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Abstract: We propose a framework for studying property testing of collections of distributions, where the
number of distributions in the collection is a parameter of the problem. Previous work on property testing of
distributions considered single distributions or pairs of distributions. We suggest two models that differ in the
way the algorithm is given access to samples from the distributions. In one model the algorithm may ask for a
sample from any distribution of its choice, and in the other the choice of the distribution is random.
Our main focus is on the basic problem of distinguishing between the case that all the distributions in the
collection are the same (or very similar), and the case that it is necessary to modify the distributions in the
collection in a non-negligible manner so as to obtain this property. We give almost tight upper and lower bounds
for this testing problem, as well as study an extension to a clusterability property. One of our lower bounds
directly implies a lower bound on testing independence of a joint distribution, a result which was left open by
previous work.
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1 Introduction

In recent years, several works have investigated the
problem of testing various properties of data that is
most naturally thought of as samples of an unknown
distribution. More specifically, the goal in testing a
specific property is to distinguish the case that the
samples come from a distribution that has the prop-
erty from the case that the samples come from a dis-
tribution that is far (usually in terms of `1 norm, but
other norms have been studied as well) from any dis-
tribution that has the property. To give just a few
examples, such tasks include testing whether a distri-
bution is uniform [26, 40] or similar to another known
distribution [13], and testing whether a joint distribu-
tion is independent [11]. Related tasks concern sub-
linear estimation of various measures of a distribu-
tion, such as its entropy [10, 27] or its support size
[42]. Recently, general techniques have been designed
to obtain nearly tight lower bounds on such testing
and estimation problems [48, 49].
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These types of questions have arisen in several dis-
parate areas, including physics [34, 37, 46], cryptogra-
phy and pseudorandom number generation [32], statis-
tics [20, 28, 38-40, 50], learning theory [51], property
testing of graphs and sequences (e.g., [21, 24, 26, 31,
36, 41]) and streaming algorithms (e.g., [4, 8, 15-19,
22, 25, 27, 29, 30]). In these works, there has been sig-
nificant focus on properties of distributions over very
large domains, where standard statistical techniques
based on learning an approximation of the distribu-
tion may be very inefficient.

In this work we consider the setting in which one
receives data which is most naturally thought of as
samples of several distributions, for example, when
studying purchase patterns in several geographic loca-
tions, or the behavior of linguistic data among varied
text sources. Such data could also be generated when
samples of the distributions come from various sensors
that are each part of a large sensor-net. In these ex-
amples, it may be reasonable to assume that the num-
ber of such distributions might be quite large, even on
the order of a thousand or more. However, for the
most part, previous research has considered proper-
ties of at most two distributions [12, 48]. We propose
new models of property testing that apply to prop-
erties of several distributions. We then consider the
complexity of testing properties within these models,
beginning with properties that we view as basic and
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expect to be useful in constructing building blocks for
future work. We focus on quantifying the dependence
of the sample complexities of the testing algorithms
in terms of the number of distributions that are being
considered, as well as the size of the domain of the
distributions.

1.1 Our contributions

1.1.1 The models

We begin by proposing two models that describe
possible access patterns to multiple distributions
D1, . . . , Dm over the same domain [n]. In these models
there is no explicit description of the distribution–the
algorithm is only given access to the distributions via
samples. In the first model, referred to as the sam-
pling model , at each time step, the algorithm receives
a pair of the form (i, j) where i ∈ [n] is distributed
according to Dj and j is selected uniformly in [m].
In the second model, referred to as the query model ,
at each time step, the algorithm is allowed to specify
j ∈ [m] and receives i that is distributed according to
Dj . It is immediate that any algorithm in the sam-
pling model can also be used in the query model. On
the other hand, as is implied by our results, there are
property testing problems which have a significantly
larger sample complexity in the sampling model than
in the query model.

In both models the task is to distinguish between
the case that the tested distributions have the prop-
erty and the case that they are ε-far from having the
property, for a given distance parameter ε. Distance
to the property is measured in terms of the average `1-
distance between the tested distributions and the clos-
est collection of distributions that have the property.
In all of our results, the dependence of the algorithms
on the distance parameter ε is (inverse) polynomial.
Hence, for the sake of succinctness, in all that follows
we do not mention this dependence explicitly. We note
that the sampling model can be extended to allow the
choice of the distribution (that is, the index j) to be
non-uniform (i.e., be determined by a weight wj) and
the distance measure is adapted accordingly.

1.1.2 Testing equivalence in the
sampling model

One of the first properties of distributions studied
in the property testing model is that of determining
whether two distributions over domain [n] are iden-
tical (alternatively, very close) or far (according to

the `1-distance). In [13], an algorithm is given that
uses Õ(n2/3) samples and distinguishes between the
case that the two distributions are ε-far and the case
that they are O(ε/

√
n)-close. This algorithm has been

shown to be nearly tight (in terms of the dependence
on n) by Valiant [49]. Valiant also shows that in order
to distinguish between the case that the distributions
are ε-far and the case that they are β-close, for two
constants ε and β, requires almost linear dependence
on n.

Our main focus is on a natural generalization, which
we refer to as the equivalence property of distributions
D1, . . . , Dm, in which the goal of the tester is to distin-
guish the case in which all distributions are the same
(or, slightly more generally, that there is a distribu-
tion D∗ for which 1

m

∑m
i=1 ‖Di−D∗‖1 ≤ poly(ε)/

√
n),

from the case in which there is no distribution D∗ for
which 1

m

∑m
i=1 ‖Di−D∗‖1 ≤ ε. To solve this problem

in the (uniform) sampling model with sample com-
plexity Õ(n2/3m) (which ensures with high probability
that each distribution is sampled Ω̃(n2/3 log m) times),
one can make m − 1 calls to the algorithm of [13] to
check that every distribution is close to D1.

Our algorithms. We show that one can get a bet-
ter sample complexity dependence on m. Specifically,
we give two algorithms, one with sample complexity
Õ(n2/3m1/3 +m) and the other with sample complex-
ity Õ(n1/2m1/2 + n). The first result in fact holds for
the case that for each sample pair (i, j), the distribu-
tion Dj (which generated i) is not selected necessarily
uniformly, and furthermore, it is unknown according
to what weight it is selected. The second result holds
for the case where the selection is non-uniform, but
the weights are known. Moreover, the second result
extends to the case in which it is desired that the
tester pass distributions that are close for each ele-
ment, to within a multiplicative factor of (1 ± ε/c)
for some constant c > 1, and for sufficiently large fre-
quencies. Thus, starting from the known result for
m = 2, as long as n ≥ m, the complexity grows as
Õ(n2/3m1/3 + m) = Õ(n2/3m1/3), and once m ≥ n,
the complexity is Õ(n1/2m1/2 + n) = Õ(n1/2m1/2)
(which is lower than the former expression when
m ≥ n).

Both of our algorithms build on the close relation
between testing equivalence and testing independence
of a joint distribution over [n]× [m] which was studied
in [11]. The Õ(n2/3m1/3 + m) algorithm follows from
[11] after we fill in a certain gap in the analysis of
their algorithm due to an imprecision of a claim given
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in [12]. The Õ(n1/2m1/2 + n) algorithm exploits the
fact that j is selected uniformly (or, more generally,
according to a known weight wj) to improve on the
Õ(n2/3m1/3 + m) algorithm (in the case that m ≥ n).

Almost matching lower bounds. We show that
the behavior of the upper bound on the sample com-
plexity of the problem is not just an artifact of our
algorithms, but rather (almost) captures the complex-
ity of the problem. Namely, we give almost matching
lower bounds of Ω(n2/3m1/3) for n = Ω(m log m) and
Ω(n1/2m1/2) (for every n and m). The latter lower
bound can be viewed as a generalization of a lower
bound given in [13], but the analysis is somewhat more
subtle.

Our lower bound of Ω(n2/3m1/3) consists of two
parts. The first is a general theorem concerning
testing symmetric properties of collections of distri-
butions. This theorem extends a central lemma of
Valiant [49] on which he builds his lower bounds, and
in particular the lower bound of Ω(n2/3) for testing
whether two distributions are identical or far from
each other (i.e., the case of equivalence for m = 2).
The second part is a construction of two collections of
distributions to which the theorem is applied (where
the construction is based on the one proposed in [11]
for testing independence). As in [49], the lower bound
is shown by focusing on the similarity between the
typical collision statistics of a family of collections of
distributions that have the property and a family of
collections of distributions that are far from having
the property. However, since many more types of col-
lisions are expected to occur in the case of collections
of distributions, our proof outline is more intricate and
requires new ways of upper bounding the probabilities
of certain types of events.

1.1.3 Testing clusterability in the
query model

The second property that we consider is a natural
generalization of the equivalence property. Namely,
we ask whether the distributions can be partitioned
into at most k subsets (clusters), such that within in
cluster the distance between every two distributions
is (very) small. We study this property in the query
model, and give an algorithm whose complexity does
not depend on the number of distributions and for
which the dependence on n is Õ(n2/3). The depen-
dence on k is almost linear. The algorithms works by
combining the diameter clustering algorithm of [3] (for

points in a general metric space where the algorithm
has access to the corresponding distance matrix) with
the closeness of distributions tester of [13]. Note that
the results of [49] imply that this is tight to within
polylogarithmic factors in n.

1.1.4 Implications of our results

As noted previously, in the course of proving the lower
bound of Ω(n2/3m1/3) for the equivalence property, we
prove a general theorem concerning testability of sym-
metric properties of collections of distributions (which
extends a lemma in [49]). This theorem may have ap-
plications to proving other lower bounds on collections
of distributions. Further byproducts of our research
regard the sample complexity of testing whether a
joint distribution is independent, More precisely, the
following question is considered in [13]: Let Q be a dis-
tribution over pairs of elements drawn from [n]× [m]
(without loss of generality, assume n ≥ m); what is
the sample complexity in terms of m and n required to
distinguish independent joint distributions, from those
that are far from the nearest independent joint distri-
bution (in term of `1 distance)? The lower bound
claimed in [11], contains a known gap in the proof.
Similar gaps in the lower bounds of [13] for testing
the closeness of distributions and of [10] for estimating
the entropy of a distribution were settled by the work
of [49], which applies to symmetric properties. Since
independence is not a symmetric property, the work
of [49] cannot be directly applied here. In this work,
we show that the lower bound of Ω(n2/3m1/3) indeed
holds. Furthermore, by the aforementioned correction
of the upper bound of Õ(n2/3m1/3) from [11], we get
nearly tight bounds on the complexity of testing inde-
pendence.

1.2 Other related work

Other works on testing and estimating properties of
(single or pairs of) distributions include [1, 2, 6, 7, 9,
14, 27, 44, 45].

1.3 Open problems and further
research

There are many interesting directions to pursue con-
cerning the testing of properties of collections of distri-
butions, and because of the applicability of the model
to a wide range of circumstances, we expect that new
directions will present themselves. Here we give a few
examples: One natural extension of our results is to
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give algorithms for testing the property of clusterabil-
ity for k > 1 in the sampling model. One may also
consider testing properties of collections of distribu-
tions that are defined by certain measures of distribu-
tions, and may be less sensitive to the exact form of
the distributions. For example, a very basic measure
is the mean (expected value) of the distribution, when
we view the domain [n] as integers instead of element
names, or when we consider other domains. Given
this measure, we may consider testing whether the
distributions all have similar means (or whether they
should be modified significantly so that this holds). It
is not hard to verify that this property can be quite
easily tested in the query model by selecting Θ(1/ε)
distributions uniformly and estimating the mean of
each. On the other hand, in the sampling model an
Ω(
√

m) lower bound is quite immediate even for n = 2
(and a constant ε). We are currently investigating
whether the complexity of this problem (in the sam-
pling model) is in fact higher, and it would be inter-
esting to consider other measures as well.

1.4 Organization

In this extended abstract we focus on one result: the
lower bound of Ω(n2/3m1/3) for testing equivalence.
We give all the details for this result, where the more
technical parts can be found in the appendix. All
other results are provided in the full version of this
paper [33].

2 Preliminaries

Let [n] def= {1, . . . , n}, and let D = (D1, . . . , Dm) be
a list of m distributions, where Dj : [n] → [0, 1] and∑n

i=1 Dj(i) = 1 for every 1 ≤ j ≤ m. For a vector
v = (v1, . . . , vn) ∈ Rn, let ‖v‖1 =

∑n
i=1 |vi| denote

the L1 norm of the vector v.

For a property P of lists of distributions and
0 ≤ ε ≤ 1, we say that D is ε-far from (hav-
ing) P if 1

m

∑m
j=1 ‖Dj − D∗

j ‖1 > ε for every list
D∗ = (D∗

1 , . . . , D∗
m) that has the property P (note

that ‖Dj − D∗
j ‖1 is twice the the statistical distance

between the two distributions).

Given a distance parameter ε, a testing algorithm
for a property P should distinguish between the case
that D has the property P and the case that it is ε-far
from P. We consider two models within which this
task is performed.

1. The Query Model. In this model the testing

algorithm may indicate an index 1 ≤ j ≤ m of its
choice and it gets a sample i distributed according
to Dj(i).

2. The Sampling Model. In this model the algo-
rithm cannot select (“query”) a distribution of its
choice. Rather, it may obtain a pair (i, j) where j is
selected uniformly (we refer to this as the Uniform
sampling model) and i is distributed according to
Dj(i).

We also consider a generalization in which there
is an underlying weight vector w = (w1, . . . , wm)
(where

∑m
j=1 wj = 1), and the distribution Dj is

selected according to w. In this case the notion of
ε-far needs to be modified accordingly. Namely,
we say that D is ε-far from P with respect to
w if

∑m
j=1 wj · ‖Dj − D∗

j ‖1 > ε for every list
D∗ = (D∗

1 , . . . , D∗
m) that has the property P. We

consider two variants of this non-uniform model:
The Known-Weights sampling model, in which w is
known to the algorithm, and the Unknown-Weights
sampling model in which w is known.

A main focus of this work is on the following prop-
erty. We shall say that a list D = (D1 . . . Dm) of
m distributions over [n] belongs to Peq

m,n (or has the
property Peq

m,n) if Dj = Dj′ for all 1 ≤ j, j′ ≤ m.

3 A lower bound of Ω(n2/3m1/3) for
testing equivalence in the uniform
sampling model when n = Ω(m log m)

In this section we prove the following theorem:

Theorem 1 Any testing algorithm for the property
Peq

m,n in the uniform sampling model for every ε ≤
1/20 and for n > cm log m where c is some sufficiently
large constant, requires Ω(n2/3m1/3) samples.

The proof of Theorem 1 consists of two parts. The first
is a general theorem (Theorem 2) concerning testing
symmetric properties of lists of distributions. This
theorem extends a lemma of Valiant [49, Lem. 4.5.4]
(which leads to what Valiant refers to as the “Wishful
Thinking Theorem”). The second part is a construc-
tion of two lists of distributions to which Theorem 2
is applied. Our analysis uses a technique called Pois-
sonization [47] (which was used in the past in the con-
text of lower bounds for testing and estimating prop-
erties of distributions in [42, 48, 49]), and hence we
first introduce some preliminaries concerning Poisson
distributions. We later provide some intuition regard-
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ing the benefits of Poissonization. All missing details
of the analysis can be found in the appendix.

3.1 Preliminaries concerning Poisson
distributions

For a positive real number λ, the Poisson distri-
bution poi(λ) takes the value x ∈ N (where N =
{0, 1, 2, . . .}) with probability poi(x;λ) = e−λλx/x!.
The expectation and variance of poi(λ) are both λ.
For λ1 and λ2 we shall use the following bound on the
`1 distance between the corresponding Poisson distri-
butions (for a proof see for example [42, Claim A.2]):

‖poi(λ1)− poi(λ2)‖1 ≤ 2|λ1 − λ2| . (1)

For a vector ~λ = (λ1, . . . , λd) of positive real num-
bers, the corresponding multivariate Poisson distri-
bution poi(~λ) is the product distribution poi(λ1) ×
. . .× poi(λd). That is, poi(~λ) assigns each vector ~x =
(x1, . . . , xd) ∈ Nd the probability

∏d
i=1 poi(xi;λi).

We shall sometimes consider vectors ~λ whose coor-
dinates are indexed by vectors ~a = (a1, . . . , am) ∈ Nm,
and will use ~λ(~a) to denote the coordinate of ~λ that
corresponds to ~a. Thus, poi(~λ(~a)) is a univariate Pois-
son distribution. With a slight abuse of notation, for
a subset I ⊆ [d] (or I ⊆ Nm), we let poi(~λ(I)) denote
the multivariate Poisson distributions restricted to the
coordinates of ~λ in I.

For any two d-dimensional vectors ~λ+ =
(λ+

1 , . . . , λ+
d ) and ~λ− = (λ−1 , . . . , λ−d ) of positive real

values, we get from the proof of [49, Lemma 4.5.3]
that, ∥∥∥poi(~λ+)− poi(~λ−)

∥∥∥
1

≤
d∑

j=1

∥∥poi(λ+
j )− poi(λ−j )

∥∥
1

,

for our purposes we shall use the following generalized
lemma.

Lemma 1 For any two d-dimensional vectors ~λ+ =
(λ+

1 , . . . , λ+
d ) and ~λ− = (λ−1 , . . . , λ−d ) of positive real

values, and for any partition {Ii}`
i=1 of [d],

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1

≤
∑̀

i=1

∥∥∥poi(~λ+(Ii))− poi(~λ−(Ii))
∥∥∥

1
.

We shall also make use of the following Lemma.

Lemma 2 For any two d-dimensional vectors ~λ+ =
(λ+

1 , . . . , λ+
d ) and ~λ− = (λ−1 , . . . , λ−d ) of positive real

values, ∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1

≤ 2

√√√√2
d∑

j=1

(λ−j − λ+
j )2

λ−j
.

The next two notations will play an important tech-
nical role in our analysis. For a list of distribu-
tions D = (D1, . . . , Dm), an integer κ and a vector
~a = (a1, . . . , am) ∈ Nm, let

pD,κ(i;~a) def=
m∏

j=1

poi(aj ;κ ·Dj(i)) . (2)

That is, for a fixed choice of a domain element i ∈ [n],
consider performing m independent trials, one for each
distribution Dj , where in trial j we select a non-
negative integer according to the Poisson distribution
poi(λ) for λ = κ ·Dj(i). Then pD,κ(i;~a) is the proba-
bility of the joint event that we get an outcome of aj

in trial j, for each j ∈ [m]. Let ~λD,κ be a vector whose
coordinates are indexed by all ~a ∈ Nm, such that

~λD,κ(~a) =
n∑

i=1

pD,κ(i;~a) . (3)

That is, ~λD,κ(~a) is the expected number of times we
get the joint outcome (a1, . . . , am) if we perform the
probabilistic process defined above independently for
every i ∈ [n].

3.2 Testability of symmetric
properties of lists of distributions

In this subsection we state an important building
block in the proof of prove the Theorem 1.

Theorem 2 Let D+ and D− be two lists of m distri-
butions over [n], all of whose frequencies are at most

δ
κ·m where κ is some positive integer and 0 < δ < 1.

If
∥∥∥poi

(
~λD

+,κ
)
− poi

(
~λD

−,κ
)∥∥∥

1
<

16
30
− 352δ

5
, (4)

then testing in the uniform sampling model any sym-
metric property of distributions such that D+ has the
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property, while D− is Ω(1)-far from having the prop-
erty requires Ω(κ ·m) samples.

A high-level discussion of the proof of The-
orem 2. For an element i ∈ [n] and a distribution
Dj , j ∈ [m], let αi,j be the number of times the
pair (i, j) appears in the sample (when the sample
is selected according to some sampling model). Thus
(αi,1, . . . , αi,m) is the sample histogram of the element
i. The histogram of the elements’ histograms is called
the fingerprint of the sample. That is, the fingerprint
indicates, for every ~a ∈ Nm, the number of elements i
such that (αi,1, . . . , αi,m) = ~a. As shown in [13], when
testing symmetric properties of distributions, it can
be assumed without loss of generality that the test-
ing algorithm is provided only with the fingerprint of
the sample. Furthermore, since the number, n, of ele-
ments is fixed, it suffices to give the tester the finger-
print of the sample without the ~0 = (0, . . . , 0) entry.

For example, consider the distributions D1 and
D2 over {1, 2, 3} such that D1[i] = 1/3 for every
i ∈ {1, 2, 3}, D2[1] = D2[2] = 1/2 and D2[3] = 0.
Assume that we sample (D1, D2) four times, accord-
ing to the uniform sampling model and we get the
samples (1, 1), (1, 2), (2, 2), (3, 1), where the first coor-
dinate denotes the element and the second coordinate
denotes the distribution. Then the sample histogram
of element 1 is (1, 1) because 1 was selected once by
D1 and once by D2. For the elements 2, 3 we have
the sample histograms (0, 1) and (1, 0), respectively.
The fingerprint of the sample is (0, 1, 1, 0, 1, 0, 0, . . .)
for the following order of histograms: ((0, 0), (0, 1),
(1, 0), (2, 0)(1, 1), (0, 2), (3, 0), . . .).

In order to prove Theorem 2, we would like to show
that the distributions of the fingerprints when the
sample is generated according to D+ and when it is
generated according to D− are similar, for a sample
size that is below the lower bound stated in the the-
orem. For each choice of element i ∈ [n] and a dis-
tribution Dj , the number of times the sample (i, j)
appears, i.e. αi,j , depends on the number of times the
other samples appear simply because the total number
of samples is fixed. Furthermore, for each histogram ~a,
the number of elements with sample histogram iden-
tical to ~a is dependent on the number of times the
other histograms appear, because the number of sam-
ples is fixed. For instance, in the example above, if
we know that we have the histogram (0, 1) once and
the histogram (1, 1) once, then we know that third
histogram can’t be (2, 0). In addition, it is dependent
because the number of elements is fixed.

We thus see that the distribution of the fingerprints
is rather difficult to analyze (and therefore it is dif-
ficult to bound the statistical distance between two
different such distributions). Therefore, we would like
to break as much of the above dependencies. To this
end we define a slightly different process for gener-
ating the samples that involves Poissonization [47].
In the Poissonized process the number of samples we
take from each distribution Dj , denoted by κ′j , is dis-
tributed according to the Poisson distribution. We
prove that, while the overall number of samples the
Poissonized process takes is bigger just by a constant
factor from the uniform process, we get with very high
probability that κ′j > κj , for every j, where κj is the
number of samples taken from Dj . This implies that
if we prove a lower bound for algorithms that receive
samples generated by the Poissonized process, then we
obtain a related lower bound for algorithms that work
in the uniform sampling model.

As opposed to the process that takes a fixed number
of samples according to the uniform sampling model,
the benefit of the Poissonized process is that the αi,j ’s
determined by this process are independent. There-
fore, the type of sample histogram that element i has
is completely independent of the types of sample his-
tograms the other elements have. We get that the
fingerprint distribution is a generalized multinomial
distribution, which fortunately for us has been stud-
ied by Roos [43] (the connection is due to Valiant [48]).
See details in Appendix B.

3.3 Proof of Theorem 1

In this subsection we show how to apply Theorem
2 to two lists of distributions, D+ and D−, which we
will define shortly, where D+ ∈ Peq = Peq

m,n while D−
is (1/20)-far from Peq. Recall that by the premise of
Theorem 1, n ≥ cm log m for some sufficiently large
constant c > 1. In the proof it will be convenient to
assume that m is even and that n (which corresponds
in the lemma to 2t) is divisible by 4. It is not hard
to verify that it is possible to reduce the general case
to this case. In order to define D−, we shall need the
next lemma.

Lemma 3 For every two even integers t and m,
there exists a 0/1-valued matrix M with t rows and
m columns for which the following holds:

1. In each row and each column of M , exactly half of
the elements are 1 and the other half are 0.
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2. For every integer 2 ≤ x < m/2, and for every
subset S ⊆ [m] of size x, the number of rows
i such that M [i, j] = 1 for every j ∈ S is at

least t ·
(

1
2x

(
1− 2x2

m

)
−

√
2x ln m

t

)
, and at most

t ·
(

1
2x +

√
2x ln m

t

)
.

Lemma 3 is proved using the probabilistic method.
Namely, we describe how to construct a matrix M in
a certain random manner, and then prove that the
conditions in the lemma hold with non-zero probabil-
ity. Specifically. Consider selecting M randomly as
follows: Denote the first t/2 rows of M by F . For
each row in F , pick, independently from the other
t/2− 1 rows in F , a random half of its elements to be
1, and the other half of the elements to be 0. Rows
t/2 + 1, . . . , t are the negations of rows 1, . . . , t/2, re-
spectively. Thus, in each row and each column of
M , exactly half of the elements are 1 and the other
half are 0. Proving that the second condition in the
lemma holds with non-zero probability is deferred to
Appendix C.

We first define D+, in which all distributions are
identical. Specifically, for each j ∈ [m]:

D+
j (i) def=





1
n2/3m1/3

if 1 ≤ i ≤ n2/3m1/3

2
1
n

if
n

2
< i ≤ n

0 o.w.

(5)

We now turn to defining D−. Let M be a matrix as
in Lemma 3 for t = n/2. For every j ∈ [m]:

D−
j (i) def=





1
n2/3m1/3

if 1 ≤ i ≤ n2/3m1/3

2
2
n

if
n

2
< i ≤ n

and M [i− n/2, j] = 1

0 o.w.

(6)

For both D+ and D−, we refer to the elements 1 ≤
i ≤ n2/3m1/3

2 as the heavy elements, and to the el-
ements n

2 ≤ i ≤ n, as the light elements. Observe
that each heavy element has exactly the same prob-
ability weight, 1

n2/3m1/3 , in all distributions D+
j and

D−
j . On the other hand, for each light element i,

while D+
j (i) = 1

n (for every j), in D− we have that
D+

j (i) = 2
n for half of the distributions, the distribu-

tions selected by the M , and D+
j (i) = 0 for half of the

distributions, the distributions which are not selected
by M . We later use the properties of M to bound the
`1 distance between the fingerprints’ distributions of
D+ and D−.

A high-level discussion. To gain some intuition
before delving into the detailed proof, consider first
the special case that m = 2 (which was studied by
Valiant [48], and indeed the construction is the same
as the one he analyzes (and was initially proposed in
[12]). In this case each heavy element has probabil-
ity weight Θ(1/n2/3) and we would like to establish
a lower bound of Ω(n2/3) on the number of samples
required to distinguish between D+ and D−. That is,
we would like to show that the corresponding finger-
prints’ distributions when the sample is of size o(n2/3)
are very similar.

The first main observation is that since the proba-
bility weight of light elements is Θ(1/n) in both D+

and D−, the probability that a light element will ap-
pear more than twice in a sample of size o(n2/3) is
very small. That is (using the fingerprints of his-
tograms notation we introduced previously), for each
~a = (a1, a2) such that a1+a2 > 2, the sample won’t in-
clude (with high probability) any light element i such
that αi,1 = a1 and αi,2 = a2 (for both D+ and D−).
Moreover, the expected number of elements i such
that (αi,1, αi,2) = (1, 0) is the same in D+ and D−, as
well as the variance (from symmetry, the same applies
to (0, 1)). Thus, most of the difference between the
fingerprints’ distributions is due to the numbers of el-
ements i such that (αi,1, αi,2) ∈ {(1, 1), (2, 0), (0, 2)}.
For these settings of ~a we do expect to see a non-
negligble difference for light elements between D+ and
D− (in particular, we can’t get the (1, 1) histogram for
light elements in D−, as opposed to D+).

Here is where the heavy elements come into play.
Recall that in both D+ and D− the heavy elements
have the same probability weight, so that the expected
number of heavy elements i such that (ai,1, ai,2) =
(1, 1) (and similarly for (2, 0) and (0, 2)), is the same
for D+ and D−. However, intuitively, the variance
of these numbers for the heavy elements “swamps”
the differences between the light elements so that it is
not possible to distinguish between D+ and D−. The
actual proof, which formalizes (and quantifies) this
intuition, considers the difference between the values
of the vectors ~λD

+,k and ~λD
−,k (as defined in Equation

(3)) in the coordinates corresponding to ~a such that
a1 + a2 = 2. We can then apply Lemmas 1 and 2 to
obtain Equation (4) in Theorem 2.
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Turning to m > 2, it is no longer true that in a sam-
ple of size o(n2/3m1/3) we won’t get histogram vectors
~a such that

∑m
j=1 ai > 2 for light elements. Thus we

have to deal with many more vectors ~a (of dimen-
sion m) and to bound the total contribution of all of
them to the difference between fingerprints of D+ and
of D−. To this end we partition the set of all possi-
ble histograms’ vectors into several subsets according
to their Hamming weight

∑m
j=1 aj and depending on

whether all a′js are in {0, 1}, or there exists a least
one aj such that aj ≥ 2. In particular, to deal with
the former (whose number, for each choice of Ham-
ming weight x is relatively large, i.e., roughly mx), we
use the properties of the matrix M based on which
D− is defined. We note that from the analysis we see
that, similarly to when m = 2, we need the variance
of the heavy elements to play a role just for the cases
where

∑m
j=1 ai = 2 while in the other cases the total

contribution of the light elements is rather small.

In the remainder of this section we provide the details
of the analysis.

We next introduce some more notation, which will
be used throughout the remainder of the proof of The-
orem 1. Let Sx be the set of vectors that contain ex-
actly x coordinates that are 1, and all the rest are 0
(which corresponds to an element that was sampled
once or 0 times by each distribution). Let Ax be the
set of vector that their coordinates sum up to x but
must contain at least one coordinate that is 2 (which
corresponds to an element that was samples at least
twice by at least one distribution). More formally, for
any integer x, we define the following two subsets of
Nm:

Sx
def=

{
~a ∈ Nm :

∑m
j=1 aj = x and

∀j ∈ [m], aj < 2

}
,

and

Ax
def=

{
~a ∈ Nm :

∑m
j=1 aj = x and

∃j ∈ [m], aj ≥ 2

}

For ~a ∈ Nm, let sup(~a) def= {j : aj 6= 0}
denote the support of ~a, and let IM (~a) def={
i : D−

j (i) = 2
n ∀j ∈ sup(~a)

}
. Note that in terms of

the matrix M (based on which D− is defined), IM (~a)
consists of the rows in M whose restriction to the sup-
port of ~a contains only 1’s. In terms of the D−, it cor-
responds to the set of light elements that might have
a sample histogram of ~a (when sampling according to
D−).

The proof of the next lemma appears in Appendix
C.

Lemma 4 D− is (1/20)-far from Peq for every
m > 5 and n ≥ c lnm where c is a sufficiently large
constant.

In what follows we work towards establishing that
Equation (4) in Theorem 2 holds for D+ and D−. Set
κ = δ · n2/3

m2/3 , where δ is a constant to be determined
later. We shall use the shorthand ~λ+ for ~λD

+,κ, and
~λ− for ~λD

−,κ (recall that the notation ~λD,κ was intro-
duced in Equation (3)). By the definition of ~λ+, for
each ~a ∈ Nm,

~λ+(~a)

=
n∑

i=1

m∏

j=1

(κ ·D+
j (i))aj

eκ·D+
j (i) · aj !

=
n2/3m1/3/2∑

i=1

m∏

j=1

(δ/m)aj

eδ/m · aj !

+
n∑

i=n/2+1

m∏

j=1

(δ/(n1/3m2/3))aj

eδ/(n1/3m2/3) · aj !

=
n2/3m1/3

2eδ

m∏

j=1

(δ/m)aj

aj !

+
n

2eδ(m/n)1/3

m∏

j=1

(δ/(n1/3m2/3))aj

aj !
. (7)

By the construction of M , for every light i,∑m
j=1 D−

j (i) = 2
n · m

2 = m
n . Therefore,

~λ−(~a)

=
n2/3m1/3

2eδ

m∏

j=1

(δ/m)aj

aj !

+
1

eδ(m/n)1/3

∑

i∈IM (~a)

m∏

j=1

(2δ/(n1/3m2/3))aj

aj !
.

(8)

Hence, ~λ+(~a) and ~λ−(~a) differ only on the term which
corresponds to the contribution of the light elements.
Equations (7) and (8) demonstrate why we choose
M with the specific properties defined in Lemma 3.
First of all, in order for every D−

j to be a prob-
ability distribution, we want each column of M to
sum up to exactly n/2. We also want each row
of M to sum up to exactly m/2, in order to get
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∏m
j=1 e−κ·D+

j (i) =
∏m

j=1 e−κ·D−
j (i). Finally, we would

have liked |IM (~a)| ·∏m
j=1 2aj to equal n/2 for every ~a.

This would imply that ~λ+(~a) and ~λ−(~a) are equal. As
we show below, this is in fact true for every ~a ∈ S1.
For vectors ~a ∈ Sx where x > 1, the second condition
in Lemma 3 ensures that |IM (~a)| is sufficiently close
to n

2 · 1
2x . This property of M is not necessary in order

to bound the contribution of the vectors in Ax. The
bound that we give for those vectors is less tight, but
since there are fewer such vectors, it suffices.

We start by considering the contribution to Equa-
tion (4) of histogram vectors ~a ∈ S1 (i.e., vectors of
the form (0, . . . , 0, 1, 0, . . . , 0)) which correspond to the
number of elements that are sampled only by one dis-
tribution, once. We prove that in the Poissonized sam-
pling model, for every ~a ∈ S1 the number of elements
with such sample histogram is distributed exactly the
same in D+ and D−.

Lemma 5
∑

~a∈S1

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1
= 0 .

Proof: For every ~a ∈ S1, the size of IM (~a) is n
4 , thus,

∑

i ∈ IM (~a)

m∏

j=1

(2δ/(n1/3m2/3))aj

aj !

=
n

2

m∏

j=1

(δ/(n1/3m2/3))aj

aj !
.

By Equations (7) and (8), it follows that
∣∣∣~λ+(~a)−

~λ−(~a) = 0 for every ~a ∈ S1. The lemma follows by
applying Equation (1). ¤

We now turn to bounding the contribution to Equa-
tion (4) of histogram vectors ~a ∈ A2 (i.e., vectors of
the form (0, . . . , 0, 2, 0, . . . , 0) which correspond to the
number of elements that are sampled only by one dis-
tribution, twice.

Lemma 6∥∥∥poi(~λ+(A2))− poi(~λ−(A2))
∥∥∥

1
≤ 3δ .

Proof: For every ~a ∈ A2, the size of IM (~a) is n
4 , thus,

∑

i∈IM (~a)

m∏

j=1

(2δ/(n1/3m2/3))aj

aj !

= n
m∏

j=1

(δ/(n1/3m2/3))aj

aj !
. (9)

By Equations (7), (8) and (9) it follows that

~λ−(~a)− ~λ+(~a)

=
n

2eδ(m/n)1/3

m∏

j=1

(δ/(n1/3m2/3))aj

aj !

=
n1/3δ2

4eδ(m/n)1/3m4/3
,

(10)

and that

~λ−(~a) ≥ n2/3m1/3

2eδ

m∏

j=1

(δ/m)aj

aj !

=
n2/3δ2

4eδm5/3
.

(11)

By Equations (10) and (11) we have that
(
~λ−(~a)− ~λ+(~a)

)2

~λ−(~a)
≤ eδ−2δ(m/n)1/3

δ2

4m

≤ δ2

m
.

(12)

By Equation (12) and the fact that |A2| = m we get

∑

~a∈A2

(
~λ−(~a)− ~λ+(~a)

)2

~λ−(~a)
≤ m · δ2

m
= δ2

The lemma follows by applying Lemma 2. ¤

Recall that for a subset I of Nm, poi(~λ(I)) denotes
the multivariate Poisson distributions restricted to the
coordinates of ~λ that are indexed by the vectors in I.
We separately deal with Sx where 2 ≤ x < m/2, and
x ≥ m/2, where our main efforts are with respect
to the former, as the latter correspond to very low
probability events. The proofs of the next lemmas
appear in Appendix C.

Lemma 7 For m ≥ 16, n ≥ cm lnm (where c is a
sufficiently large constant) and for δ ≤ 1/16

∥∥∥poi


~λ+




m/2⋃
x=2

Sx




−poi


~λ−




m/2⋃
x=2

Sx






∥∥∥
1
≤ 32δ .

Lemma 8 For n ≥ m, m ≥ 12 and δ ≤ 1/4,
∑

x≥m/2

∑

~a∈Sx

∥∥∥poi(~λ+(~a))− poi(~λ−(~a))
∥∥∥

1
≤ 32δ3 .
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We finally turn to the contribution of ~a ∈ Ax such that
x ≥ 3, where the proof of the next lemma is similar
to the proof of Lemma 8.

Lemma 9 For n ≥ m and δ ≤ 1/4,

∑

x≥3

∑

~a∈Ax

∥∥∥poi(~λ+(~a))− poi(~λ−(~a))
∥∥∥

1
≤ 16δ3 .

We are now ready to finalize the proof of Theorem 1.

Proof of Theorem 1: Let D+ and D− be as de-
fined in Equations (5) and (6), respectively, and recall
that κ = δ · n2/3

m2/3 (where δ will be set subsequently).
By the definition of the distributions in D+ and D−,
the probability weight assigned to each element is at
most 1

n2/3m1/3 = δ
κ·m , as required by Theorem 2. By

Lemma 4, D− is (1/20)-far from Peq. Therefore, it
remains to establish that Equation (4) holds for D+

and D−. Consider the following partition of Nm:


{~a}~a∈S1 , A2,

m/2⋃
x=2

Sx, {~a}~a∈Sx≥m/2 Sx
, {~a}~a∈Sx≥3 Ax



 ,

where {~a}~a∈T denotes the list of all singletons of ele-
ments in T . By Lemma 1 it follows that

∥∥∥poi(~λ+)− poi(~λ−)
∥∥∥

1

≤
∑

~a∈S1

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1

+
∥∥∥poi(~λ+(A2)− poi(~λ−(A2))

∥∥∥
1

+
∥∥∥poi(~λ+(

m/2⋃
x=2

Sx))− poi(~λ−(
m/2⋃
x=2

Sx))
∥∥∥

1

+
∑

x≥m/2

∑

~a∈Sx

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1

+
∑

x≥3

∑

~a∈Ax

∥∥∥poi(~λ+(~a)− poi(~λ−(~a))
∥∥∥

1
.

For δ < 1/16 we get by Lemmas 5–9 that
∥∥∥poi(~λ+)− poi(~λ−)

∥∥∥
1
≤ 35δ + 48δ3 ,

which is less than 16
30 − 352δ

5 for δ = 1/200. ¤
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A Missing details for Subsection 3.1

Proof of Lemma 1: Let {Ii}`
i=1 be a partition of [d],

let ~i denote (i1, . . . id), by the triangle inequality we
have that for every k ∈ [`],
∣∣∣poi(~i ; ~λ+)− poi(~i ; ~λ−)

∣∣∣

=
∣∣∣

∏

j∈[d]

poi(ij ;λ+
j )−

∏

j∈[d]

poi(ij ;λ−j )
∣∣∣

≤
∣∣∣

∏

j∈[d]

poi(ij ;λ+
j )

−
∏

j∈[d]\Ik

poi(ij ;λ+
j )

∏

j∈Ik

poi(ij ;λ−j )
∣∣∣

+
∣∣∣

∏

j∈[d]\Ik

poi(ij ;λ+
j )

∏

j∈Ik

poi(ij ;λ−j )

−
∏

j∈[d]

poi(ij ;λ−j )
∣∣∣ .

Hence, we obtain that
∥∥∥poi(~λ+)− poi(~λ−)

∥∥∥
1

=
∑

~i∈Nd

∣∣∣poi(~i ; ~λ+)− poi(~i ; ~λ−)
∣∣∣

≤
∥∥∥poi(~λ+(Ik))− poi(~λ−(Ik))

∥∥∥
1

+
∥∥∥poi(~λ+([d] \ Ik))− poi(~λ−([d] \ Ik))

∥∥∥
1

.

Thus, the lemma follows by induction on `. ¤

Proof of Lemm 2: In order to prove the lemma
we shall use the KL-divergence between distributions.
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Namely, for two distributions p1 and p2 over a do-
main X, DKL(p1‖p2)

def=
∑

x∈X p1(x) · ln p1(x)
p2(x) . Let

~λ+ = (λ+
1 . . . , λ+

d ), ~λ− = (λ−1 . . . , λ−d ) and let~i denote
(i1, . . . id). We have that

ln
poi(~i ; ~λ+)

poi(~i ; ~λ−)

=
d∑

j=1

ln
(
eλ−j −λ+

j
(
λ+

j /λ−j
)ij

)

=
d∑

j=1

(
(λ−j − λ+

j ) + ij · ln(λ+
j /λ−j )

)

≤
d∑

j=1

(
(λ−j − λ+

j ) + ij · (λ+
j /λ−j − 1)

)
,

where in the last inequality we used the fact that
lnx ≤ x − 1 for every x > 0. Therefore, we obtain
that

DKL

(
poi(~λ+)‖poi(~λ−)

)

=
∑

~i∈Nd

poi(~i ; ~λ+) · ln poi(~i ; ~λ+)

poi(~i ; ~λ−)

≤
d∑

j=1

(
(λ−j − λ+

j ) + λ+
j · (λ+

j /λ−j − 1)
)

=
d∑

j=1

(λ−j − λ+
j )2

λ−j
,

(13)

where in Equation (13) we used the facts that∑
i∈N poi(i;λ) = 1 and

∑
i∈N poi(i;λ) · i = λ. The

`1 distance is related to the KL-divergence by ‖D −
D′‖1 ≤ 2

√
2DKL (D‖D′) and thus we obtain the

lemma. ¤

The next lemma will be used in the proof of Theorem
2.

Lemma 10 Let X ∼ poi(λ), then,

Pr[X < λ/2] < (3/4)λ/4.

Proof: Consider the matching between j and j + λ/2
for every j = 0, . . . , λ/2 − 1. We consider the ratio

between poi(j;λ) and poi(j + λ/2;λ):

poi(j + λ/2;λ)
poi(j;λ)

=
e−λ · λj+λ/2/(j + λ/2)!

e−λ · λj/j!

=
λλ/2

(j + λ/2)(j + λ/2− 1) · · · (j + 1)

=
λ

j + λ/2
· λ

j + λ/2− 1
· · · · · λ

j + 1

≥ λ

λ− 1
· λ

λ− 2
· · · · · λ

λ/2

>

(
λ

(3/4)λ

)λ/4

= (4/3)λ/4

This implies that

Pr[X < λ/2]

=
Pr[X < λ/2]

Pr[λ/2 ≤ X < λ]
· Pr[λ/2 ≤ X < λ]

<
Pr[X < λ/2]

Pr[λ/2 ≤ X < λ]
< (3/4)λ/4,

and the proof is completed. ¤

B Missing details for Subsection 3.2

Definition 1 In the Poissonized uniform sampling
model with parameter κ (which we’ll refer to as the
κ-Poissonized model), given a list D = (D1, . . . , Dm)
of m distributions, a sample is generated as follows:

• Draw κ1, . . . , κm ← poi(κ)
• Return κj samples distributed according to Dj for

each j ∈ [m].

Lemma 11 Assume that there exists a tester T in the
uniform sampling model for a property P of lists of
m distributions, that takes a sample of size s = κm
where κ ≥ c log m for some sufficiently large constant
c, and works for every ε ≥ ε0 where ε0 is a constant
(and whose success probability is at least 2/3). Then
there exists a tester T ′ for P in the Poissonized uni-
form sampling model with parameter 4κ, that works
for every ε ≥ ε0 and whose success probability is at
least 19

30 .

191



R. LEVI, D. RON, R. RUBINFELD

Proof: Roughly speaking, the tester T ′ tries to simu-
late T if it has a sufficiently large sample, and oth-
erwise it guesses the answer. More precisely, let
D = (D1, . . . , Dm) be a list of m distributions. For
each j ∈ [m] let κj denote the random variable that
equals the number of samples that are selected accord-
ing to Dj in the uniform sampling model, when the to-
tal number of samples is κm. Thus, κj ∼ Bin(κm, 1

m ).
By [5, Thm. A.12], for each j ∈ [m],

Pr [κi ≥ 2κ] < (e/4)κ .

Now consider a tester T ′ that receives κ′j samples from
each Dj where κ′j ∼ poi(4κ). By Lemma (10), for each
j we have that,

Pr [κ′i < 2κ] ≤ (3/4)κ

Suppose T ′ also selects κ1, . . . , κm as in the distri-
bution induced by the uniform sampling model. If
κ′j ≥ κj for each j, then T ′ simulates T on the union
of the first κj samples that it got for each j. Otherwise
it outputs “accept” or “reject” with equal probability.

By taking a union bound over all j ∈ [m] we get
that the probability that for every j ∈ [m] it holds
that both κj ≤ 2κ and κ′j ≥ 2κ (so that κ′j ≥ κj),
is at least 1 −m(((e/4))κ + (3/4)κ), which is greater
than 4

5 for κ > c log m and a sufficiently large constant
c. Therefore, the success probability of T ′ is at least
4
5 · 2

3 + 1
5 · 1

2 = 19
30 , as desired. ¤

Given Lemma 11 it suffices to consider samples
that are generated in the Poissonized uniform sam-
pling model. The process for generating a sample
{αi,1, . . . , αi,m}i∈[n] (recall that αi,j is the number of
times that element i was selected by distribution Dj)
in the κ-Poissonized model is equivalent to the fol-
lowing process: For each i ∈ [n] and j ∈ [m], inde-
pendently select αi,j according to poi(κ · Dj(i)) (see
[23], p. 216). Thus the probability of getting a par-
ticular histogram ~ai = (ai,1, . . . , ai,m) for element i
is pD,κ(i;~ai) (as defined in Equation (2)). We can
represent the event that the histogram of element i
is ~ai by a Bernoulli random vector ~bi that is indexed
by all ~a ∈ Nm, is 1 in the coordinate corresponding
to ~ai, and is 0 elsewhere. Given this representation,
the fingerprint of the sample corresponds to

∑n
i=1

~bi.
In fact, we would like ~bi to be of finite dimension,
so we have to consider only a finite number (suffi-
ciently large) of possible histograms. Under this re-
laxation, ~bi = (0, . . . , 0) would correspond to the case
that the sample histogram of element i is not in the
set of histograms we consider. Roos’s theorem, stated

next, shows that the distribution of the fingerprints
can be approximated by a multivariate Poisson distri-
bution (the Poisson here is related to the fact that the
fingerprints’ distributions are generalized multinomial
distributions and not related to the Poisson from the
Poissonization process). For simplicity, the theorem is
stated for vectors ~bi that are indexed directly, that is
~bi = (bi,1, . . . , bi,h).

Theorem 3 ([43]) Let DSn be the distribution of
the sum Sn of n independent Bernoulli random vec-
tors ~b1, . . . ,~bn in Rh where Pr

[
~bi = ~e`

]
= pi,` and

Pr
[
~bi = (0, . . . , 0)

]
= 1 − ∑h

`=1 pi,` (here ~e` satisfies
ei,` = 1 and ei,`′ = 0 for every `′ 6= `). Suppose we
define an h-dimensional vector ~λ = (λ1, . . . , λh) as
follows: λ` =

∑n
i=1 pi,`. Then

∥∥∥DSn − poi(~λ)
∥∥∥

1
≤ 88

5

h∑

`=1

∑n
i=1 p2

i,`∑n
i=1 pi,`

. (14)

We next show how to obtain a bound on sums of
the form given in Equation (14) under appropriate
conditions.

Lemma 12 Given a list D = (D1, . . . , Dm) of m dis-
tributions over [n] and a real number 0 < δ ≤ 1/2 such
that for all i ∈ [n] and for all j ∈ [m], Dj(i) ≤ δ

m·κ
for some integer κ, we have that

∑

~a∈Nm\~0

∑n
i=1 pD,κ(i;~a)2∑n
i=1 pD,κ(i;~a)

≤ 2δ . (15)

Proof:

∑

~a∈Nm\~0

∑n
i=1 pD,κ(i;~a)2∑n
i=1 pD,κ(i;~a)

≤
∑

~a∈Nm\~0
max

i

(
pD(i;~a)

)

=
∑

~a∈Nm\~0
max

i




m∏

j=1

poi(aj ;κ ·Dj(i))




≤
∑

~a∈Nm\~0

(
δ

m

)a1+···+am

≤
∞∑

a=1

ma

(
δ

m

)a

≤ 2δ ,

(16)

where the inequality in Equation (16) holds for δ ≤
192



TESTING PROPERTIES OF COLLECTIONS OF DISTRIBUTIONS

1/2 and the inequality in Equation (16) follows from:

poi(a;κ ·Dj(i)) =
e−κ·Dj(i)(κ ·Dj(i))a

a!

≤ (κ ·Dj(i))a

≤
(

δ

m

)a

,

and the proof is completed. ¤

Proof of Theorem 2: By the first premise of the
theorem, D+

j (i), D+
j (i) ≤ δ

κm for every i ∈ [n] and
j ∈ [m]. By Lemma 12 this implies that Equa-
tion (15) holds both for D = D+ and for D = D−.
Combining this with Theorem 3 we get that the `1
distance between the fingerprint distribution when
the sample is generated according to D+ (in the κ-
Poissonized model, see Definition 1) and the distri-
bution poi

(
~λD

+,κ
)

is at most 88
5 · 2δ = 176

5 δ, and

an analogous statement holds for D−. By applying
the premise in Equation (4) (concerning the `1 dis-
tance between poi

(
~λD

+,κ
)

and poi
(
~λD

−,κ
)
) and the

triangle inequality, we get that the `1 distance be-
tween the two fingerprint distributions is smaller than
2 · 176

5 δ + 16
30 − 352δ

5 = 16
30 , which implies that the sta-

tistical difference is smaller than 8
30 , and thus it is

not possible to distinguish between D+ and D− in the
κ-Poissonized model with success probability at least
19
30 . By Lemma 11 we get the desired result. ¤

C Missing details for Subsection 3.3

Proof of Lemma 3: Recall that we consider select-
ing a matrix M randomly as follows: Denote the first
t/2 rows of M by F . For each row in F , pick, inde-
pendently from the other t/2−1 rows in F , a random
half of its elements to be 1, and the other half of the
elements to be 0. Rows t/2+1, . . . , t are the negations
of rows 1, . . . , t/2, respectively. Thus, in each row and
each column of M , exactly half of the elements are 1
and the other half are 0.

Consider a fixed choice of x. For each row i between
1 and t, each subset of columns S ⊆ [m] of size x, and
b ∈ {0, 1}, define the indicator random variable IS,i,b

to be 1 if and only if M [i, j] = b for every j ∈ S.
Hence,

Pr[IS,i,b = 1]

=
1
2
·
(

1
2
− 1

m

)
· · · · ·

(
1
2
− x− 1

m

)
.

Clearly, Pr[IS,i,b = 1] < 1
2x . On the other hand,

Pr[IS,i,b = 1] ≥
(

1
2
− x

m

)x

=
1
2x

(
1− 2x

m

)x

≥ 1
2x

(
1− 2x2

m

)
.

where the last inequality is due to Bernoulli’s inequal-
ity which states that (1 + x)n > 1 + nx, for every real
number x > −1 6= 0 and an integer n > 1 ([35]).

Let ES,b denote the expected value of
∑t/2

i=1 IS,i,b.
From the fact that rows t/2+1, . . . , t are the negations
of rows 1, . . . , t/2 it follows that

∑t
i=t/2+1 IS,i,1 =

∑t/2
i=1 IS,i,0. Therefore, the expected number of rows

1 ≤ i ≤ t such that M [i, j] = 1 for every j ∈ S is
simply ES,1 + ES,0 (that is, at most t · 1

2x and at least

t · 1
2x

(
1− 2x2

m

)
). By the additive Chernoff bound,

Pr

[∣∣∣
t/2∑

i=1

IS,i,b − ES,b

∣∣∣ >

√
tx lnm

2

]

< 2 exp(−2(t/2)(2x lnm)/t)

= 2m−2x .

Thus, by taking a union bound (over b ∈ {0, 1}),

Pr

[∣∣∣
t∑

i=1

IS,i,1 − (ES,1 + ES,0)
∣∣∣ >

√
2tx lnm

]

< 4m−2x .

By taking a union bound over all subsets S we get that
M has the desired properties with probability greater
than 0. ¤

Proof of Lemma 4: Consider any ~a ∈ S2. By
Lemma 3, setting t = n/2, the size of IM (~a), i.e.
the number of light elements ` such that D−

j [`] = 2
n

for every j ∈ sup(~a), is at most n
2

(
1
4 +

√
8 ln m

n

)
.

The same lower bound holds for the number of
light elements ` such that D−

j [`] = 0 for every
j ∈ sup(~a). This implies that for every j 6= j′

in [m], for at least n
2 − n

(
1
4 +

√
8 ln m

n

)
of the

light elements, `, we have that D−
j [`] = 2

n while
D−

j′ [`] = 0, or that D−
j′ [`] = 2

n while D−
j [`] = 0.

Therefore, ‖D−
j − D−

j′‖1 ≥ 1
2 − 2

√
8 ln m

n , which for
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n ≥ c lnm and a sufficiently large constant c, is at
least 1

8 . Thus, by the triangle inequality we have
that for every D∗,

∑m
j=1 ‖D−

j − D∗‖1 ≥ bm
2 c · 1

8 ,

which greater than m/20 for m > 5. ¤

Proof of Lemma 9: We first observe that |Ax| ≤
mx−1 for every x. To see why this is true, observe that
|Ax| equals the number of possibilities of arranging
x − 1 balls, where one ball is a “special” (“double”)
ball in m bins. By Equations (7) and (8) (and the
fact that |x − y| ≤ max{x, y} for every positive real
numbers x,y),

∑

x≥3

∑

~a∈Ax

∣∣∣~λ+(~a)− ~λ−(~a)
∣∣∣

≤
∑

x≥3

∑

~a∈Ax

n

2

m∏

j=1

(
2δ

n1/3m2/3

)aj

=
∑

x≥3

∑

~a∈Ax

n

2

(
2δ

n1/3m2/3

)Pm
j=1 aj

≤
∞∑

x=3

mx−1 · n

2

(
2δ

n1/3m2/3

)x

=
n

2m

∞∑
x=3

(
2δm1/3

n1/3

)x

= 4δ3

∞∑
x=0

(
2δm1/3

n1/3

)x

≤ 4δ3

1− 2δ
(17)

≤ 8δ3 (18)

where in Equation (17) we used the fact that n ≥ m
and Equation (18) holds for δ ≤ 1/4. The lemma
follows by applying Equation (1). ¤
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