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Abstract: We give the first combinatorial approximation algorithm for MaxCut that beats the trivial 0.5 factor
by a constant. The main partitioning procedure is very intuitive, natural, and easily described. It essentially
performs a number of random walks and aggregates the information to provide the partition. We can control
the running time to get an approximation factor-running time tradeoff. We show that for any constant b > 1.5,
there is an Õ(nb) algorithm that outputs a (0.5+δ)-approximation for MaxCut, where δ = δ(b) is some positive
constant.
One of the components of our algorithm is a weak local graph partitioning procedure that may be of independent
interest. Given a starting vertex i and a conductance parameter φ, unless a random walk of length ` = O(log n)
starting from i mixes rapidly (in terms of φ and `), we can find a cut of conductance at most φ close to the
vertex. The work done per vertex found in the cut is sublinear in n.
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1 Introduction

The problem of finding the maximum cut of a
graph is a classical combinatorial optimization prob-
lem. Given a graph G = (V, E), with weights wij

on edges {i, j}, the problem is to partition the vertex
set V into two sets L and R to maximize the weight
of cut edges (these have one endpoint in L and the
other in R). The value of a cut is the total weight
of cut edges divided by the total weight. The largest
possible value of this is MaxCut(G). The problem
of computing MaxCut(G) was one of Karp’s original
NP-complete problems [12].

Therefore, polynomial-time approximation algo-
rithms for MaxCut were sought out, that would pro-
vide a cut with value at least αMaxCut(G), for some
fixed constant α > 0. It is easy to show that a random
cut gives a 0.5-approximation for the MaxCut. This
was the best known for decades, until the seminal pa-
per on semi-definite programming (SDP) by Goemans
and Williamson [9]. They gave a 0.878-approximation
algorithm, which is optimal for polynomial time algo-

—————————
∗ Work done when the author was a postdoctoral re-

searcher at IBM Almaden Research Center.

rithms under the Unique Games Conjecture [13,14].
Arora and Kale [3], and later, Steurer [21], gave an
efficient near-linear-time implementation of the SDP
algorithm for MaxCut1.

In spite of the fact that efficient, possibly optimal,
approximation algorithms are known, there is a lot
of interest in understanding what techniques are re-
quired to improve the 0.5-approximation factor. By
“improve”, we mean a ratio of the form 0.5 + δ, for
some constant δ > 0. The powerful technique of Lin-
ear Programming (LP) relaxations fails to improve the
0.5 factor. Even the use of strong LP-hierarchies to
tighten relaxations does not help [7,17]. Recently, Tre-
visan [24] showed for the first time that a technique
weaker than SDP relaxations can beat the 0.5-factor.
He showed that the eigenvector corresponding to the
smallest eigenvalue of the adjacency matrix can be
used to approximate the MaxCut to factor of 0.531.
Soto [19] gave an improved analysis of the same algo-
rithm that provides a better approximation factor of
0.6142. The running time2 of this algorithm is Õ(n2).

1This was initially only proved for graphs in which the ratio
of maximum to average degree was bounded by a polylogarith-
mic factor, but a linear-time reduction due to Trevisan [24]
converts any arbitrary graph to this case.

2In this paper, we use the eO notation to suppress dependence
on polylogarithmic factors.
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All the previous algorithms that obtain an approxi-
mation factor better than 0.5 are not “combinatorial”,
in the sense that they all involve numerical matrix
computations such as eigenvector computations and
matrix exponentiations. It was not known whether
combinatorial algorithms can beat the 0.5 factor, and
indeed, this has been explicitly posed as an open prob-
lem by Trevisan [24]. Combinatorial algorithms are
appealing because they exploit deeper insight into the
structure of the problem, and because they can usu-
ally be implemented easily and efficiently, typically
without numerical round-off issues.

1.1 Our contributions

1. In this paper, we achieve this goal of a combi-
natorial approximation algorithm for MaxCut.
We analyze a very natural, simple, and com-
binatorial heuristic for finding the MaxCut of
a graph, and show that it actually manages to
find a cut with an approximation factor strictly
greater than 0.5. In fact, we really have a suite
of algorithms:

Theorem 1.1 For any constant b > 1.5, there
is a combinatorial algorithm that runs in Õ(nb)
time and provides an approximation factor that
is a constant greater than 0.5.

The running time/approximation factor trade-
off curve is shown in Figure 1. A few rep-
resentative numbers: in Õ(n1.6), Õ(n2), and
Õ(n3) times, we can get approximation factors
of 0.5051, 0.5155, and 0.5727 respectively. As
b becomes large, this converges to the ratio of
Trevisan’s algorithm.

2. Even though the core of our algorithm is com-
pletely combinatorial, relying only on simple
random walks and integer operations, the analy-
sis of the algorithm is based on spectral methods.
We obtain a combinatorial version of Trevisan’s
algorithm by showing two key facts: (a) the “flip-
ping signs” random walks we use corresponds to
running the power method on the graph Lapla-
cian, and (b) a random starting vertex yields a
good starting vector for the power method with
constant probability. These two facts replace
numerical matrix computations with the com-
binatorial problem of estimating certain prob-
abilities, which can be done effectively by sam-
pling and concentration bounds. This also allows
improved running times since we can selectively

find portions of the graph and classify them.

3. A direct application of the partitioning proce-
dure yields an algorithm whose running time is
Õ(n2+µ). To design the sub-quadratic time algo-
rithm, we have to ensure that the random walks
in the algorithm mix rapidly. To do this, we de-
sign a sort of a local graph partitioning algorithm
of independent interest based on simple random
walks of logarithmic length. Given a starting
vertex i, either it finds a low conductance cut or
certifies that the random walk from i has some-
what mixed, in the sense that the ratio of the
probability of hitting any vertex j to its proba-
bility in the stationary distribution is bounded.
The work done per vertex output in the cut is
sublinear in n. The precise statement is given in
Theorem 4.1. Previous local partitioning algo-
rithms [1,2,20] are more efficient than our pro-
cedure, but can only output a low conductance
cut, if the actual conductance of some set con-
taining i is O(1/ log n). In this paper, we need
to be able to find low conductance cuts in more
general settings, even if there is no cut of con-
ductance of O(1/ log n), and hence the previous
algorithms are unsuitable for our purposes.

1.2 Related work

Trevisan [23] also uses random walks to give approx-
imation algorithms for MaxCut (as a special case
of unique games), although the algorithm only deals
with the case when MaxCut is 1−O(1/poly(log n)).
The property tester for bipartiteness in sparse graphs
by Goldreich and Ron [10] is a sublinear time pro-
cedure that uses random walks to distinguish graphs
where MaxCut = 1 from MaxCut 6 1 − ε. The
algorithm, however, does not actually give an approx-
imation to MaxCut. There is a similarity in flavor to
Dinur’s proof of the PCP theorem [8], which uses ran-
dom walks and majority votes for gap amplification of
CSPs. Our algorithm might be seen as some kind of
belief propagation, where messages about labels are
passed around.

For the special case of cubic and maximum degree
3 graphs, there has been a study of combinatorial al-
gorithms for MaxCut [4,5,11]. These are based on
graph theoretic properites and very different from our
algorithms. Combinatorial algorithms for CSP (con-
straint satisfaction problems) based on LP relaxations
have been studied in [6].
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2 Algorithm overview and intuition

Let us revisit the greedy algorithm. We currently
have a partial cut, where some subset S of the vertices
have been classified (placed in either side of the cut).
We take a new vertex i /∈ S and look at the edges of i
incident to S. In some sense, each such edge provides
a “vote” telling i where to go. Suppose there is such
an edge (i, j), such that j ∈ R. Since we want to cut
edges, this edge tells i to be placed in L. We place
i accordingly to a majority vote, and hence the 0.5
factor.

Can we take that idea further, and improve on the
0.5 factor? Suppose we fix a source vertex i and try to
classify vertices with respect to the source. Instead of
just looking at edges (or paths of length 1), let us look
at longer paths. Suppose we choose a length ` from
some nice distribution (say, a binomial distribution
with a small expectation) and consider paths of length
` from i. If there are many more even length paths
to j than odd length paths, we put j in L, otherwise
in R. This gives a partition of vertices that we can
reach, and suggests an algorithm based on random
walks. We hope to estimate the odd versus even length
probabilities through random walks from i. This is a
very natural idea and elegantly extends the greedy
approach. We show that this can be used to beat the
0.5 factor by a constant.

One of the main challenges is to show that we do
not need too many walks to distinguish these various
probabilities. We also need to choose our length care-
fully. If it is too long, then the odd and even path
probabilities may become too close to each other. If it
is too short, then it may not be enough to get sufficient
information to beat the greedy approach.

Suppose the algorithm detects that the probability
of going from vertices i to j by an odd length path is
significantly higher than an even length path. That
suggests that we can be fairly confident that i and j
should be on different sides of the cut. This consti-
tutes the core of our algorithm, Threshold. This
algorithm classifies some vertices as lying on “odd”
or “even” sides of the cut based on which probability
(odd or even length paths) is significantly higher than
the other. Significance is decided by a threshold that
is a parameter to the algorithm. We show a connec-
tion between this algorithm and Trevisan’s, and then
we adapt his (and Soto’s) analysis to show that one
can choose the threshold carefully so that amount of
work done per classified vertex is bounded, and the
number of uncut edges is small. The search for the

right threshold is done by the Find-Threshold al-
gorithm.

Now, this procedure leaves some vertices unclassi-
fied, because no probability is significantly larger than
the other. We can simply recurse on the unclassified
vertices, as long as the the cut we obtain is better
than the trivial 0.5 approximate cut. This consti-
tutes the Simple algorithm. The analysis of this al-
gorithm shows that we can bound the work done per
vertex is at most Õ(n1+µ) for any constant µ > 0,
and thus the overall running time becomes Õ(n2+µ).
This almost matches the running time of Trevisan’s
algorithm, which runs in Õ(n2) time.

To obtain a sub-quadratic running time, we need
to do a more careful analysis of the random walks
involved. If the random walks do not mix rapidly, or,
in other words, tend to remain within a small portion
of the graph, then we end up classifying only a small
number of vertices, even if we run a large number of
these random walks. This is why we get the Õ(n1+µ)
work per vertex ratio.

But in this case, we can exploit the connection be-
tween fast mixing and high conductance [15,16,18] to
conclude that there must be a low conductance cut
which accounts for the slow mixing rate. To make
this algorithmic, we design a local graph partitioning
algorithm based on the same random walks as ear-
lier. This algorithm, CutOrBound, finds a cut of
(low) constant conductance if the walks do not mix,
and takes only around Õ(n0.5+µ) time, for any con-
stant µ > 0, per vertex found in the cut. Now, we
can remove this low conductance set, and run Sim-
pleon the induced subgraph. In the remaining piece,
we recurse. Finally, we combine the cuts found ran-
domly. This may leave up to half of the edges in the
low conductance cut uncut, but that is only a small
constant fraction of the total number of edges overall.
This constitutes the Balance algorithm. We show
that we spend only Õ(n0.5+µ) time for every classi-
fied vertex, which leads to a Õ(n1.5+µ) overall running
time.

All of these algorithms are combinatorial: they only
need random selection of outgoing edges, simple arith-
metic operations, and comparisons. Although the
analysis is technically involved, the algorithms them-
selves are simple and easily implementable.

We would like to stress some aspects of our presen-
tation. Trevisan and Soto start with an n-dimensional
vector x that has high Rayleigh quotient with the nor-
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malized graph Laplacian (i.e. an approximate top
eigenvector). This, they show, can be used to gen-
erate a cut that approximates the MaxCut value.
It is possible to view our algorithm as a combinato-
rial procedure that produces this vector x, allowing us
to leverage previous analyses. However, we prefer to
depart from this presentation. We combine our com-
binatorial algorithm with the thresholding procedures
of Trevisan and give one final stand alone algorithm.
This highlights the core of the algorithm, which is a
heuristic that one would naturally use to generalize
the greedy algorithm3. We feel that our presentation
brings out the intuition and combinatorial aspects be-
hind the algorithm. The analysis is somewhat more
complicated, since we need to use details of Trevisan’s
and Soto’s work. However, since the main focus of this
work is the elegance and power of combinatorial algo-
rithms, we feel that this presentation is more mean-
ingful.

3 The threshold cut

We now describe our core random walk based pro-
cedure to partition vertices. Some notation first. The
graph G will have n vertices. All our algorithms will
be based on lazy random walks on G with self-loop
probability 1/2. We define these walks now. Fix a
length ` = O(log n). At each step in the random walk,
if we are currently at vertex j, then in the next step
we stay at j with probability 1/2. With the remain-
ing probability (1/2), we choose a random incident
edge {j, k} with probability proportional to wjk and
move to k. Thus the edge {j, k} is chosen with over-
all probability wjk/2dj , where dj =

∑
{j,k}∈E wjk is

the (weighted) degree of vertex j. Let ∆ be an up-
per bound on the maximum degree. By a linear time
reduction of Trevisan [22,24], it suffices to solve Max-
Cut on graphs4 where ∆ = poly(log n). We set m to
be sum of weighted degrees, so m :=

∑
j dj . We note

that by Trevisan’s reduction, m = Õ(n), and thus
running times stated in terms of m translate directly
to the same polynomial in n.

The random walk described above is equivalent to
flipping an unbiased coin ` times, and running a sim-
ple (non-lazy) random walk for h steps, where h is the
number of heads seen. At each step of this simple ran-
dom walk, an outgoing edge is chosen with probability

3Indeed, we were working with the heuristic before Tre-
visan’s work, although Trevisan’s work finally provided the way
to analyze it.

4We can think of these as unweighted multigraphs.

proportional to its weight. We call h the hop-length
of the random walk, and we call a walk odd or even
based on the parity of h.

We will denote the two sides of the cut by L and
R. The parameters ε and µ are fixed throughout this
section, and should be considered as constants. We
will choose the length of the walk to be

`(ε, µ) :=
µ(ln(4m/δ2))

2(δ + ε)
.

The reason for this choice will be explained later. Here
δ is an arbitrarily small constant which controls the
error tolerance. The procedure Threshold takes as
input a threshold t, and puts some vertices in one
of two sets, E and O, that are assumed to be global
variables (i.e. different calls to Threshold update the
same sets). We call vertices j ∈ E ∪O classified. Once
classified, a vertex is never re-classified. We perform
a series of random walks to decide this. The number
of walks will be a function of this threshold w(t). We
will specify this function later.

Threshold
Input: Graph G = (V,E).
Parameters: Starting vertex i, threshold t.

1. Perform w(t) walks of length ` from i.
2. For every vertex j that is not classified:

(a) Let ne(j) (resp. no(j)) be the number of
even (resp. odd) length walks ending at j.
Define

ȳi(j) :=
ne(j)− no(j)

djw(t)
.

(b) If ȳi(j) > t, put j in set E . If ȳi(j) < −t,
put it in set O.

We normalize the difference of the number of even
and odd walks by dj to account for differences in de-
grees. This accounts for the fact that the stationary
probability of the random walk at j is proportional to
dj . For the same reason, when we say “vertex cho-
sen at random” we will mean choosing a vertex i with
probability proportional to di. We now need some
definitions.

Definition 3.1 (Work-to-output ratio.) Let A be
an algorithm that, in time T , classifies k vertices (into
the sets E or O). Then the work-to-output ratio of A
is defined to be T

k .

Definition 3.2(Good, Cross, Inc, Cut.) Given two
sets of vertices A and B, let Good(A, B) be the total
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weight of edges that have one endpoint in A and the
other in B. Let Cross(A,B) be the total weight of
edges with only one endpoint in A∪B. Let Inc(A,B)
be the total weight of edges incident on A∪B. We set
Cut(A,B) := Good(A,B) + Cross(A, B)/2.

Suppose we either put all the vertices in E in L or
R, and the vertices in O in R or L respectively, re-
taining whichever assignment cuts more edges. Then
the number of edges cut is at least Cut(E ,O).

Definition 3.3(γ, δ, w(t), σ, f(σ).)

1. We use γ and δ to denote sufficiently small con-
stants. These will be much smaller than any
other parameter of constant value. These are es-
sentially precision parameters for our algorithms
and theorems. The O(·) notation hides inverse
polynomial dependence in these parameters.

2. For every vertex j, let p`
j be the probability

of reaching j starting from i with an `-length
lazy random walk. Let α be an upper bound on

maxj
p`

j

dj
.

3. Define w(t) := κ ln(n) max{α,t}
t2 , for a large enough

constant κ.

4. Define σ := 1 − (1 − ε)1+
1
µ − o(1), where the

o(1) term can be made as small as we please by
setting δ, γ to be sufficiently small constants.

5. Define the function f(σ) (c.f. [19]) as follows:
here σ0 = 0.22815 . . . is a fixed constant.

f(σ) =





0.5 if 1/3 < σ 6 1

−1 +
√

4σ2 − 8σ + 5
2(1− σ)

if σ0 < σ 6 1/3

1
1 + 2

√
σ(1− σ)

if 0 6 σ 6 σ0.

The constant σ0 is simply the value of σ at
which the last two expressions coincide, i.e.
−1+

√
4σ2

0−8σ0+5

2(1−σ0)
= 1

1+2
√

σ0(1−σ0)
.

The parameter α measures how far the walk is
from mixing, because the stationary probability of j
is proportional to dj . The function f(σ) > 0.5 when
σ < 1/3, and this leads to an approximation factor
greater than 0.5. Now we state our main performance
bound for Threshold.

Lemma 3.4 Suppose MaxCut > 1 − ε. Then,
there is a threshold t such that with constant prob-

ability over the choice of a starting vertex i cho-
sen at random, the following holds. The procedure
Threshold(i, t) outputs sets E and O such that
Cut(E ,O) > f(σ)Inc(E ,O). Furthermore, the work-
to-output ratio is bounded by Õ(α∆m1+µ + 1/α).

The main procedure of this section, Find-
Threshold, is just an algorithmic version of the ex-
istential result of Lemma 3.4.

Find-Threshold
Input: Graph G = (V, E).
Parameters: Starting vertex i, constant µ

1. Initialize sets E and O to empty sets.
2. For tr = (1− γ)r, for r = 0, 1, 2, . . ., as long as

tr > γ/m1+µ/2.
(a) Run Threshold(i, tr).
(b) If Cut(E ,O) > f(σ)Inc(E ,O) and |E ∪O| >

(∆t2rn
1+µ log n)−1, output E and O.

Otherwise go to the next threshold.
3. Output FAIL.

We are now ready to state the performance bounds
for Find-threshold.

Lemma 3.5 Suppose MaxCut> 1 − ε. Let
i be chosen at random. With constant prob-
ability over the choice of i and the random-
ness of Find-Threshold(i), the procedure Find-
Threshold(i) succeeds and has a work to output ratio
of Õ(α∆m1+µ + 1/α). Furthermore, regardless of the
value of MaxCut or the choice of i, the worst-case
running time of Find-Threshold(i) is Õ(α∆m2+µ).

The proofs of Lemmas 3.4 and 3.5 use results from
Trevisan’s and Soto’s analyses [19,24]. The vectors we
consider will always be n-dimensional, and should be
thought of as an assignment of values to each of the
n vertices in G. Previous analyses rest on the fact
that a vector that has a large Rayleigh quotient (with
respect to the graph Laplacian5) can be used to find
good cuts. Call such a vector “good”. These analyses
show that partitioning vertices by thresholding over a
good vector x yields a good cut. This means that for
some threshold t, vertices j with x(j) > t are placed
in L and those with x(j) < −t are placed in R. We
would like to show that Threshold is essentially per-
forming such a thresholding on some good vector. We
will construct a vector, somewhat like a distribution,
related to Threshold, and show that it is good. This

5For a vector x and matrix M , the Rayleigh quotient is
x>Mx
x>x

.
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requires an involved spectral analysis and is formalized
in Lemma 3.7. With this in place, we use concentra-
tion inequalities and an adaptation of the techniques
in [19] to connect thresholding to the cuts looked at
by Find-Threshold.

In the following presentation, we first state Lemma
3.7. Then we will show how to prove Lemmas 3.4 and
3.5 using Lemma 3.7. This is rather involved, but in-
tuitively should be fairly clear. It mainly requires un-
derstanding of the random process that Threshold
uses to classify vertices.

We need some definitions. Let A be the (weighted)
adjacency matrix of G and di be the degree of ver-
tex i. The (normalized) Laplacian of the graph is
L = I − D−1/2AD−1/2. Here D is the matrix where
Dii = di and Dij = 0 (for i 6= j). For a vector x
and coordinate/vertex j, we use x(j) to denote the
jth coordinate of x (we do not use subscripts for co-
ordinates of vectors). In [24] and [19], it was shown
that vectors that have high Rayleigh quotients with
L can be used to get a partition that cuts significant
number of edges. Given a vector y, let us do a simple
rounding to get partition vertices. We define the sets
P (y, t) = {j | y(j) > t} and N(y, t) = {j | y(j) 6 −t}.
We refer to rounding of this form as tripartitions, since
we divide the vertices into three sets. The following
lemma, which is Lemma 4.2 from [19], an improvement
of the analysis in [24], shows that this tripartition cuts
many edges for some threshold:

Lemma 3.6 ([19]) Suppose x>Lx > 2(1 − σ)‖x‖2.
Let y = D−1/2x. Then, for some t (called good),

Cut(P (y, t), N(y, t)) > f(σ)Inc(P (y, t), N(y, t)).

The algorithm of Trevisan is the following: compute
the top eigenvector x of L (approximately), compute
y = D−1/2x, and find a good threshold t and the
corresponding sets P (y, t), N(y, t). Assign P (y, t) or
N(y, t) to L and R (or vice-versa, depending on which
assignment cuts more edges), and recurse on the re-
maining unclassified vertices.

The algorithms of this paper essentially mimic this
process, except that instead of computing the top
eigenvector, we use random walks. We establish a con-
nection between random walks and the power method
to compute the top eigenvector. Let ph

i,j be the prob-
ability that a length ` (remember that this is fixed)
lazy random walk from i reaches j with hop-length h.
Then define the vector qi as follows: the jth coordi-

nate of qi is

qi(j) :=
1√
dj

( ∑

h even

ph
i,j −

∑

h odd

ph
i,j

)

=
1√
dj

∑̀

h=0

(−1)hph
i,j .

Note that Threshold is essentially computing an
estimate ȳi(j) of qi(j)/

√
dj . For convenience, we will

denote D−1/2qi by yi. This is the main lemma of this
section.

Lemma 3.7 Let δ > 0 be a sufficiently small con-
stant, and µ > 0 be a (constant) parameter. If
` = µ(ln(4m/δ2))/[2(δ + ε′)], where ε′ = − ln(1 − ε),
then with constant probability over the choice of i,
‖qi‖2 = Ω(1/m1+µ), and

qi
>Lqi > 2e−(2+ 1

µ )δ(1− ε)1+
1
µ ‖qi‖2, (1)

Although not at all straightforward, Lemma 3.7 and
Lemma 3.6 essentially prove Lemma 3.4. To ease the
flow of the paper, we defer these arguments to Section
3.1.

Lemma 3.7 is proved in two parts. In the first, we
establish a connection between the random walks we
perform and running the power method on the Lapla-
cian:

Claim 3.8 Let ei be ith standard basis vector. Then,
we have qi = 1

2`L`
(

1√
di

ei

)
.

Proof: Note that L` = (I − D−1/2AD−1/2)` =
(D−1/2(I − AD−1)D1/2)` = D−1/2(I − AD−1)`D1/2.
Hence,

L`

(
1√
di

ei

)

= D−1/2(I −AD−1)`ei

= 2`D−1/2
∑̀

h=0

(−1)h

(
`

h

)(
1
2

)`−h (
1
2
AD−1

)h

ei

= 2`qi

The last equality follows because the vector(
`
h

) (
1
2

)`−h (
1
2AD−1

)h
ei is the vector of probabilities

of reaching different vertices starting from i in a walk
of length ` with hop-length exactly h. We also used
the facts that D1/2 1√

di
ei = ei and D−1/2ej = 1√

dj

ej .

¤
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In the second part, we show that with constant
probability, a randomly chosen starting vertex yields
a good starting vector for the power method, i.e., the
vector qi satisfies (1). This will require a spectral anal-
ysis. We need some notation first. Let the eigenval-
ues of L be 2 > λ1 > λ2 > · · ·λn = 0, and let the
corresponding (unit) eigenvectors be v1, v2, . . . vn =
D1/2~1V . For a subset S of vertices, define Vol(S) =∑

i∈S di. Let H = {k : λk > 2e−δ(1−ε)}. Any vector
x can be expressed in terms of the eigenvectors of L as
x =

∑
k αkvk. Define the norm ‖x‖H =

√∑
k∈H α2

k.

Let (S, S̄) be the max-cut, where we use the con-
vention S̄ = V \ S. Let Vol(S) 6 Vol(V )/2 and de-
fine s := Vol(S). Note that m = Vol(V ). Since the
max-cut has size at least (1 − ε)m/2, we must have
s > (1 − ε)m/2. We set the vector x = D1/2y where
y = 1

s
~1S− 1

m
~1V where ~1S is the indicator vector for S.

We will need some preliminary claims before we can
show (1).

Claim 3.9 ‖x‖2H > δ/m.

Proof. We have

x>Lx =
∑

i,j∈E

(y(i)− y(j))2

= E(S, S̄) · 1
s2

> (1− ε) · (m/2)
s2

> (1− ε)m
2s2

Now6, ‖x‖2 = 1
s − 1

m . Let x =
∑

k αkvk be the rep-
resentation of x in the basis given by the vk’s, and let
a := ‖x‖2H . Then we have ‖x‖2 =

∑
k α2

k, and

x>Lx =
∑

k

λkα2
k

6 2
∑

k∈H

α2
k + 2e−δ(1− ε)

∑

k/∈H

α2
k

= 2a + 2e−δ(1− ε)
(

1
s
− 1

m
− a

)
.

Combining the two bounds, and solving for a, we
get the required bound for small enough δ. ¤

Claim 3.10 With constant probability over the choice
of i, we have ‖ei‖2H > δdi/4m.

6This is easily seen using Pythagoras’ theorem: since we
have D1/2( 1

s
~1S − 1

m
~1V ) ·D1/2~1V = 0. This only uses the fact

that S ⊆ V .

Proof: Let T := {i ∈ S : ‖ 1√
di

ei‖2H < δ
4m}, and let

t = Vol(T ). Our aim is to show that t is at most a
constant fraction of s. For the sake of contradiction,
assume t > (1− θ)s, where θ = δ(1− ε)/16. Let

z = D1/2

(
1
t
~1T − 1

m
~1
)

.

We have

‖x−z‖2H 6 ‖x−z‖2 =
1
t
− 1

s
6 2θ

s
6 4θ

(1− ε)m
=

δ

4m
.

The second equality in the above uses the fact that
t > (1− θ)s and θ < 1/2. The third inequality follows
from the fact that s > (1 − ε)m/2. By the triangle
inequality and Claim 3.9, we have

‖z‖H > ‖x‖H−‖x−z‖H >
√

δ

m
−

√
δ

4m
=

√
δ

4m
.

Now, we have z =
∑

i∈T (di

t )D1/2( 1
di

ei − 1
m

~1V ), so by
Jensen’s inequality, we get

δ

4m
6 ‖z‖2H

6
∑

i∈T

di

t
·
∥∥∥∥D1/2

(
1
di

ei − 1
m

~1V

)∥∥∥∥
2

H

=
∑

i∈T

di

t
·
∥∥∥∥D1/2

(
1
di

ei

)∥∥∥∥
2

H

<
δ

4m
,

a contradiction. The equality in the above holds be-
cause D1/2~1V has no component along the eigenvec-
tors corresponding to H (this is an eigenvector itself,
with eigenvalue 0).

Thus the set S \ T has volume at least

θs > δ(1− ε)2m/32.

Note that the sampling process, which chooses the
initial vertex of the random walk by choosing a ran-
dom edge and choosing a random end-point i of it,
hits some vertex in S \ T with probability at least
Vol(S\T )
Vol(V ) > δ(1− ε)2/32, i.e. constant probability. ¤

At this point, standard calculations for the power
method imply Lemma 3.7.

Proof:(Of Lemma 3.7) From Claim 3.10, with con-
stant probability ‖ei‖2H > δdi/4m. Let us assume this
is case.
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For convenience, define β = (δ+ε′)
µ , so that the num-

ber of walks is ` = ln(4m/δ2)
2β . Now let

H ′ = {i : λi > 2e−(δ+β)(1− ε)}.

Write 1√
di

ei in terms of the vk’s as 1√
di

ei =
∑

k αkvk.
Let yi = L` 1√

di
ei =

∑
k αkλ`

kvk. Note that qi = 1
2` yi.

Then we have

ŷ>i Lyi =
∑

k

α2
kλ2`+1

k >
∑

k∈H′
α2

kλ2`
k ·2e−(δ+β)(1−ε)

and

‖ŷi‖2 =
∑

k

α2
kλ2`

k =
∑

k∈H′
α2

kλ2`
k

[
1 +

∑
k/∈H′ α2

kλ2`
k∑

k∈H′ α2
kλ2`

k

]
.

We have
∑

k/∈H′ α2
kλ2`

k∑
k∈H′ α2

kλ2`
k

6
∑

k/∈H′ α2
kλ2`

k∑
k∈H α2

kλ2`
k

6 (2e−(δ+β)(1− ε))2`

δ
4m (2e−δ(1− ε))2`

=
4me−2β`

δ
.

Thus,
ŷ>i Lŷi

‖ŷi‖2 > 2e−(δ+β)(1− ε)
1 + 4me−2β`

δ

Observe that ŷi is just a scaled version of qi, so we
can replace ŷi by qi above. For the denominator in
the right, we would like to set that to be eδ. Choosing
` = ln(4m/δ2)

2β , we get

qi
>Lqi > 2e−(2δ+β)(1− ε)‖qi‖2

= 2e−(2+ 1
µ )δ(1− ε)1+

1
µ ‖qi‖2.

Since ‖ei‖2H > δdi/4m, we have

∑

k∈H

α2
k =

∥∥∥∥
1√
di

ei

∥∥∥∥
2

H

> δ

4m
.

This implies

‖qi‖2 =
1

22`
‖yi‖2 =

1
22`

∑

k

α2
kλ2`

k > 1
22`

∑

k∈H

α2
kλ2`

k .

By definition, for all k ∈ H, λk > 2e−δ(1 − ε).
This gives a lower bound on the rate of decay of these

coefficients, as the walk progresses.

‖qi‖2 > 1
22`

∑

k∈H

α2
k(2e−δ(1− ε))2`

> δ

4m
e−2δ`(1− ε)2`

= Ω
(

1
4m1+µ

)
,

by our choice of ` = ln(4m/δ2)
2β . ¤

3.1 Proofs of Lemmas 3.4 and 3.5

Both Lemma 3.5 and Lemma 3.4 follow directly
from the following statement.

Lemma 3.11 Let w(t) = (c′ ln2 /γ2)(α/t2), where c′

is a sufficiently large constant. Let Cr denote the set
of vertices classified by Threshold(i, tr). The fol-
lowing hold with constant probability over the choice
of i and the randomness of Threshold. There exists
a threshold tr = (1− γ)r such that

∑

j∈Cr

dj = Ω((t2rm
1+µ log n)−1).

Also, the tripartition generated satisfies Step 2(b) of
Find-Threshold.

In this section, we will prove this lemma. But first,
we show how this implies Lemmas 3.4 and 3.5.

Proof (of Lemma 3.4) We take the threshold tr given
by Lemma 3.11. Since it satisfies Step 2(b) of Find-
Threshold, Cut(E ,O) > f(σ)Inc(E ,O). To see the
work to output ratio, observe that the work done
is Õ(w(tr)) = Õ(max(α, tr)/t2r). It is convenient to
write this as Õ(α/t2r + 1/α). The output is Cr. We
have

∆|Cr| >
∑

j∈Cr

dj = Ω
(

1
t2rm

1+µ log n

)

The output is at least 1. Therefore, the work per
output is at most Õ(α∆m1+µ + 1/α). ¤

Proof (of Lemma 3.5) The running time when there
is failure is easy to see. The running time upto
round r is Õ(

∑
j6r max(α, tj)/t2j ) = Õ(α/t2r + 1/α).

Since r∗ = 1/n1+µ/2 and α 6 1/n2, we get the de-
sired bound. By Lemma 3.11, we know that Find-
Threshold succeeds with high probability. We have
some round r where Find-Threshold will terminate
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(satisfying the conditions of Step 2(b)). The work to
output ratio analysis is the same as the previous proof,
and is at most Õ(α∆m1+µ + 1/α). ¤

We will first need some auxilliary claims that will
help us prove Lemma 3.11. The first step is the
use concentration inequalities to bound the number
of walks required to get coordinates of yi. As men-
tioned before, we designate the coordinates of qi by
qi(j). The pi vector is the probability vector of the
random walk (without charges) for ` steps. In other
words, using the notation i

even−→j (resp. i
odd−→j) to de-

note the events that an even (resp. odd) length walk
from i reaches j, we have

yi(j) := (Pr[ieven−→j]−Pr[i odd−→j])/dj

and
pi(j) := Pr[ieven−→j] + Pr[i odd−→j].

This clearly shows that the random walks performed
by Threshold are being used to estimate coordinates
of qi. The following claim shows how many w walks
are required to get good a approximation of coordi-
nates qi.

Claim 3.12 Suppose w walks are performed. Let c be
a sufficiently large constant and 1/ ln n < γ < 1. The
following hold with probability at least > 1− n−4.

• If w > (c ln n/γ2)(max(α, t)/t2), then we can get
an estimate ȳi(j) such that

√
di|ȳi(j) − yi(j)| 6

γt.

• If w > (c ln n/γ2)m1+µ, then we can get an es-
timate ȳi(j) such that

√
dj |ȳi(j) − qi(j)| 6 βj,

where βj :=
√

γ2 max{pj ,1/m1+µ}
m1+µ .

Proof We define a vector of random variables Xk,
one for each walk. Define random variables Xk(j) as
follows:

Xk(j) =





1 walk k ends at j with even hops
−1 walk k ends at j with odd hops
0 walk k doesn’t end at j

Note that E[Xk(j)] = yi(j)dj , and Var[Xk(j)] = pj .
Our estimate ȳi(j) will be 1

w

∑
k Xk(j). Observing

that |Xk(j)| 6 1, Bernstein’s inequality implies that
for any β > 0,

Pr

[∣∣∣∣∣
1

wdj

w∑

k=1

Xk(j)− yi(j)

∣∣∣∣∣ > β

]

6 2 exp

(
− 3wβ2d2

j

6pi(j) + 2βdj

)
.

For the first part, we set β = γt/
√

dj . For a suffi-
ciently large c, We get that the exponent is at least
4 lnn, and hence the probability is at most 1/n4. For
the second part, we set β = βj/

√
dj . Note that if

pj < 1/m1+µ, then βj < 1/m1+µ. So, the exponent is
at least 4 ln n, completing the proof. ¤

We need to find a vector with a large Rayleigh quo-
tient that can be used in Lemma 3.6. We already have
a candidate vector qi. Although we get a very good
approximation of this, note that the order of vertices
in an approximation can be very far from qi. Nonethe-
less, the following lemma allows us to do so.

Claim 3.13 Let x be a vector such that x>Lx > (2−
ε)‖x‖2. Then, if x′ is a vector such that ‖x − x′‖ <
δ‖x‖, then

‖x′‖2 > (1− 3δ)‖x‖2

and
x′>Lx′ > (2− ε− 12δ)‖x′‖2.

Proof We have

x′>Lx′ − x>Lx = x′>Lx′ − x′>Lx + x′>Lx− x>Lx

= (x′ − x)>L(x + x′).

Thus,

|x′>Lx′ − x>Lx| 6 (‖x′‖+ ‖x‖) · ‖L‖ · ‖x− x′‖
6 (2 + δ)‖x‖ · 2 · δ‖x‖
6 6δ‖x‖2.

Furthermore,

|‖x′‖2 − ‖x‖2| 6 (‖x′‖+ ‖x‖) · ‖x− x′‖
6 (2 + δ)‖x‖ · δ‖x‖
6 3δ‖x‖2.

Thus, we have

x′>Lx′ > x>Lx− 6δ‖x‖2
> (2− ε− 6δ)‖x‖2

> (2− ε− 6δ)
(1 + 3δ)

‖x′‖2

> (2− ε− 12δ)‖x′‖2.

¤

Now we prove Lemma 3.11.

Proof: Our cutting procedure is somewhat differ-
ent from the sweep cut used in [24]. The most naive
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cut algorithm would take qi and perform a sweep cut.
Lemma 3.7 combined Lemma 3.6 would show that
we can get a good cut. Unfortunately, we are us-
ing an approximate version of yi (ȳi) for this purpose.
Nonetheless, Claim 3.12 tells us that we can get good
estimates of yi, so ȳi is close to yi. Claim 3.13 tells us
that ȳi is good enough for all these arguments to go
through (since Lemma 3.6 only requires a bound on
the Rayleigh quotient).

Our algorithm Find-Threshold is performing a
geometric search for the right threshold, invoking
Threshold many times. In each call of the Thresh-

old, let estimate vector ȳ
(r)
i be generated. Using

these, we will construct a vector ỹi. This construction
is not done by the algorithm, and is only a thought
experiment to help us analyze Find-Threshold.

Initially, all coordinates of ỹi are not defined,
and we incrementally set values. We will call
Threshold(i, tr) in order, just as Find-Threshold.
In the call to Threshold(i, tr), we observe that ver-
tices which are classified. These are the vertices j for
which ȳ

(r)
i (j) > tr and which have not been classified

before. For all such j, we set ỹi(j) := tr. We then
proceed to the next call of Threshold and keep con-
tinuing until the last call. After the last invocation of
Threshold, we simply set any unset ỹi(j) to 0.

Claim 3.14 ‖D1/2ỹi − qi‖ 6 7γ‖qi‖

Proof Suppose yi(j) > tr(1 + 4γ). Note that
‖ȳ(r−1)

i (j)− qi(j)‖ 6 γtr−1/
√

dj . Therefore,

ȳ
(r−1)
i (j) > tr(1 + 4γ)− γtr−1

> tr(1 + 4γ)− γ(1 + 2γ)tr
> tr(1 + 2γ)
> tr−1.

So ỹi(j) must be set in round r − 1, if not before. If
ỹi(j) remains unset to the end (and is hence 0), then
we have yi(j) 6 tr(1 + 4γ). This bound implies that
qi(j) 6 2γ/m1+µ/2. The total contribution of all these
coordinates to the difference ‖D1/2ỹi− qi‖2 is at most
4γ2/m1+µ 6 4γ2‖qi‖2.

Suppose ỹi(j) is set in round r to tr. This means
that ȳ

(r)
i (j) > tr. By the choice of w(tr) and Claim

3.12,
√

dj |ȳ(r)
i (j)− yi(j)| 6 γtr. Therefore,

|
√

dj ȳ
(r)
i (j)− qi(j)| 6 γtr 6 2γqi(j)

=⇒
√

dj ȳ
(r)
i (j) 6 (1 + 2γ)qi(j)

=⇒
√

dj ỹi(j) =
√

djtr 6 (1 + 2γ)qi(j).

Combining with the first part, we get

|
√

dj ỹi(j)− qi(j)| 6 5γqi(j).
¤

We now observe that sweep cuts in ỹi generate ex-
actly the same classifications that Threshold(i, tr)
outputs. Therefore, it suffices to analyze sweep cuts
of ỹi. We need to understand why there are thresh-
olds that cut away many vertices. Observe that the
coordinates of ỹi are of the form (1− γ)r. This vector
partitions all vertices in a natural way. For each r,
define Rr := {j|ỹi(j) = tr}. Call r sparse, if


 ∑

j∈Rr

dj


 t2r 6 γ3

m1+µ log n
.

Otherwise, it is dense. Note that a dense threshold
exactly satisfies the condition in Lemma 3.11. Abus-
ing notation, we call a vertex j sparse if j ∈ Rr, such
that r is sparse. Similarly, a threshold tr is sparse if
r is sparse. We construct a vector ŷi. If j ∈ Rr, for r
sparse, then ŷi(j) := 0. Otherwise, ŷi(j) := ỹi(j).

Claim 3.15 ‖D1/2(ŷi − ỹi)‖ 6 2γ‖qi‖

Proof

‖D1/2(ŷi − ỹi)‖2 =
∑

j:byi(j)=0

dj ỹi(j)2

=
∑

r:r sparse

∑

j∈Rr

dj ỹi(j)2

=
∑

r:r sparse

∑

j∈Rr

djt
2
r

6 4 log n

γ
· γ3

m1+µ log n

=
4γ2

m1+µ log n

6 γ24‖qi‖2.
¤

Let us now deal with the vector ŷi and perform the
sweep cut of [24]. All coordinates of ŷi are at most
1. We choose a threshold t at random: we select t2

uniformly at random7 from [0, 1]. We do a rounding
7Both [24] and [19] actually select t uniformly at random,

and use
√

t as a threshold. We do this modified version because
it is more natural, for our algorithm, to think of the threshold
as a lower bound on the probabilities we can detect.
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to get the vector zt ∈ {−1, 0, 1}n:

zt(j) =





1 if ŷii(j) > t

−1 if ŷii(j) 6 −t

0 if ŷii(j)| < t

The non-zero vertices in zt are classified accordingly.
A cut edge is one both of whose endpoints are non-
zero and of opposite size. A cross edge is one where
only one endpoint is zero. This classifying procedure
is shown to cut a large fraction of edges. By Lemma
3.7, we have q>i Lqi > 2(1 − ε̄)‖qi‖2 (where ε̄ is some
function of ε and µ). By Claims 3.14, 3.15 and Claim
3.13, (D1/2ŷii)>L(D1/2ŷii) > 2(1− ε̄−cγ)‖D1/2ŷii‖2.
Then, by Lemma 3.6, there are good thresholds for yi.
It remains to prove the following claim.

Claim 3.16 There exit denseand good thresholds for ỹi.

Proof We follow the analysis of [19]. We will perform
sweep cuts for both ỹi and yi and follow their behavior.
First, let take the sweep cut over yi. Consider the
indicator random variable C(j, k) (resp. X(j, k)) that
is 1 if edge (j, k) is a cut (resp. cross) edge. It is then
show that E[C(j, k) + βX(j, k)] > β(1 − β)(ŷi(j) −
ŷi(k))2, where the expectation is over the choice of
the threshold t. Let us define a slight different choice
of random thresholds. As before t2 is chosen uniformly
at random from [0, 1]. Then, we find the smallest tr
such that r is dense and tr > t. We use this t∗ := tr
as the threshold for the cut. Observe that this gives
the same distribution over cuts as the original and
only selects dense thresholds. This is because in ŷi all
non-dense vertices are set to 0. All thresholds strictly
in between two consective dense tr’s output the same
classification. The expectations of C(j, k) and X(j, k)
are still the same.

We define analogous random variables C ′(j, k) and
X ′(j, k) for ỹi. We still use the distribution over
dense thresholds as described above. When both j
and k are dense, we note that C ′(j, k) = C(j, k) and
X ′(j, k) = X(j, k). This is because if t falls below,
say, ỹi(j) (which is equal to ȳi(j)), then j will be
cut. Even though t∗ > t, it will not cross ỹi(j),
since j is dense. So, we have E[C ′(j, k) + βX ′(j, k)] =
E[C(j, k) + βX(j, k)].

If both j and k are not dense, then C ′(j, k) =
X ′(j, k) = 0. Therefore,

E[C(j, k) + βX(j, k)] > E[C ′(j, k) + βX ′(j, k)].

That leaves the main case, where k is dense but j is
not. Note that E[C(j, k)] = 0, since yi(j) = 0. We

have
E[X(j, k)] = ŷii(k)2 = ỹi(k)2.

If |ỹi(j)| 6 |ỹi(k)|, then

E[X ′(j, k)] = ỹi(k)2 − ỹi(j)2.

If |ỹi(j)| 6 |ỹi(k)|, then

E[X ′(j, k)] > 0 > ỹi(k)2 − ỹi(j)2.

So, we can bound

E[X ′(j, k)] > E[X(j, k)]− ỹi(j)2

and

E[C ′(j, k)+βX ′(j, k)] > β(1−β)(ỹi(j)−ỹi(k))2−βỹi(j)2.

Summing over all edges, and applying the bound in
Lemma 4.2 of 3.6 for the non-prime random variables
(dealing with ŷi), we get

E[
∑

(j,k)

C ′(j, k) + βX ′(j, k)]

> E[
∑

(j,k)

C(j, k) + βX(j, k)]− β
∑

j sparse

dj ỹi(j)2

> β(1− β)
∑

(j,k) edge

(ŷi(j)− ŷi(k))2 − βγ2‖D1/2ỹi‖2

= β(1− β)(D1/2ŷi)>L(D1/2ŷi)− βγ2‖D1/2ỹi‖2
> 2(1− σ̂)β(1− β)‖D1/2yi‖2−4β(1− β)γ2‖D1/2yi‖2
> 2(1− σ)β(1− β)‖D1/2ỹi‖2.
The second last step comes from the bound on
(D1/2ŷii)>L(D1/2ŷii) we have found, and the obser-
vation that β will always be set to less than 1/2. We
have 1− σ̂ = e−(2δ+µ)(1−ε)−O(γ) (based on Lemma
3.7. Since |σ− σ̂| = O(γ), we get σ as given in Lemma
3.5. Because of the equations above, the analysis of
[19] shows that the randomly chosen threshold t∗ has
the property that

Cut(P (ỹi, t
∗),N(ỹi, t

∗))
> f(σ)Inc(P (ỹi, t

∗), N(ỹi, t
∗)).

Therefore, some threshold satisfies the condition 2(b)
of Find-Threshold. Note that the thresholds are
chosen over a distribution of dense thresholds. Hence,
there is a good and dense threshold. ¤

¤
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4 CutOrBound and local partitioning

We describe our local partitioning procedure Cu-
tOrBound which is used to get the improved run-
ning time. We first set some notation. For a subset
of vertices S ⊆ V , define S̄ = V \ S, and let E(S, S̄)
be the set of edges crossing the cut (S, S̄). Define
the weight of S to be ω(S) = 2Vol(S), to account
for the self-loops of weight 1/2: we assume that each
vertex has a self-loop of weight di, and the random
walk simply chooses one edge with probability propor-
tional to its weight. For convenience, given a vertex
j, ω(j) = ω({j}) = 2dj . For a subset of edges F ⊆ E,
let ω(F ) =

∑
e∈F we. The conductance of the set S,

φS , is defined to be φS = ω(E(S,S̄))
min{ω(S),ω(S̄)} .

CutOrBound
Input: Graph G.
Parameters: Starting vertex i, constants τ, ζ,
length ` such that ` > ln(m)/ζ.
Derived parameters:

1. Define α := m−τ , constant φ chosen to satisfy

− log
(

1
2
(
√

1− 2φ +
√

1 + 2φ)
)

= ζτ,

w := d30`2 ln(n)/αe, and b :=
⌈

`
2(1−2φ)α

⌉
.

2. Run w random walks of length ` from i.
3. For each length l = 0, 1, 2, . . . , `:
(a) For any vertex j, let wj be the number of walks

of length l ending at j. Order the vertices in
decreasing order of the ratio of wj/dj , breaking
ties arbitrarily.

(b) For all k 6 b, compute the conductance of the
set of top k vertices in this order.

(c) If the conductance of any such set is less than
φ, stop and output the set.

4. Declare that maxj
pj

2dj
6 256α.

The main theorem of this section is:

Theorem 4.1 Suppose a lazy random walk is run from
a vertex i for ` > ln(m)/ζ steps, for some constant
ζ. Let p` be the probability distribution induced on
the final vertex. Let α = m−τ , for constant τ < 1,
be a given parameter so that ζτ < 1/8, and let φ be
chosen to satisfy − log( 1

2 (
√

1− 2φ +
√

1 + 2φ)) = ζτ .
Then, there is an algorithm CutOrBound, that with
probability 1 − o(1), in O(∆ log4(n)/α) time, finds a
cut of conductance less than φ, or declares correctly

that maxj
p`

j

2dj
6 256α.

We provide a sketch before giving the detailed proof.
We use the Lovász-Simonovits curve technique [15].
For every length l = 0, 1, . . . , `, let pl be the proba-
bility vector induced on vertices after running a ran-
dom walk of length l. The Lovász-Simonovits curve
I l : [0, 2m] → [0, 1] is constructed as follows. Let
j1, j2, . . . , jn be an ordering of the vertices such that

pl
j1

ω(j1)
>

pl
j2

ω(j2)
> · · · >

pl
j1

ω(jn)
.

For k ∈ {1, . . . , n}, define the set Sl
k =

{j1, j2, . . . , jk}. For convenience, we define Sl
0 = ∅, the

empty set. For a subset of vertices S, and a probability
vector p, define p(S) =

∑
i∈S pi. Then, we define the

curve I l at the following points: I l(ω(Sl
k)) := pl(Sl

k),
for k = 0, 1, 2, . . . , n. Now we complete the curve I l

by interpolating between these points using line seg-
ments. Note that this curve is concave because the
slopes of the line segments are decreasing. Also, it is
an increasing function. Lovász and Simonovits prove
that as l increases, I l “flattens” out, at a rate gov-
erned by the conductance. A flatter I l means that
the probabilities at vertices are more equal (slopes are
not very different), and hence the walk is mixing.

Roughly speaking, the procedure CutOrBound
only looks the portion of I l upto Sl

b, since it only tries
to find sweep cuts among the top b vertices. We would
like to argue that if CutOrBound is unsuccessful in
finding a low conductance cut there, the maximum
probability should be small. In terms of the I ls, this
means that the portion up to Sl

b flattens out rapidly.
In some sense, we want to prove versions of theorems
in [15] that only talk about a prefix of the I l curves.

The issue now is that it is not possible to compute
the pl

j ’s (and I l) exactly since we only use random
walks. We run walks of length l and get an empirical
distribution p̃l. We define Ĩ l to be the correspond-
ing Lovász-Simonovits curve corresponding to p̃l. If
we run sufficiently many random walks and aggregate
them to compute p̃l

j , then concentration bounds im-
ply that pl

j is close to p̃l
j (when pl

j is large enough).
Ideally, this should imply that the behavior of Ĩ l is
similar to I l. There is a subtle difficulty here. The or-
der of vertices with respect to pl and p̃l could be very
different, and hence prefixes in the I l and Ĩ l could be
dealing with different subsets of vertices. Just because
I l is flattening, it is not obvious that Ĩ l is doing the
same.

Nonetheless, because for large pl
j ’s, p̃l

j is a good
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approximation, some sort of flattening happens for
Ĩ l. We give some precise expressions to quantify this
statement. Suppose CutOrBound is unable to find
a cut of conductance φ. Then we show that for any
x ∈ [0, 2m], if x̂ = min{x, 2m− x},

Ĩ l(x) 6 e3η

2
(Ĩ l−1(x− 2φx̂) + Ĩ l−1(x + 2φx̂)) + 4ηαx.

Here, η = 1/` is an error parameter. This equation
gives the flattening from l − 1 to l. Since Ĩ l−1 is con-
cave, the averaging in the first part shows that Ĩ l(x) is
much smaller than Ĩ l−1(x). Note that additive error
term, which does not occur in [15]. This shows that
when x is large, this bound is not interesting. That is
no surprise, because we can only sample some prefix
of I l. Then, we prove by induction on l that, if we
define

ψ = − log
(

1
2
(
√

1− 2φ +
√

1 + 2φ)
)

= ζτ,

then

Ĩ l(x) 6 e3ηl
[√

xe−ψl +
x

2m

]
+ 4e4ηlαx.

Recall that η = 1/`. The e−ψl term decays very
rapidly. For the final ` > log(m)/ζ, and for x = 1,
all terms become O(α). We then get

max
j

p̃`
j

2dj
= Ĩ`(1) 6 O(e−ψ` + 1/m + α) 6 O(α).

4.1 Detailed proof of Theorem 4.1

First, we note that φ 6
√

2ζτ , so 1 − 2φ > 0.
Consider the CutOrBound algorithm. It is easy to
see that this algorithm can be implemented to run
in time O(∆ log4(n)/α), because w = O(log3(n)/α),
b = O(log(n)/α) and ` = O(log(n)).

We now prove that this algorithm has the claimed
behavior. We make use of the Lovász-Simonovits
curve technique. For every length l = 0, 1, . . . , `, let
pl be the probability vector induced on vertices after
running a random walk of length l.

Now, we construct the Lovász-Simonovits curve
[15], I l : [0, 2m] → [0, 1] as follows. Let j1, j2, . . . , jn

be an ordering of the vertices as follows:

pl
j1

ω(j1)
>

pl
j2

ω(j2)
> · · · >

pl
j1

ω(jn)
.

For k ∈ {1, . . . , n}, define the set Sl
k = {j1, j2, . . . , jk}.

For convenience, we define Sl
0 = ∅, the empty set.

For a subset of vertices S, and a probability vector p,
define p(S) =

∑
i∈S pi. Then, we define the curve

I l at the following points: I l(ω(Sl
k)) := pl(Sl

k),
for k = 0, 1, 2, . . . , n. Now we complete the curve I l

by interpolating between these points using line seg-
ments. Note that the slope of the line segment of the

curve at the points ω(Sl
k), ω(Sl

k+1) is exactly
pl

jk+1
ω(jk+1)

.
A direct definition of the curve is the following: for
any point x ∈ [0, 2m], if k is the unique index where
x ∈ [ω(Sl

k), ω(Sl
k+1)), then I l(x) = pl(Sl

k) + (x −
ω(Sl

k)) · pl
jk+1

ω(jk+1)
.

An useful alternative definition for I l(x) is the fol-
lowing:

I l(x) = max
∑

i

pl
iwi

s.t. w1, w2, . . . , wn ∈ [0, 1];
∑

i

ω(i)wi 6 x. (2)

Note that this curve is concave because the slopes
of the line segments are decreasing. Also, it is an in-
creasing function. Now, Lovász and Simonovits prove
the following facts about the curve: let S ⊆ V be any
set of vertices, and let xS = ω(S) and φS be its con-
ductance. For x ∈ [0, 2m], define x̂ = min{x, 2m−x}.
Then, we have the following:

pl(S) 6 1
2
(I l−1(xS − 2φS x̂S) + I l−1(xS + 2φS x̂S)).

(3)
Furthermore, for any x ∈ [0, 2m], we have I l(x) 6
I l−1(x).

The issue now is that it is not possible to compute
the pl

j ’s exactly since we only use random walks. Fix
an error parameter η = 1/`. In the algorithm Cu-
tOrBound, we run w = c · 1

α · ln(n) walks of length `,
where c = 30/η2. For each length l, 0 6 l 6 `, consider
the empirical distribution p̃l induced by the walks on
the vertices of the graph, i.e. p̃l

j = wj/w, where wj is
the number of walks of length l ending at j. We search
for low conductance cuts by ordering the vertices in
decreasing order of p̃l and checking the sets of top k
vertices in this order, for all k = 1, 2, . . . , O(1/ηα).
This takes time O(w`). To show that this works, first,
define Ĩ l be the Lovász-Simonovits curve correspond-
ing to p̃l. Then, we have the following:

Lemma 4.2 With probability 1 − o(1), the following
holds. For every vertex subset of vertices S ⊆ V , we
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have

(1−η)pl(S)−ηαω(S) 6 p̃l
j 6 (1+η)pl(S)+ηαω(S).

For every length l, and every x ∈ [0, 2m],

(1− η)I l(x)− ηαx 6 Ĩ l(x) 6 (1 + η)I l(x) + ηαx.

Proof For any vertex j, define ηj = η(pl
j + α). By

Bernstein’s inequality, we have

Pr[|p̃l
j − pl

j | > ηj ] 6 2 exp

(
− η2

j w

2pl
j + 2ηj/3

)

< 2 exp(−η2c ln(n)/3)

6 1/n10

since c = 30/η2. So with probability at least 1− o(1),
for all lengths l, and for all vertices j, we have

(1− η)pl
j − ηα 6 p̃l

j 6 (1 + η)pl
j + ηα.

Assume this is the case. This immediately implies
that for any set S, we have

(1−η)pl(S)−ηα|S| 6 p̃l(S) 6 (1+η)pl(S)+ηα|S|.
Now, because both curves I l and Ĩ l are piecewise

linear, concave and increasing, to prove the lower
bound in the claimed inequality, it suffices to prove
it for only x = xk = ω(Sl

k), for k = 0, 1, . . . , n. So fix
such an index k.

Now, I l(xk) = pl(Sl
k). Consider p̃l(Sl

k). We have

p̃l(Sl
k) > (1− η)pl(Sl

k)− ηα|Sl
k|

> (1− η)pl(Sl
k)− ηαω(Sl

k).

Now, the alternative definition of the Lovász-
Simonovits curve (2) implies that Ĩ l(ω(Sl

k)) > p̃l(Sl
k),

so we get

Ĩ l(xk) > (1− η)pl(Sl
k)− ηαxk,

as required. The upper bound is proved similarly, con-
sidering instead the corresponding sets S̃l

k for Ĩ l con-
sisting of the top k vertices in p̃l probability. ¤

The algorithm CutOrBound can be seen to be
searching for low conductance cuts in the top b vertices
in the order given by p̃l

j/ω(j). Now, we prove that if
we only find large conductance cuts, then the curve Ĩ l

“flattens” out rapidly. Let j′1, j
′
2, . . . , j

′
n be this order.

Let S̃l
k = {j′1, j′2, . . . , j′k} be the set of top k vertices in

the order, xk = ω(S̃l
k), and φk be the conductance of

S̃l
k. Now we are ready to show our flattening lemma:

Lemma 4.3 With probability 1 − o(1), the follow-
ing holds. Suppose the algorithm CutOrBound finds
only cuts of conductance φ when sweeping over the
top b vertices in p̃l probability. Then, for any index
k = 0, 1, . . . , n, we have

pl(S̃l
k) 6 1

2
(I l−1(xk−2φx̂k)+I l−1(xk+2φx̂k))+ηαφx̂k.

Proof Let G =
{

j :
pl−1

j

ω(j) > ηα

}
. We have

1 > pl−1(G) > ηαω(G),

so ω(G) < 1/ηα.

As defined in the algorithm CutOrBound, let
b = d 1

2(1−2φ)ηαe. Let a be the largest index so that
p̃l

j′a
> 0. If a < b, then let Z be the set of b−a vertices

k of zero p̃l probability considered by algorithm Cu-
tOrBound for searching for low conductance cuts.
We assume that in choosing the ordering of vertices
to construct Ĩ l, the vertices in Z appear right after the
vertex j′a. This doesn’t change the curve Ĩ l since the
zero p̃l probability vertices may be arbitrarily ordered.

Suppose that the algorithm CutOrBound finds
only cuts of conductance at least φ when running
over the top b vertices. Then, let k be some index
in 0, 1, . . . , n. We consider two cases for the index k:

Case 1: k 6 b:
In this case, since the sweep only yielded cuts of con-
ductance at least φ, we have φk > φ. Then (3) implies
that

pl(S̃l
k) 6 1

2
(I l−1(xk − 2φx̂k) + I l−1(xk + 2φx̂k)).

Case 2: k > b:
We have

xk > xb = ω(S̃l
b) > 2b > 1

(1− 2φ)ηα
>

1
1− 2φ

ω(G).

Thus, ω(G) < (1 − 2φ)xk 6 xk − 2φx̂k. Hence,
the slope of the curve I l−1 at the point xk − 2φx̂k

is at most ηα. Since the curve I l−1 is concave and
increasing, we conclude that

I l−1(xk − 2φx̂k) > I l−1(xk)− 2ηαφx̂k,

and
I l−1(xk + 2φx̂k) > It−1(xk).

Since pl(S̃l
k) 6 I l(xk) 6 I l−1(xk),

pl(S̃l
k) 6 1

2
(I l−1(xk−2φx̂k)+I l−1(xk+2φx̂k))+ηαφx̂k.
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This completes the proof of the lemma. ¤

Since the bounds of Lemma 4.2 hold with probabil-
ity 1 − o(1), we assume from now on that is indeed
the case for all lengths l. Thus, we conclude that if
we never find a cut of conductance at most φ, and for
any index k = 0, 1, . . . , `, we have

Ĩ l
k(xk)

= p̃l
k(S̃l

k)

6 (1 + η)pl
k(S̃l

k) + ηαxk (by Lemma 4.2)

6 1 + η

2
(I l−1(xk − 2φx̂k) + I l−1(xk + 2φx̂k))

+ 2ηαxk (by Lemma 4.3)

6 1 + η

2(1− η)
(Ĩ l−1(xk − 2φx̂k) + Ĩ l−1(xk + 2φx̂k))

+ 4ηαxk (by Lemma 4.2)

Here, we use the facts that (1+η)φ 6 1, and 1+η
1−η 6 2.

Now, because Ĩ l is a piecewise linear and concave func-
tion, where the slope only changes at the xk points,
the above inequality implies that for all x ∈ [0, 2m],
we have

Ĩ l(x) 6 e3η

2
(Ĩ l−1(x− 2φx̂) + Ĩ l−1(x + 2φx̂)) + 4ηαx.

(4)
Here, we used the bound 1+η

1−η 6 e3η.

Now, assume that we never find a cut of conduc-
tance at most φ over all lengths l. Define

ψ = − log
(

1
2
(
√

1− 2φ +
√

1 + 2φ)
)

= ζτ.

Note that ψ > φ2/2. Then, we prove by induction on
l that

Ĩ l(x) 6 e3ηl
[√

x̂e−ψl +
x

2m

]
+ 4e4ηlαx.

The statement for l = 0 is easy to see, since the curve
I0(x) = min{x/2di, 1} (recall that we start the walk
at vertex i). Assuming the truth of this bound for
l − 1, we now show it for l. We have

Ĩ l(x)

6 e3η

2
(Ĩ l−1(x− 2φx̂) + Ĩ l−1(x + 2φx̂)) + 4ηαx (5)

6 e3ηl−ψ(l−1)

2

[√
̂(x− 2φx̂) +

√
̂(x + 2φx̂)

]

+e3ηl · x

2m
+ e3η · 4e4η(l−1)αx + 4ηαx (6)

6 e3ηl
[√

x̂e−ψl +
x

2m

]
+ 4e4ηlαx, (7)

which completes the induction. Here, inequality (5)
follows from (4), inequality (6) is by the induction
hypothesis, and inequality (7) is based on the following
bounds: if x 6 m, then

√
̂(x− 2φx̂) +

√
̂(x + 2φx̂) 6

√
x− 2φx +

√
x + 2φx

= 2x̂e−ψ,

and if x > m, then

√
̂(x− 2φx̂) +

√
̂(x + 2φx̂)6

√
2m− (x− 2φ(2m− x))

+
√

2m− (x + 2φ(2m− x))

= 2x̂e−ψ.

Next, since η = 1/`, we get

max
j

p̃`
j

2dj
= Ĩ`(1) 6 e−ψ`+3 +

e3

2m
+ 4e4α 6 250α,

assuming α = m−τ , ` = ln m
ζ , and ψ = ζτ . Finally,

again invoking Lemma 4.2, we get that max pl
j/2dj 6

256α, since η = 1/`.

5 Recursive partitioning

Given the procedure Find-Threshold, one can
construct a recursive partitioning algorithm to ap-
proximate the MaxCut. We classify some vertices
through Find-Threshold, remove them, and recurse
on the rest of the graph. We call this algorithm Sim-
ple. The algorithm Balance uses the low conduc-
tance sets obtained from Theorem 4.1 and does a care-
ful balancing of parameters to get an improved run-
ning time. All proofs of this section, including the-
oretical guarantees on approximation factors, are in
Section 5.1. We state the procedure Simple first and
provide the relevant claims.

Simple
Input: Graph G.
Parameters: ε, µ.

1. If f(σ(ε, µ)) = 1/2, then put each vertex in L
or R uniformly at random (and return).

2. Let P be a set of O(log n) vertices chosen uni-
formly at random.
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(a) For all i ∈ P , run procedures Find-
Threshold(i, µ) in parallel. Stop when
any one of these succeeds or all of them
fail.

3. If all procedures failed, output FAIL.
4. Otherwise, let the successful output be the set
Ei and Oi. With probability 1/2, put Ei in
L and Oi in R. With probability 1/2, do the
opposite.

5. Let ξ = 1 − Inc(Ei,Oi)/m. Set ε′ = ε/ξ and
G′ be the induced subgraph on unclassified ver-
tices. Run Simple(G′, ε′, µ). If it succeeds,
output SUCCESS and return the final cut L
and R. If it fails, produce a random cut and
output FAIL.

The guarantees of Simple are in terms of a function
H(ε, µ), defined below.

Definition 5.1 [H(ε, µ).] For a given ε and µ, let

z∗ = max{z : f(σ(ε/z, µ)) = 1/2}.
Then

H(ε, µ) := z∗/2 +
∫ 1

z=z∗
f(σ(ε/z, µ))dz.

Lemma 5.2 Let MaxCut(G) = 1 − ε. There is an
algorithm SimpleSearch(G, µ) that, with high prob-
ability, outputs a cut of value H(ε, µ)− o(1), and thus
the worst-case approximation ratio is minε

H(ε,µ)
1−ε −

o(1). The running time is Õ(∆m2+µ).

The algorithm SimpleSearch is a version of Sim-
ple that only takes µ as a parameter and searches
for the appropriate value of ε. The procedure Sim-
pleSearch runs Simple(G, εr, µ), for all εr such that
1−εr = (1−γ)r and 1/2 6 1−εr 6 1, and returns the
best cut found. By choosing γ small enough and Claim
5.3 below, we can ensure that if MaxCut(G) = 1−ε,
then SimpleSearch(G, µ) returns a cut of value least
H(ε, µ)− o(1). It therefore suffices to prove:

Claim 5.3 If Simple(G, ε, µ) succeeds, it outputs a
cut of value at least H(ε, µ). If it fails, it outputs
a cut of value 1/2. If MaxCut(G) > 1 − ε, then
Simple(G, ε, µ) succeeds with high probability. The
running time is always bounded by Õ(∆m2+µ).

Balance
Input: Graph G.
Parameters: ε1, µ1, µ2, τ .

1. Define α = m−τ , ζ = 2(ε1 + δ)/µ1.
2. Let P be a random subset of O(log n) vertices.
3. For each vertex i ∈ P , run CutOrBound

(i, τ, ζ, `(ε1, µ1)).
4. If a low conductance set S was found by any

of the above calls:
(a) Let GS be the induced graph on

S, and G′ be the induced graph on
V \ S. Run Simple′(GS , µ2) and
Balance(G′, ε1, µ1, µ2, τ) to get the final
partition.

5. Run Simple(G, ε1, µ1) up to Step 4,
using random vertex set P . Then run
Balance(G′, ε1, µ1, µ2, τ), where G′ is the in-
duced graph on the unclassified vertices.

6. Output the better of this cut and a random
cut.

We now describe Balance and state the main
lemma associated with it8. We observe that Balance
uses CutOrBound to either decompose the graph
into pieces, or ensure that we classify many vertices.
We use Theorem 4.1 to bound the running time.

Lemma 5.4 For any constant b > 1.5, there is a
choice of ε1, µ1, µ2 and τ so that Balance runs in
Õ(∆mb) time and provides an approximation factor
that is a constant greater than 0.5.

Let us give an intuitive explanation for the 1.5-
factor in the exponent for the running time. Neglect-
ing the µ’s and polylogarithmic factors, we perform
O(1/α) walks in CutOrBound. In the worst case,
we could get a low conductance set of constant size,
in which case the work per output is O(1/α). When
we have the α bound on probabilities, the work per
output is O(αm). So it appears that α = 1/

√
m is

the balancing point, which yields an Õ(m1.5) time al-
gorithm.

In the next subsection, we define many parameters
which will be central to our analysis. We then provide
detailed proofs for Claim 5.3 and Lemma 5.4. Finally,
we give a plot detailing how the approximation fac-
tor increases with running time (for both Simple and
Balance).

8We denote its parameter as ε1 since we will use the variable
ε to denote other quantities.
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5.1 Preliminaries

For convenience, we list the various free parameters
and dependent variables.

• ε is the maxcut parameter, as described above.
Eventually, this will be set to some constant (this
is explained in more detail later).

• µ is a running time parameter. This is used to con-
trol the norm of the ỹi vector, and through that,
the running time. This affects the approximation
factor obtained, through Lemma 3.7.

• α(= m−τ ) is the maximum probability parame-
ter. This directly affects the running time through
Lemma 3.5. For Simple, this is just set to 1, so
it only plays a role in Balance.

• `(ε, µ) := µ(ln(4m/δ2)/[2(δ + ε)]. This is the
length of the random walk.

• σ(ε, µ) is the parameter that is in Lemma 3.5.
Setting ε′ = − ln(1 − ε)/µ, we get 1 − σ =
e−ε′(1− ε)(1− δ)(1− γ).

• χ(ε, µ, α) is the cut parameter that comes from
Theorem 4.1. When we get a set S of low conduc-
tance, the number of edges in the cut is at most
χ(ε, µ)|Internal(S)|. Here, Internal(S) is the
set of edges internal to S. In Theorem 4.1, the
number of cut edges in stated in terms of the con-
ductance φ. We have χ = 4φ/(1− 2φ). Also, φ is
at most

√
4ετ/µ. We will drop the dependence on

α, since it will be fixed (more details given later).

We will also use some properties of the function
H(ε, µ).

Lemma 5.5 For any fixed µ > 0, H(ε, µ) is a convex,
decreasing function of ε. Furthermore, there is a value
ε̄ = ε̄(µ) such that H(ε̄, µ) > 0.5029.

Proof First, note that f(σ) is a decreasing function
of σ. This is because all the three functions that de-
fine f are decreasing in their respective ranges, and
the transition from one function to the next occurs
precisely at the point where the functions are equal.

Now, for any fixed µ, σ(ε, µ) is a strictly increasing
function of ε, and hence, f(σ(ε, µ)) is a decreasing
function of ε. Thus, H(ε, µ) =

∫ 1

0
f(σ(ε/r, µ))dr is

a decreasing function of ε, since for any fixed r, the
integrand f(σ(ε/r, µ)) is a decreasing function of ε.

For convenience of notation, we will use H and σ
to refer H(ε, µ) and σ(ε, µ) respectively. Now define
x = ε/r. Doing this change of variables in the integral,

we get H = ε
∫∞

ε
f(σ(x,µ))

x2 dx. By the fundamental
theorem of calculus, we get that

∂H

∂ε
=

∫ ∞

ε

f(σ(x, µ))
x2

dx− f(σ)
ε

.

Again applying the fundamental theorem of calculus,
we get that

∂2H

∂ε2
= −f(σ)

ε2
− ε∂f(σ)

∂ε − f(σ)
ε2

= −1
ε
· ∂f(σ)

∂ε
> 0,

since f(σ) is a decreasing function of ε. Thus, H is a
convex function of ε.

To show the last part, let σ−1
µ is the inverse func-

tion of σ(ε, µ), keeping µ fixed, and consider ε̄(µ) =
σ−1

µ (1/4) = 1 − ( 3
4 )

µ
1+µ − o(1), by making δ and γ

small enough constants. For r ∈ [1/4, 1/3], we have
f(σ(ε̄/r, µ)) > f(1/4) > 0.535. Thus, we get

H(ε̄, µ) > 0.5 + 0.035× (1/3− 1/4) = 0.5029.

¤

5.2 Proof for Simple

As we showed in the main body, it suffices to prove
Claim 5.3.

Proof (of Claim 5.3) This closely follows the analysis
given in [24] and [19]. If any recursive call to Simple
fails, then the top level algorithm also fails and out-
puts a random cut.

Suppose MaxCut(G) is at least 1 − ε. Then
MaxCut(G′) is at least

(1− ε)m− Inc(Ei,Oi)
m− Inc(Ei,Oi)

= 1− ε/ξ

Applying this inductively, we can argue that when-
ever a recursive call Simple(G′, ε′, µ) is made,
MaxCut(G′) > 1 − ε′. From Lemma 3.7, since
O(log n) vertices are chosen in P , with high probabil-
ity, in every recursive call, a good vertex is present in
P . From Lemma 3.5, in every recursive call, with high
probability, some call to Find-Threshold succeeds.
Hence, Simple will not output FAIL and succeeds.

Assuming the success of Simple, let us compute the
total number of edges cut. We denote the parameters
of the tth recursive call to Simple by subscripts of t.
Let the number of edges in Gt be ρtm (where ρ0 = 1).
Let T be the last call to Simple. We have εt = ε/ρt.
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Only for t = T , we have that f(σ(ε/ρt, µ)) = 1/2. Let
z∗ be defined according to Definition 5.1. Note that
ρt 6 z∗. In the last round, we cut ρT m/2 edges. The
number of cut edges in other rounds is f(σ(εt, µ))(ρt−
ρt+1)m. Summing over all t, the total number of edges
cut (as a fraction of m) is

T−1∑
t=0

f(σ(εt, µ))(ρt − ρt+1) + ρT /2

=
T−2∑
t=0

∫ ρt

ρt+1

f(σ(ε/ρt, µ))dr +
∫ ρT−1

ρT

f(σ(ε/ρt, µ))dr

+ ρT /2

=
T−2∑
t=0

∫ ρt

ρt+1

f(σ(ε/ρt, µ))dr +
∫ z∗

ρT

f(σ(ε/ρt, µ))dr

+
∫ ρT−1

z∗
f(σ(ε/ρt, µ))dr + ρT /2.

To bound this from below, we need a few observations.
First, note that σ is an increasing function of its first
argument. Hence, σ(ε/r, µ) is a decreasing function
of r. Since f is a decreasing function (of its single
argument), f(σ(ε/r, µ)) is an increasing function of r.
So, for r 6 ρt, f(σ(ε/ρt, µ)) > f(σ(ε/r, µ)). We have
ρT 6 z∗. The worst case for us (when the minimum
number of edges is cut) is when ρT is exactly z∗. This
is because we cut the lowest fraction (1/2) of edges for
GT . So, we get

T−1∑
t=0

f(σ(εt, µ))(ρt − ρt+1) + ρT /2

>
T−2∑
t=0

∫ ρt

ρt+1

f(σ(ε/r, µ))dr +
∫ ρT−1

z∗
f(σ(ε/r, µ))dr

+z∗/2

=
∫ 1

z∗
f(σ(ε/r, µ))dr + z∗/2.

We now bound the running time, using Lemma 3.5.
Consider a successful iteration t. Suppose the number
of vertices classified in this iteration is Nt. The total
running time in iteration t is Õ(Nt∆m1+µ). This is
because we run the O(log n) calls in parallel, so the
running time is at most O(log n) times the running
time of the successful call. Summed over all itera-
tions, this is at most Õ(∆m2+µ). Suppose an iteration
is unsuccessful, the total running time is Õ(∆m2+µ).
There can only be one such iteration, and the claimed
bound follows. ¤

5.3 Proofs for Balance

We first give a rather complicated expression for
the approximation ratio of Balance. First, for any
µ > 0, define h(µ) = minε

H(ε,µ)
1−ε . This is essentially

the approximation factor of SimpleSearch.

Claim 5.6 The algorithm Balance has a work to
output ratio of Õ(∆(mτ+µ2τ + m1+µ1−τ )). The ap-
proximation ratio is at least

max
ε1

min
{
H(ε1, µ1, µ2),H(ε1, µ1),

1
2(1− ε1)

}
,

where H(ε1, µ1, µ2) :=

min
ε

max
{

1
2(1−ε) ,

h(µ2)(1−ε−εχ(ε1,µ1))+χ(ε1,µ1)/2
(1−ε)(1+χ(ε1,µ1))

}
.

Proof: First let us analyze the work per output ra-
tio of Balance. We initially perform Õ(∆mτ ) walks.
Suppose we get a low conductance set S. We then
run Simple(GS , ε2, µ2). Here, the work to output ra-
tio is at most Õ(∆mτ+µ2τ ). If we get a tripartition,
the work to output ratio is at most Õ(∆m1+µ1−τ ).
Adding these, we get an upper bound on the total
work to output ratio.

Because we choose a random subset P of size
O(log n), we will assume that Lemma 5.2 and Claim
5.3 hold (without any error). To analyze the approxi-
mation ratio, we follow the progress of the algorithm
to the end. In each iteration, either a low conductance
set is removed, or the basic algorithm is run. In each
iteration, let us consider the set of vertices this is as-
signed to some side of the final cut. In case of a low
conductance set, we get a cut for the whole set. Oth-
erwise, if we get a tripartition, the union Ei ∪ Oi will
be this set. If we do not get a tripartition, then we
output a random cut (thereby classifying all remain-
ing vertices). Let us number the low conductance sets
as S1, S2, . . .. The others are denoted T1, T2, . . . , Tf .
We will partition the edges of G into parts, defining
subgraphs. The subgraph GS consists of all edges in-
cident to some Si. The remaining edges form GT . The
edges of GS are further partitioned into two sets: Gc is
the subgraph of cross edges, which have only one end-
point in S. The other edges make the subgraph G′S .
The edge sets of these subgraphs are ES , ET , Ec, E

′
S ,

respectively. For any set Si, G|Si denotes the induced
subgraph on Si.

We now count the number of edges in each set that
our algorithm cuts. We can only guarantee that half
the edges in Ec are cut. Our algorithm will cut (in
each Si) at least h(µ2)MaxCut(G|Si) edges. This
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deals with all the edges in ES . Let the MaxCut value
of the subgraph GS be 1−ε. Then, trivially we cut at
least MaxCut(GS)/[2(1 − ε)] edges. In ETf

, we can
only cut half of the edges. In ETj

, we cut an H(ε1, µ1)
fraction of edges. In total,

max

(
MaxCut(GS)

2(1− ε)
,
X

i

h(µ2)MaxCut(G|Si) +
|Ec|
2

)

+
X

j

H(ε1, µ1)|ETj |+
|ETf |

2
.

We first deal with the latter part. The maxcut of G|TF is
at most (1 − ε1) (otherwise, we would get a tripartition).
So we get,

X
j

H(ε1, µ1)|ETj |+
|ETf |

2

>
X

j

H(ε1, µ1)|ETj |+
MaxCut(G|Tf )|ETf |

2(1− ε1)

> min
`
H(ε1, µ1),

1

2(1− ε1)

´
MaxCut(GT ).

We now handle the former part. By definition,
|Ec| 6 χ(ε1, µ1)|E′

S |. Fixing the size of Ec ∪ E′
S , we

minimize the number of edges cut by taking this to
be equality. . If we remove the edges Ec, we get the
subgraph G′S . The MaxCut of G′S is at least

1− ε

1− χ(ε1, µ1)
=

1− ε− χ(ε1, µ1)
1− χ(ε1, µ1)

Now, we lower bound the total number of edges in GS

that are cut.
∑

i

h(µ2)MaxCut(G|Si) + (1/2)|Ec|

> h(µ2)
∑

i

MaxCut(G|Si) + (1/2)|Ec|

> h(µ2)MaxCut(G′S) + (1/2)χ(ε1, µ1)|E′
S |

>
[
h(µ2)

1− ε− χ(ε1, µ1)
1− χ(ε1, µ1)

+ (1/2)χ(ε1, µ1)
]
|E′

S |.

By definition of ε,

MaxCut(GS) = (1− ε)|ES | =

(1− ε)(1 + χ(ε1, µ1))|E′
S |.

Substituting this, we get that the total number of
edges cut is at least:

MaxCut(GS)H(ε1, µ1, µ2)
+MaxCut(GT ) min

(
H(ε1, µ1), 1

2(1−ε1)

)

Observe that

MaxCut(GS) + MaxCut(GT ) > MaxCut(G).

The parameter ε1 can be chosen to maximize the ap-
proximation ratio. ¤

Using this we prove the main lemma about Bal-
ance (restated here for convenience):

Lemma 5.7 For any constant b > 1.5, there is a
choice of ε1, µ1, µ2 and τ so that there is an Õ(∆mb)
time algorithm with an approximation factor that is a
constant greater than 0.5.

Proof: The algorithm Balance has a work to out-
put ratio of Õ(∆(mτ+µ2τ + m1+µ1−τ )). We now set
µ1 and µ2 to be constants so that the work to output
ratio is b− 1. For this, we set τ + µ2τ = 1 + µ1 − τ =
b − 1. Letting µ1 > 0 be a free parameter, this gives
τ = 2 + µ1 − b, and µ2 = 2b−µ1−3

2+µ1−b . Note that since
b > 1.5, we can choose µ1 > 0 so that τ > 0 and
µ2 > 0. By Claim 5.6, we can decide the value of ε1

as the value maximizing the approximation ratio.

Now, it remains to show that for any choice of
µ1, µ2 > 0, the bound on the approximation factor
given by Claim 5.6 is greater than 0.5. For conve-
nience of notation, we will drop the arguments to
functions and use h, H, and χ to refer to h(µ2),
H(ε1, µ1), and χ(ε1, µ1) respectively. First, note
that h > 0.5. Let us set ε1 = ε̄(µ1) as from the
statement of Lemma 5.5. Then H > 0.5029, and

1
2(1−ε1)

> 0.5 since ε1 > 0. Furthermore, note

that minε max
{

1
2(1−ε) ,

h(1−ε−εχ)+χ/2
(1−ε)(1+χ)

}
is obtained at

ε = 2h−1
2h(1+χ) , and takes the value h+hχ

1+2hχ > 0.5 since
h > 0.5. Thus, the minimum of all these three quanti-
ties is greater than 0.5, and hence the approximation
factor is more than 0.5. ¤

Using a more nuanced analysis of the approxima-
tion ratio, we can get better bounds. This requires
the solving of an optimization problem, as opposed to
Claim 5.6. We provided the weaker claim because it
is easier to use for Lemma 5.4.

Claim 5.8 Let us fix µ1, µ2. The approximation ratio
can be bounded as follows: let ε′S , X, Y, Z be variables
and ε, ε1 be fixed. First minimize the function:

(H(ε′S , µ2) + χ(ε1, µ1)/2)X + H(ε1, µ1)Y +
Z

2
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with constraints:

ε′SX + ε1Z 6 ε

(1 + χ(ε1, µ1))X + Y + Z = 1
0 6 ε′S 6 1/2

0 6 X, Y, Z 6 1

Let this value by OBJ(ε, ε1). The approximation ratio
is at least

max
ε1

min
ε

max
{

1
2(1− ε)

,
OBJ(ε, ε1)

1− ε

}
.

Proof: To analyze the approximation ratio, we fol-
low the progress of the algorithm to the end. In each
iteration, either a low conductance set is removed, or
the basic algorithm is run. In each iteration, let us
consider the set of vertices this is assigned to some
side of the final cut. In case of a low conductance set,
we get a cut for the whole set. Otherwise, if we get
a tripartition, the union V +

i,r ∪ V −
i,r will be this set. If

we do not get a tripartition, then we output a random
cut (thereby classifying all remaining vertices). Let us
number the low conductance sets as S1, S2, . . .. The
others are denoted T1, T2, . . . , Tf . We will partition
the edges of G into parts, defining subgraphs. The
subgraph GS consists of all edges incident to some
Si. The remaining edges form GT . The edges of GS

are further partitioned into two sets: Gc is the sub-
graph of cross edges, which have only one endpoint in
S. The other edges make the subgraph G′S . In GT ,
let the edges incident to vertices not in Tf be be G′T .
The remaining edges form the subgraph Gf . The edge
sets of these subgraphs are ES , ET , Ec, E

′
S , Ef , E′

T , re-
spectively. For any set Si, G|Si denotes the induced
subgraph on Si.

We now count the number of edges in each set that
our algorithm cuts. We can only guarantee that half
the edges in Ec are cut. Let the MaxCut of G|Si

be MaxCut(G|Si) (= τi). Our algorithm will cut (in
each Si) at least H(τi, µ2)|ESi | edges. This deals with
all the edges in ES . In ETf

, we can only cut half of the
edges. In ETj , we cut an H(ε1, µ1) fraction of edges.
In total, the number of edges cut is at least

∑

i

H(τi, µ2)|ESi |+
|Ec|
2

+
∑

j

H(ε1, µ1)|ETj |+
|ETf

|
2

.

By convexity of H, we have

∑

i

H(τi, µ2) > H(ε′S , µ2)|E′
S |,

where MaxCut(G′S) = 1−ε′S . Putting it all together,
we cut at least

H(ε′S , µ2)|E′
S |+H(ε1, µ1)|E′

T |+(1/2)|Ef |+(1/2)|Ec|
We would like to find out the minimum value this
can attain, for a given ε1. The parameters µ1, µ2 are
fixed. The maxcut of Gf is at most (1−ε1) (otherwise,
we would get a tripartition). We have the following
constraints:

|Ec| 6 χ(ε1, µ1)|E′
S |

ε′S |E′
S |+ εf |Ef | 6 εm

|E′
S |+ |E′

T |+ |Ef |+ |Ec| = m

ε1 6 εf 6 1/2

For a given size of E′
S , we should maximize Ec to

cut the least number of edges. So we can assume
that |Ec| = χ(ε1, µ1)|E′

S |. Let us set X := |E′
S |/m,

Y := |E′
T |/m, and Z := |Ef |/m. Consider fixing ε

and ε1. The variables are ε′S , εf , X, Y, Z. This means
the number of edges cut is bounded below by the min-
imum of

(H(ε′S , µ2) + χ(ε1, µ1)/2)X + H(ε1, µ1)Y +
Z

2

under the constraints:

ε′SX + εfZ 6 ε

(1 + χ(ε1, µ1))X + Y + Z = 1
ε1 6 εf 6 1/2
0 6 ε′S 6 1/2

0 6 X, Y, Z 6 1.

Let OBJ(ε, ε1) be the minimum value attained. We
observe that in the optimal solution, we must have
εf = ε1. Otherwise, note that we can reduce the ob-
jective by decreasing εf . This is because for a small
decrease in εf , we can increase Z (and decrease either
X or Y ). This preserves all the constraints, but de-
creases the objective. The approximation ratio is then
lower bounded by

max
ε1

min
ε

max
{

1
2(1− ε)

,
OBJ(ε, ε1)

1− ε

}
.

¤

5.4 Running time/approximation
ratio tradeoff

Refer to Figure 1 for the tradeoff between running
time and approximation factor.
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Figure 1: Running time/approximation ratio tradeoff curve for Simple and Balance. Simple needs running time
eO(n2+µ) and Balance needs running time eO(n1.5+µ), for any constant µ > 0. The approximation ratio for Simple is

from Lemma 5.2, and that for Balance is from Claim 5.8.

6 Conclusions and further work

Our combinatorial algorithm is very natural and
simple, and beats the 0.5 barrier for MaxCut. The
current bounds for the approximation ratio we get
for, say, quadratic time are quite far from the opti-
mal Goemans-Williamson 0.878, or even from Soto’s
0.6142 bound for Trevisan’s algorithm. The approx-
imation ratio of our algorithm can probably be im-
proved, and it might be possible to get a better run-
ning time. This would probably require newer analy-
ses of Trevisan’s algorithm, similar in spirit to Soto’s
work [19]. It would be interesting to see if some other
techniques different from random walks can be used
for MaxCut.

This algorithm naturally suggests whether a similar
approach can be used for other 2-CSPs. We believe
that this should be possible, and it would provide a
nice framework for combinatorial algorithms for such
CSPs.

Our local partitioning algorithm raises very inter-
esting questions. Can we get such a partitioning pro-
cedure that has a better work to output ratio (close to
polylogarithmic) but does not lose the

√
log n factor

in the conductance (which previous algorithms lose)?
We currently have a work to output that can be made
close to

√
n in the worst case. An improvement would

be of significant interest.
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