\prime}+M$, where:
- M^{\prime} small rank.
- $M \in V(H)$, where $V(H)$ a small dimensional vector space depending only on H.
- Thus, for an explicit lower bound, it suffices to find M_{0} such that $\operatorname{rank}\left(M_{0}-M\right)$ is large for every $M \in V(H)$. Then, choose $F \in \mathbb{F}\langle X\rangle$ so that:

$$
M_{d / 2}(F)=M_{0}
$$

- F cannot be computed by small ABPs using H.

The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text {rank }}\left(M_{1}, M_{2}\right)=\operatorname{rank}\left(M_{1}-M_{2}\right)$.

The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text {rank }}\left(M_{1}, M_{2}\right)=\operatorname{rank}\left(M_{1}-M_{2}\right)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
- INPUT: A collection of matrices $M_{1}, M_{2}, \ldots, M_{k} \in \mathbb{F}^{N \times N}$.

The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text {rank }}\left(M_{1}, M_{2}\right)=\operatorname{rank}\left(M_{1}-M_{2}\right)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
- INPUT: A collection of matrices $M_{1}, M_{2}, \ldots, M_{k} \in \mathbb{F}^{N \times N}$.
- SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text {rank }}\left(M-M^{\prime}\right) \geq r$ for each $M^{\prime} \in \operatorname{span}\left(M_{1}, M_{2}, \ldots, M_{k}\right)$.

The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text {rank }}\left(M_{1}, M_{2}\right)=\operatorname{rank}\left(M_{1}-M_{2}\right)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
- INPUT: A collection of matrices $M_{1}, M_{2}, \ldots, M_{k} \in \mathbb{F}^{N \times N}$.
- SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text {rank }}\left(M-M^{\prime}\right) \geq r$ for each $M^{\prime} \in \operatorname{span}\left(M_{1}, M_{2}, \ldots, M_{k}\right)$.
- Easy parameters: The $(k, N /(k+1))$-RMP has an easy solution.

The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text {rank }}\left(M_{1}, M_{2}\right)=\operatorname{rank}\left(M_{1}-M_{2}\right)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
- INPUT: A collection of matrices $M_{1}, M_{2}, \ldots, M_{k} \in \mathbb{F}^{N \times N}$.
- SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text {rank }}\left(M-M^{\prime}\right) \geq r$ for each $M^{\prime} \in \operatorname{span}\left(M_{1}, M_{2}, \ldots, M_{k}\right)$.
- Easy parameters: The $(k, N /(k+1))$-RMP has an easy solution.
- Interesting parameters: $k=N^{2} / 10, r=N / 10$.

The Remote Matrix Problem (the RPP with rank metric)

- Let $\Delta_{\text {rank }}\left(M_{1}, M_{2}\right)=\operatorname{rank}\left(M_{1}-M_{2}\right)$.
- The $(k(N), r(N))$-Remote Matrix Problem (RMP) is defined as follows:
- INPUT: A collection of matrices $M_{1}, M_{2}, \ldots, M_{k} \in \mathbb{F}^{N \times N}$.
- SOLUTION: A matrix $M \in \mathbb{F}^{N \times N}$ such that $\Delta_{\text {rank }}\left(M-M^{\prime}\right) \geq r$ for each $M^{\prime} \in \operatorname{span}\left(M_{1}, M_{2}, \ldots, M_{k}\right)$.
- Easy parameters: The $(k, N /(k+1))$-RMP has an easy solution.
- Interesting parameters: $k=N^{2} / 10, r=N / 10$. Random point is a solution w.h.p..

Results

Lemma

The $(k, N /(k+1))-R M P$ can be solved in polynomial time.

Results

Lemma

The $(k, N /(k+1))-R M P$ can be solved in polynomial time.
Theorem
There is an explicit lower bound F against ABPs using H if:

- H is not too large.
- H is a set of help polynomials with minimum degree $\geq d(1 / 2+\varepsilon)$.

Results

Lemma

The $(k, N /(k+1))-R M P$ can be solved in polynomial time.

Theorem

There is an explicit lower bound F against ABPs using H if:

- H is not too large.
- H is a set of help polynomials with minimum degree $\geq d(1 / 2+\varepsilon)$.

Theorem

If the $\left(k, N / k^{1 / 2-\varepsilon}\right)$-RMP can be solved in polynomial time, then there is an explicit lower bound F against ABPs using H, for any H that is not too large.

Other Results

Following the general proof structure of the result of Alon, Panigrahy, and Yekhanin's result on the RPP:

Theorem
The $(N, \log N)-R M P$ can be solved in polynomial time, for constant-sized fields.

Outline

(1) Boolean circuits and the Help Functions problem

- The Help functions problem
- An application to standard questions
- The Remote Point Problem (RPP)
- The connection to the RPP
(2) Algebraic Branching Programs with Help polynomials
- Noncommutative Algebraic Branching Programs
- Towards explicit lower bounds
- Results
(3) Summary

Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.

Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth $\left(n^{O(1)}, O(1)\right)$.

Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth $\left(n^{O(1)}, O(1)\right)$.
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.

Summary

- We studied the computational model of constant-depth boolean circuits with help functions, and Noncommutative ABPs with help polynomials.
- We showed connections between the Help function problem and the problem of separating EXP from the polynomial-time many-one closure of SizeDepth $\left(n^{O(1)}, O(1)\right)$.
- We also showed connections between the Help function/polynomial problems and solving the Remote Point Problem in the Hamming and rank metrics respectively.
- The connection yields restricted lower bounds against ABPs using help polynomials.

Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
- Is there a small H such that SizeDepth $H^{\left(n^{O(1)}, O(1)\right) \text { contains all the }}$ parities?

Open questions

- Algorithms with better parameters for the RPP and RMP.

Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
- Is there a small H such that $\operatorname{SizeDepth}_{H}\left(n^{O(1)}, O(1)\right)$ contains all the parities?

Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
- Is there a small H such that $\operatorname{SizeDepth}_{H}\left(n^{O(1)}, O(1)\right)$ contains all the parities?
- If H contains only parities, then does SizeDepth $H_{H}\left(n^{O(1)}, O(1)\right)$ contain the inner-product function?

Open questions

- Algorithms with better parameters for the RPP and RMP.
- Specific cases of the Help functions question:
- Is there a small H such that SizeDepth $_{H}\left(n^{O(1)}, O(1)\right)$ contains all the parities?
- If H contains only parities, then does SizeDepth ${ }_{H}\left(n^{O(1)}, O(1)\right)$ contain the inner-product function?
- Connections between the ABP with help polynomials question and lower bounds against general noncommutative arithmetic circuits.

Thank you

