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Abstract: We study lower bounds for Locality Sensitive Hashing (LSH) in the strongest setting: point sets in
{0, 1}d under the Hamming distance. Recall that H is said to be an (r, cr, p, q)-sensitive hash family if all pairs
x, y ∈ {0, 1}d with dist(x, y) 6 r have probability at least p of collision under a randomly chosen h ∈ H, whereas
all pairs x, y ∈ {0, 1}d with dist(x, y) > cr have probability at most q of collision. Typically, one considers
d →∞, with c > 1 fixed and q bounded away from 0.
For its applications to approximate nearest neighbor search in high dimensions, the quality of an LSH family H
is governed by how small its “ρ parameter” ρ = ln(1/p)/ ln(1/q) is as a function of the parameter c. The seminal
paper of Indyk and Motwani showed that for each c > 1, the extremely simple family H = {x 7→ xi : i ∈ [d]}
achieves ρ 6 1/c. The only known lower bound, due to Motwani, Naor, and Panigrahy, is that ρ must be at
least (e1/c − 1)/(e1/c + 1) > .46/c (minus od(1)). The contribution of our paper is twofold:

1. We show the “optimal” lower bound for ρ: it must be at least 1/c (minus od(1)). Our proof is very simple,
following almost immediately from the observation that the noise stability of a boolean function at time t is a
log-convex function of t.

2. We raise and discuss the following issue: neither the application of LSH to nearest neighbor search, nor the
known LSH lower bounds, hold as stated if the q parameter is tiny. Here “tiny” means q = 2−Θ(d), a parameter
range we believe is natural.
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1 Locality sensitive hashing

Locality Sensitive Hashing (LSH) is a widely-used
algorithmic tool which brings the classic technique of
hashing to geometric settings. It was introduced for
general metric spaces in the seminal work of Indyk
and Motwani [8]. Indyk and Motwani showed that the
important problem of (approximate) nearest neigh-
bor search can be reduced to the problem of devising
good LSH families. Subsequently, numerous papers
demonstrating the practical utility of solving high-
dimensional nearest neighbor search problems via the
LSH approach[3-5,7,17,18]. For a survey on LSH, see
Andoni and Indyk [2].

We recall the basic definition from [8]:

Definition 1. Let (X, dist) be a distance space1, and
let U be any finite or countably infinite set. Let r > 0,
c > 1. A probability distribution H over functions
h : X → U is (r, cr, p, q)- sensitive if for all x, y ∈ X,

dist(x, y) 6 r ⇒ Pr
h∼H

[h(x) = h(y)] > p,

dist(x, y) > cr ⇒ Pr
h∼H

[h(x) = h(y)] 6 q,

where q < p. We often refer to H as a locally sensitive
hash (LSH) family for (X, dist).

As mentioned, the most useful application of LSH
is to the approximate near neighbor problem in high
dimensions:

Definition 2. For a set of n points P in a met-
ric space (X, dist), the (r, c)-near neighbor problem
is to process the points into a data structure that

1A metric space where the triangle inequality need not hold.
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supports the following type of query: given a point
x ∈ X, if there exists y ∈ P with dist(x, y) 6 r, the
data structure should return a point z ∈ P such that
dist(x, z) 6 cr.

Several important problems in computational geom-
etry reduce to the approximate near neighbor prob-
lem, including approximate versions of nearest neigh-
bor, furthest neighbor, close pair, minimum spanning
tree, and facility location. For a short survey of these
topics, see Indyk [10].

Regarding the reduction from (r, c)-near neighbor
problem to LSH, it is usual (see [6,9]) to credit roughly
the following theorem to [7,8]:

Theorem 1.1. Suppose H is an (r, cr, p, q)-sensitive
family for the metric space (X, dist). Then one can
solve the (r, c)-near neighbor problem with a (ran-
domized) data structure that uses O(n1+ρ + dn) space
and has query time dominated by O(nρ log1/q(n)) hash
function evaluations. (The preprocessing time is not
much more than the space bound.)

Here we are using the following:

Definition 3. The rho parameter of an (r, cr, p, q)
- sensitive LSH family H is

ρ = ρ(H) =
ln(1/p)
ln(1/q)

∈ (0, 1).

Please note that in Theorem 1.1, it is implicitly as-
sumed [11] that q is bounded away from 0. For “sub-
constant” values of q, the theorem does not hold. This
point is discussed further in Section 4.

Because of Theorem 1.1, there has been significant
interest [2,6,13,19] in determining the smallest possi-
ble ρ that can be obtained for a given metric space
and value of c. Constant factors are important here,
especially for the most natural regime of c close to 1.
For example, shrinking ρ by an additive .5 leads to
time and space savings of Θ(

√
n).

2 Pvevious work

2.1 Upper bounds

The original work of Indyk and Motwani [8] contains
the following simple yet strong result:

Theorem 2.1. There is an LSH family H for
{0, 1}d under the Hamming distance which for each

c > 1 has ρ parameter

ρ(H) 6 1
c
,

simultaneously for each r < d/c.

In this theorem, the family is simply the uniform
distribution over the d functions hi(x) = xi. For a
given c and r, this family is obviously (r, cr, 1−r/d, 1−
cr/d)-sensitive, whence

ρ(H) =
ln(1/(1− r/d))
ln(1/(1− cr/d))

↗ 1
c

as r/d → 0.

We remark that the upper bound of 1/c in Theorem
2.1 becomes tight only for asymptotically small r/d.
Indyk and Motwani showed that the same bound holds
for the closely related “Jaccard metric” (see [8]), and
also extended Theorem 2.1 to an LSH family for the
metric space `1 (see also [1]).

Perhaps the most natural setting is when the metric
space is the usual d-dimensional Euclidean space `d

2.
Here, Andoni and Indyk [2] showed, roughly speaking,
that ρ 6 1/c2:

Theorem 2.2. For any r > 0, c > 1, d > 1, there
is a sequence of LSH families Ht for `d

2 satisfying

lim sup
t→∞

ρ(Ht) 6 1
c2

.

(The complexity of evaluating a hash function h ∼ Ht

also increases as t increases.)

For other `s distance/metric spaces, Datar, Immor-
lica, Indyk, and Mirrokni [6] have similarly shown:2

Theorem 2.3. For any r > 0, c > 1, d > 1, and
0 < s < 2, there is a sequence of LSH families Ht for
`d
s satisfying

lim sup
t→∞

ρ(Ht) 6 max
{

1
cs

,
1
c

}
.

Other practical LSH families have been suggested for
the Euclidean sphere [19] and `2 [13].

2.2 Lower bounds

There is one known result on lower bounds for LSH,
due to Motwani, Naor, and Panigrahy [12]:

2Please note that in [12,15] it is stated that [6] also improves
the Indyk–Motwani 1/c upper bound for `1 when c 6 10. How-
ever this is in error.
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Theorem 2.4. Fix c > 1, 0 < q < 1, and con-
sider d → ∞. Then there exists some r = r(d) such
that for any LSH family H for {0, 1}d under Hamming
distance which is (r, cr, p, q)-sensitive must satisfy

ρ(H) > exp(1/c)− 1
exp(1/c) + 1

− od(1).

The metric setting of {0, 1}d under Hamming dis-
tance is the most powerful setting for lower bounds;
as Motwani, Naor, and Panigrahy note, one can im-
mediately deduce a lower bound of

exp(1/cs)− 1
exp(1/cs) + 1

− od(1)

for the setting of `d
s . This is simply because ‖x−y‖s =

‖x− y‖1/s
1 when x, y ∈ {0, 1}d.

As c → ∞, the lower bound in Theorem 2.4 ap-
proaches 1

2c . This is a factor of 2 away from the upper
bound of Indyk and Motwani. The gap is slightly
larger in the more natural regime of c close to 1; here
one only has that ρ(H) > e−1

e+1
1
c ≈ .46

c .

Note that in Theorem 2.4, the parameter q is fixed
before one lets d tend to ∞; i.e., q is assumed to be
at least a “constant”. Even though this is the same
assumption implicitly made in the application of LSH
to near-neighbors (Theorem 1.1), we feel it is not com-
pletely satisfactory. In fact, as stated in [12], Theorem
2.4 still holds so long as q > 2−o(d). Our new lower
bound for LSH also holds for this range of q. But we
believe the most satisfactory lower bound would hold
even for “tiny” q, meaning q = 2−Θ(d). This point is
discussed further in Section 4.

We close by mentioning the recent work of Pan-
igrahy, Talwar, and Wieder [16] which obtains a
time/space lower bound for the (r, c)-near neighbor
problem itself in several metric space settings, includ-
ing {0, 1}d under Hamming distance, and `2.

3 Our result

In this work, we improve on Theorem 2.4 by obtain-
ing a sharp lower bound of 1

c − od(1) for every c > 1.
This dependence on c is optimal, by the upper bound
of Indyk and Motwani. The precise statement of our
result is as follows:

Theorem 3.1. Fix d ∈ N, 1 < c < ∞, and
0 < q < 1. Then for a certain choice of 0 < τ < 1,

any (τd, cτd, p, q)-sensitive hash family H for {0, 1}d

under Hamming distance must satisfy

ρ(H) > 1
c
− Õ

(
ln(2/q)

d

)1/3

. (1)

Here, the precise meaning of the Õ(·) expression is

K · ln(2/q)
d

· ln
(

d

ln(2/q)

)
,

where K is a universal constant, and we assume
d/ ln(2/q) > 2, say.

As mentioned, the lower bound is only of the form
1
c − od(1) under the assumption that q > 2−o(d). For
q of the form 2−d/B for a large constant B, the bound
(1) still gives some useful information.

As with the Motwani–Naor–Panigrahy result, be-
cause our lower bound is for {0, 1}d we may immedi-
ately conclude:

Corollary 3.2. Theorem 3.1 also holds for LSH
families for the distance space `s, 0 < s < ∞, with
the lower bound 1/cs replacing 1/c.

This lower bound matches the known upper bounds
for Euclidean space s = 2 ([2]) and 0 < s 6 1 ([6]). It
seems reasonable to conjecture that it is also tight at
least for 1 < s < 2.

Finally, the lower bound in Theorem 3.1 also holds
for the Jaccard distance on sets, matching the upper
bound of Indyk and Motwani [8]. We explain why
this is true in Section [3.2], although we omit the very
minor necessary changes to the proof details.

3.1 Noise stability

Our proof of Theorem 3.1 requires some facts about
boolean noise stability. We begin by recalling some
basics of the analysis of boolean functions.

Definition 4. For 0 6 ε < 1, we say that (x, y)
are (1 − ε)-correlated random strings in {0, 1}d if x
is chosen uniformly at random and y is formed by
rerandomizing each coordinate of x independently with
probability ε.

Definition 5. Given f : {0, 1}d → R, the noise sta-
bility of f at (1− ε) is defined to be

Sf (1− ε) = E
(x,y)

(1− ε)-correlated

[f(x)f(y)].
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We can extend the definition to functions f :
{0, 1}d → RU via

Sf (1− ε) = E
(x,y)

(1− ε)-correlated

[〈f(x), f(y)〉],

where < w, z >=
∑

i∈U wizi is the usual inner prod-
uct.3

Proposition 3.3. Let f : {0, 1}d → RU and write
f̂(S) for the usual Fourier coefficient of f associated
with S ⊆ [d]; i.e.,

f̂(S) =
1
2d

∑

x∈{0,1}d

f(x)
∏

i∈S

(−1)xi ∈ RU .

Then

Sf (1− ε) =
∑

S⊆[d]

‖f̂(S)‖22(1− ε)|S|.

(This formula is standard when f has range R; see,
e.g., [14]. The case when f has range RU follows by
repeating the standard proof.)

We are particularly interested in hash functions h :
{0, 1}d → U ; we view these also as functions {0, 1}d →
RU by identifying i ∈ U with the vector ei ∈ RU ,
which has a 1 in the ith coordinate and a 0 in all other
coordinates. Under this identification, < h(x), h(y) >
becomes the 0-1 indicator of the event h(x) = h(y).
Hence for a fixed hash function h,

Sh(1− ε) = Pr
(x,y)

(1− ε)-correlated

[h(x) = h(y)]. (2)

We also extend the notion of noise stability to hash
families:

Definition 6. If H is a hash family on {0, 1}d, we
define

SH(1− ε) = E
h∼H

[Sh(1− ε)].

By combining this definition with equation (2) and
Proposition 3.3, we immediately deduce:

Proposition 3.4. Let H be a hash family on {0, 1}d.
Then

SH(1− ε) = Pr
h∼H,

(x,y) (1− ε)-corr’d

[h(x) = h(y)]

=
∑

S⊆[d]

E
h∼H

[‖ĥ(S)‖22](1− ε)|S|.

3In the case that U is countably infinite, we require our func-
tions f to have ‖f(x)‖2 < ∞ for all x ∈ {0, 1}d.

Finally, it is often more natural to express the pa-
rameter (1 − ε) as (1 − ε) = e−t, where t ∈ [0,∞)
is a “time” parameter. Here we think of a (1 − ε)-
correlated pair (x,y) as taking x to be uniformly ran-
dom and y to be the string that results from run-
ning the standard continuous-time Markov Chain on
{0, 1}d, starting from x, for time td. We make the
following definition:

Definition 7. For t ∈ [0,∞), we define Kh(t) =
Sh(e−t), and we similarly define KH(t).

3.2 The proof, modulo some tedious
calculations

We now present the essence of our proof of Theo-
rem 3.1. It will be quite simple to see how it gives
a lower bound of the form 1

c − od(1) (assuming q is
not tiny). Some very tedious calculations (Chernoff
bounds, elementary inequalities, etc.) are needed to
get the precise statement given in Theorem 3.1; the
formal proof is therefore deferred to Appendix A.

Let H be a hash family on {0, 1}d, and let us con-
sider

KH(t) = Pr
h∼H,

(x,y) e−t-corr’d

[h(x) = h(y)]. (3)

Let us suppose that t is very small, in which case
e−t ≈ 1−t. When (x, y) are (1−t)-correlated strings,
it means that y is formed from the random string
x by rerandomizing each coordinate with probability
t. This is the same as flipping each coordinate with
probability t/2. Thus if we think of d as large, a sim-
ple Chernoff bound shows that the Hamming distance
dist(x, y) will be very close to (t/2)d with overwhelm-
ing probability.4

Suppose now that H is ((t/2)d + o(d), (ct/2)d −
o(d), p, q)-sensitive, so the distance ratio is c − od(1).
In (3), regardless of h we will almost surely have
dist(x, y) 6 (t/2) + o(d); hence KH(t) > p − od(1).
Similarly, we deduce KH(ct) 6 q + od(1). Hence, ne-
glecting the od(1) terms, we get

ρ(H) =
ln(1/p)
ln(1/q)

& ln(1/KH(t))
ln(1/KH(ct))

.

4Similarly, if we think of x and y as subsets of [d], their
Jaccard distance will be very close to t/(1 + t/2) ≈ t with
overwhelming probability. With this observation, one obtains
our lower bound on LSH families for the Jaccard distance on
sets.
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We then deduce the desired lower bound of 1/c from
the following theorem and its corollary:

Theorem 3.5. For any hash family H on {0, 1}d, the
function KH(t) is log-convex in t.

Proof. From Proposition 3.4 we have

KH(t) =
∑

S⊆[d]

E
h∼H

[‖ĥ(S)‖22]e−t|S|.

Thus KH(t) is log-convex, being a nonnegative linear
combination of log-convex functions e−t|S|. ¤

Corollary 3.6. For any hash family H on {0, 1}d,
t > 0, and c > 1,

ln(1/KH(t))
ln(1/KH(ct))

> 1
c
.

Proof . By log-convexity, KH(t) 6 KH(ct)1/c ·
KH(0)1−1/c = KH(ct)1/c. Here we used the fact that
KH(0) = 1, which is immediate from the definitions
because e−0-correlated strings are always identical.
The result follows. ¤

As mentioned, we give the careful proof keeping
track of approximations in Appendix A. But first, we
note what we view as a shortcoming of the proof: af-
ter deducing KH(ct) > q−od(1), we wish to “neglect”
the additive od(1) term. This requires that od(1) in-
deed be negligible compared to q! Being more care-
ful, the od(1) arises from a Chernoff bound applied
to a Binomial(d, ct) random variable, where t > 0 is
very small. So to be more precise, the error term is
of the form exp(−εd), and hence is only negligible if
q > 2−o(d).

4 Discussion

4.1 On the reduction from LSH to near
neighbor data structures

As described in Section 1, it is normally stated that
the quality of an (r, cr, p, q)-sensitive LSH family H
is governed by ρ = ln(1/p)/ ln(1/q), and more specifi-
cally that H can be used to solve the (r, c)-near neigh-
bor problem with roughly O(n1+ρ) space and query
time O(nρ). However, this involves the implicit as-
sumption that q is bounded away from 0.

It is easy to see that some lower bound on q is es-
sential. Indeed, for any (finite, say) distance space
(X, dist) there is a trivially “optimal” LSH family for

any r and c: For each pair x, y ∈ X with dist(x, y) 6 r,
define hx,y by setting hx,y(x) = hx,y(y) = 0 and
letting hx,y(z) have distinct positive values for all
z 6= x, y. If H is the uniform distribution over all
such hx,y, then p > 0 and q = 0, leading to ρ(H) = 0.

To see why this trivial solution is not useful, and
what lower bound on q is desirable, we recall some
aspects of the Indyk–Motwani reduction from LSH
families to (r, c)-near neighbor data structures. Sup-
pose one wishes to build an (r, c)-near neighbor data
structure for an n-point subset P of the metric space
(X, dist). The first step in [8] is to apply the following:

1) Powering Construction:

Given an (r, cr, p, q)-sensitive family H of functions
X → U and a positive integer k, we define the fam-
ily H⊗k by drawing h1, . . . , hk independently from
H and forming the function h : X → Uk, h(x) =
(h1(x), . . . , hk(x)). It is easy to check that H⊗k is
(r, cr, pk, qk)-sensitive.

Indyk and Motwani show that if one has an
(r, cr, p′, q′)-sensitive hash family with q′ 6 1/n, then
one can obtain a (r, c)-near neighbor data structure
with space roughly O(n/p′) and query time roughly
O(1/p′). Thus given an arbitrary (r, cr, p, q)-sensitive
family H, Indyk and Motwani suggest using the Pow-
ering Construction with k = log1/q(n). The resulting
H⊗k is (r, cr, p′, 1/n)-sensitive, with p′ = pk = n−ρ,
yielding an O(n1+ρ) space, O(nρ) time data structure.

However this argument makes sense only if k is a
positive integer. For example, with the trivially “op-
timal” LSH family, we have q = 0 and thus k = −∞.
Indeed, whenever q 6 1/n to begin with, one doesn’t
get O(n1+ρ) space and O(nρ) time, one simply gets
O(n/p) space and O(1/p) time. For example, a hy-
pothetical LSH family with p = 1/n.5 and q = 1/n1.5

has ρ = 1/3 but only yields an O(n1.5) space, O(n.5)
time near neighbor data structure.

The assumption q > 1/n is still not enough for the
deduction in Theorem 1.1 to hold precisely. The rea-
son is that the Indyk–Motwani choice of k may not
be an integer. For example, suppose we design an
(r, cr, p, q)-sensitive family H with p = 1/n.15 and
q = 1/n.3. Then ρ = .5. However, we cannot actually
get an O(n1.5) space, O(n.5) time data structure from
this H. The reason is that to get qk 6 1/n, we need
to take k = 4. Then pk = 1/n.6, so we only get an
O(n1.6) space, O(n.6) time data structure.
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The effect of rounding k up to the nearest integer
is not completely eliminated unless one makes the as-
sumption, implicit in Theorem 1.1, that q > Ω(1).
Under the weaker assumption that q > n−o(1), the
conclusion of Theorem 1.1 remains true up to no(1)

factors. To be completely precise, one should assume
q > 1/n and take k = dlog1/q(n)e. If we then use
k 6 log1/q(n)+1, the Powering Construction will yield
an LSH family with q′ 6 1/n and p′ = (n/q)−ρ. In
this way, one obtains a refinement of Theorem 1.1 with
no additional assumptions:

Theorem 4.1 Suppose H is an (r, cr, p, q)-sensitive
family for the metric space (X, dist). Then for n-point
subsets of X (and assuming q > 1/n), one can solve
the (r, c)-near neighbor problem with a (randomized)
data structure that uses n · O((n/q)ρ + d) space and
has query time dominated by O((n/q)ρ log1/q(n)) hash
function evaluations.

4.2 On assuming q is not tiny

Let us return from the near-neighbor problem to
the study of locality sensitive hashing itself. Because
of the “trivial” LSH family, it is essential to impose
some kind of lower bound on how small the parameter
q is allowed to be. Motwani, Naor, and Panigrahy
carry out their lower bound for LSH families on {0, 1}d

under the assumption that q > Ω(1), but also note
that it goes through assuming q > 2−o(d). Our main
result, Theorem 3.1, is also best when q > 2−o(d), and
is only nontrivial assuming q > 2−d/B for a sufficiently
large constant B.

One may ask what the “correct” lower bound as-
sumed on q should be. For the Indyk–Motwani appli-
cation to (r, c)-near neighbor data structures, the an-
swer seems obvious: “1/n”. Indeed, since the Indyk–
Motwani reduction immediately uses Powering to re-
duce the q parameter down to 1/n, the most mean-
ingful LSH lower bounds would simply involve fixing
q = 1/n and trying to lower bound p.

There is an obvious catch here, though, which is
that in the definition of LSH, there is no notion of
“n”! Still, in settings such as {0, 1}d which have a
notion of dimension, d, it seems reasonable to think
that applications will have n = 2Θ(d). In this case, to
maintain the Indyk–Motwani Theorem 4.1 up to no(1)

factors one would require q > 2−o(d). This is precisely
the assumption that this paper and the Motwani–
Naor–Panigrahy paper have made. Still, we believe
that the most compelling kind of LSH lower bound for

{0, 1}d would be nontrivial even for q = 2−d/b with a
“medium” constant b, say b = 10. We currently do
not have such a lower bound.
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A Proof details

We require the following lemma, whose proof follows
easily from Proposition 3.4 and the definition of hash
family sensitivity:

Lemma A.1. Let H be an (r, cr, p, q)-sensitive hash
family on {0, 1}d and suppose (x,y) is a pair of e−u-
correlated random strings. Then

p(1−Pr[dist(x,y) > r])
6 KH(u) 6 q + Pr[dist(x, y) < cr].

We now prove Theorem 3.1, which for convenience
we slightly rephrase as follows:

Theorem A.2. Fix d ∈ N, 1 < c < ∞, and 0 <
q < 1. Then for a certain choice of 0 < ε < 1, any
((ε/c)d, εd, p, q)-sensitive hash family for {0, 1}d under
Hamming distance must satisfy

ρ =
ln(1/p)
ln(1/q)

> 1
c
−K · λ(d, q)1/3,

where K is a universal constant,

λ(d, q) =
ln(2/q)

d
ln

(
d

ln(2/q)

)
,

and we assume d/ ln(2/q) > 2, say.

Proof. Let 0 < ∆ = ∆(c, d, q) < .005 be a small
quantity to be chosen later, and let ε = .005∆.
Suppose that H is an ((ε/c)d, εd, p, q)-sensitive hash
family for {0, 1}d. Our goal is to lower bound
ρ = ln(1/p)/ ln(1/q). By the Powering Construction
we may assume that q 6 1/e, and hence will use
ln(1/q) > 1 without further comment. Define also
t = 2ε(1 + ∆/2) and c′ = c(1 + ∆).

Let (x1, y1) be exp(−t/c′)-correlated random
strings and let (x2,y2) be exp(−t)-correlated random
strings. Using the two bounds in Lemma A.1 sepa-
rately, we have

KH(t/c′) > p(1− e1),
KH(t) 6 q + e2,

where

e1 = Pr[dist(x1,y1) > (ε/c)d],
e2 = Pr[dist(x2,y2) < εd].

By Corollary 3.6, we have

1
c′

6
ln

(
1/KH(t/c′)

)

ln
(
1/KH(t)

) 6
ln

(
1

p(1−e1)

)

ln
(

1
q+e2

)

=
ln(1/p) + ln(1/(1− e1))

ln(1/q) + ln(1/(1 + e2/q))
. (4)
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We will use the following estimates:

1
c′

=
1

c(1 + ∆)
> 1

c
(1−∆) =

1
c
− ∆

c
, (5)

ln(1/(1− e1)) 6 1.01e1, (6)

ln(1/q) + ln(1/(1 + e2/q)) > ln(1/q)− e2/q

= ln(1/q)
(
1− e2

q ln(1/q)

)
. (7)

For (6) we made the following

assumption: e1 6 .01. (8)

We will also ensure that the quantity in (7) is positive
by making the following

assumption: e2 < q ln(1/q). (9)

Substituting the three estimates (5)–(7) into (4) we
obtain

1
c
− ∆

c
6 ln(1/p) + 1.01e1

ln(1/q)
(
1− e2

q ln(1/q)

)

⇒ ln(1/p) + 1.01e1

ln(1/q)

>
(

1
c
− ∆

c

)(
1− e2

q ln(1/q)

)

⇒ ln(1/p)
ln(1/q)

> 1
c
− ∆

c
− e2

q ln(1/q)
− 1.01e1

ln(1/q)
.

Thus we have established

ρ > 1
c
− e,where e =

∆
c

+
1.01e1

ln(1/q)
+

e2

q ln(1/q)
. (10)

We now estimate e1 and e2 in terms of ∆ (and
ε), after which we will choose ∆ so as to mini-
mize e. By definition, e1 is the probability that a
Binomial(d, η1) random variable exceeds (ε/c)d, where
η1 = (1 − exp(t/c′))/2. Let us select δ1 so that
(1 + δ1)η1 = ε/c. Thus

δ1 =
ε

cη1
− 1 =

2ε/c

1− exp(−t/c′)
− 1

> 2ε/c

t/c′
− 1 =

1 + ∆
1 + ∆/2

− 1 > .498∆.

Here we used the definitions of t and c′, and then
the assumption ∆ < .005. Using a standard Chernoff
bound, we conclude

e1 = Pr[Binomial(d, η1) > (1 + δ1)η1d]

< exp
(
− δ2

1

2 + δ1
η1d

)
< exp

(
− ∆2

8.08
η1d

)
, (11)

using the fact that δ2/(2 + δ) is increasing in δ, and
∆ < .005 again. We additionally estimate

η1 =
1− exp(t/c′)

2
> t/c′ − (t/c′)2/2

2
= (t/2c′)− (t/2c′)2 > .99(t/2c′)

= .99
ε

c

(
1 + ∆/2
1 + ∆

)
> .98

ε

c
.

Here the second inequality used t/2c′ 6 .01, which
certainly holds since t/2c′ 6 ε = .005∆. The third
inequality used ∆ 6 .005. Substituting this into (11)
we obtain our upper bound for e1,

e1 < exp
(
− ∆2

8.25
ε

c
d

)

= exp
(
− .005∆3

8.25c
d

)
< exp

(
− ∆3

2000c
d

)
. (12)

Our estimation of e2 is quite similar:

e2 = Pr[Binomial(d, η2) < (1− δ2)η2d]

< exp
(
−δ2

2

2
η2d

)
, (13)

where η2 = (1 − exp(−t))/2 and δ2 is chosen so that
(1− δ2)η2 = ε. This entails

δ2 = 1− ε

η2
= 1− 2ε

1− exp(−t)
> 1− 2ε

t− t2/2

= 1− 1
(t/2ε)− ε(t/2ε)2

= 1− 1
(1 + ∆/2)− ε(1 + ∆/2)2

.

This expression is the reason we were forced to take ε
noticeably smaller than ∆. Using our specific setting
ε = .005∆, we conclude

δ2 > 1− 1
(1 + ∆/2)− ε(1 + ∆/2)2

= 1− 1
1 + .495∆− .005∆2 − .00125∆3

> .49∆,

where we used ∆ 6 .005 again. As for η2, we can
lower bound it similarly to η1, obtaining

η2 > .99(t/2) = .99ε(1 + ∆/2) > .99ε.
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Substituting our lower bounds for δ2 and η2 into (13)
yields

e2 < exp
(
− (.49∆)2

2
· .99εd

)
< exp

(
− ∆3

2000
d

)
.

(14)

Plugging our upper bounds (12), (14) for e1, e2 into
(10) gives

e =
∆
c

+
1.01 exp(− ∆3

2000cd)
ln(1/q)

+
exp(− ∆3

2000d)
q ln(1/q)

. (15)

Finally, we would like to choose

∆ = K1c
1/3λ(d, q)1/3,

where K1 is an absolute constant. For K1 sufficiently
large, this makes all three terms in the bound (15) at
most

2K1λ(d, q)1/3 = Õ

(
ln(2/q)

d

)1/3

.

This would establish the theorem.

It only remains to check whether this is a valid
choice for ∆. First, we note that with this choice, as-
sumptions (8) and (9) follow from (12) and (14) (and
increasing K1 if necessary). Second, we required that
∆ 6 .005. This may not hold. However, if it fails then
we have

λ(d, q)1/3 >
.005

K1c1/3
.

We can then trivialize the theorem by taking K =
(K1/.005)3, making the claimed lower bound for ρ
smaller than 1/c− 1/c1/3 6 0. ¤
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