Innovations in Computer Science 2011

Complex Semidefinite Programming Revisited and the

Assembly of Circular Genomes

Konstantin Makarychev! Alantha Newman?
IBM T. J. Watson Research Center, Yorktown Heights, NY
2DIMACS, Rutgers University, New Brunswick, NJ

konstantin@us.ibm.com alantha@dimacs.rutgers.edu

Abstract: We consider the problem of arranging elements on a circle so as to approximately preserve specified
pairwise distances. This problem is closely related to optimization problems found in genome assembly. The
current methods for genome sequencing involve cutting the genome into many segments, sequencing each (short)
segment, and then reassembling the segments to determine the original sequence. A useful paradigm has been
using “mate pair” information, which, for a circular genome (e.g. bacterial genomes), generates information
about the directed distance between non-adjacent pairs of segments in the final sequence.

Specifically, given a set of equations of the form z, — y, = dy, (mod q), we study the objective of maximizing
a linear payoff function that depends on how close the value x,, — y,, (mod q) is to dy,. We apply the rounding
procedure used by Goemans and Williamson for “complex” semidefinite programs. Our main tool is a simple
geometric lemma that allows us to easily compute the expected distance on a circle between two elements whose
positions have been computed using this rounding procedure.

Keywords: semidefinite programming, genome assembly, circular arrangement, linear equations.

possible. Current algorithms for LINEAR EQUATIONS
mod ¢ (e.g. algorithms for UNIQUE GAMES [2]) are
aimed at satisfying equations exactly and say nothing
We consider the problem of arranging elements on about the quality of the solutions for the unsatisfied
a circle subject to directed pairwise distance con- equations.
straints. For example, consider the well-studied prob-
lem LINEAR EQUATIONS mod ¢. In this problem, we
are given a set of equations of the form z, — z, =
dyy (mod). The standard objective is to assign each
element x, an integral value in the range [0, ¢) so as to
satisfy the maximum number of constraints. Due to
the circular symmetry, this problem can also be seen
as arranging elements on a circle (i.e. on positions la-
beled zero through ¢ — 1 in the clockwise direction) so
as to exactly satisfy the maximum number of specified
directed pairwise distance constraints.

1 Introduction

Although this problem does not appear to have been
addressed from a theoretical perspective—beyond the
standard formulation of LINEAR EQUATIONS mod
q as explained above—the general problem of ap-
proximately preserving directed pairwise distances
is closely related to optimization problems used for
genome assembly, in particular to a problem known as
CONTIG SCAFFOLDING [9], upon which we now elab-
orate.

1.1 Genome assembly and

A natural relaxation of this problem is to try to
CONTIG SCAFFOLDING

preserve these distances as much as possible. In other
words, if we have the equation x, — z, = 4 (mod
16), we may prefer assignments to x, and x, such
that x, — x, equals three or five, rather than two or
six. Given that x, has some assignment, then the
target position for x, is the value of x, plus dy,. For
instance, in the previous example, if z, is assigned
zero, then the target position for z, would be four. We
would like x, to be as close to this target position as

Genome sequencing is an area of research into
which tremendous amounts of time, money and com-
putational resources are currently being invested.
For our purposes, a genome can be viewed as two
oppositely-oriented strings from a four letter alpha-
bet, {A,C,G,T}. Each of the two strings is the com-
plement of the other (A pairs with T, and C' with G).

444

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

Moreover, each string (and each of its substrings) is
directed; e.g. it can be viewed as A — A — T —
C — If we determine to which of the two strings
a particular substring belongs, then we can determine
the orientation of that substring. Genomes range in
length from thousands to billions of letters, also known
as base pairs. While some genomes, such as those of
humans, are linear strings, a large class of genomes
are circular. For example, the genomes of all bacteria
are circular.

With the current technology for genome sequenc-
ing, an entire genome cannot be sequenced at once.
Rather, comparatively short substrings are sequenced,
and these short substrings must then be assembled to
form the original genome. To obtain more information
to enable this assembly, many copies of the original
two strings of the genome are made. These copies are
broken up randomly, the pieces sequenced and then
reassembled based on the local overlap information
gleaned from the many copies. This is a computa-
tionally intensive task, and the overlap information is
sometimes insufficient to determine the sequence if, for
example, there are repeated substrings in the original
sequence.

An important innovation in genome assembly was
to use so-called “mate pair” information [9]. Suppose
we are able to sequence substrings of length ¢. We
consider a substring S of length L >> ¢ and sequence
the two substrings of length ¢ that make up the two
ends of S. Now we have two substrings whose rela-
tive distance and orientation in the original genome
is known. This global information was crucial for se-
quencing and dealing with repeated substrings in the
human genome [11].

The graph theoretic approach outlined by Huson
et al. [9] is based on aggregated mate pair informa-
tion: based on local overlap information, substrings
are combined into longer substrings called contigs. If
a mate pair (i.e. two substrings with known relative
orientation and distance) belong to two different con-
tigs, then we have information about the relative ori-
entation and distance of these contigs. Of course, due
to sequencing errors as well as repeated substrings,
this information may be inconsistent, but there are
methods for averaging this distance and orientation
information. Ultimately, we obtain what Huson et al.
refer to as the contig-mate-pair-graph. In this graph,
contigs are represented by vertices, and some pairs
of contigs have desired distances and relative orienta-
tions associated with them. The problem of CONTIG
SCAFFOLDING is to assign each contig an orientation

445

(i.e. assign each contig to one of the two complemen-
tary strings in the genome) and a position so that
the relative position of specified pairs of contigs that
are assigned to the same string is approximately pre-
served. Specifically, suppose we have a pair of con-
tigs v and v that are known to be at a distance L
based on mate pair information, i.e. they are con-
nected by a directed edge e of length L in the contig-
mate-pair-graph. Note that both u and v have com-
plementary contigs—call them @ and v, respectively—
which should have the opposite orientation as u and
v. Following the example in Section 3 of [9], either
uw and v have the same orientation, say clockwise (i.e.
they are assigned to the string with clockwise direc-
tion), and |pos(v) — pos(u) — L| < o(e), or u and v
are assigned to the string with counterclockwise di-
rection and |pos(u) — pos(v) — L| < o(e). If w and v
fulfill either of these situations, the pair or edge u, v is
called “happy”. The goal is to maximize the number
(or weight) or the happy edges. In [9], o(e) denotes a
function of the standard deviation of the distribution
from which the length of the edge e was generated.

Figure 1: In this length L substring of a genome, the seg-
Since the
segment f — g is the complement of d < ¢, we know both

ments a — b and ¢ — d are “mate pairs”.

segments a — b and f — g after sequencing this mate pair.
We also know that in the reassembled genome, if a — b
and f — g are assigned to the clockwise string, then f — g
should be approximately distance L ahead of a — b in the
clockwise direction. If they are on the counterclockwise
string, then f — g should be approximately distance L
ahead of a — b in the counterclockwise direction.

In general, this problem has seen many greedy /local
approaches [9]. As discussed in [13], most of these ap-
proaches iterate through the constraints on the pairs
of contigs, attempting to optimally place and orient
them. Constraints that are violated by the current

K. MAKARYCHEV, A. NEWMAN

position of the contigs are typically simply discarded.
Recently, Dayarian et al. used a global approach
based on simulated annealing to satisfy the distance
constraints between pairs of contigs [3]. Another ap-
proach is based on Eulerian tours in specially con-
structed graphs [12].

1.2 Relaxed linear equations modulo ¢

We now discuss the precise formulation of the prob-
lem that we address in this paper and how it relates
to the problem of CONTIG SCAFFOLDING. Given an
equation of the form z, —x,, = dy,(mod ¢), we define
the following payoff function:

20
Puv 1,] :1_7a
(a0} (457) .

if (j—1)=du, ¢ (mod gq),

where ¢ € [0,¢/2].

(1)

In words, P, ,1(i,7) is the cost of simultaneously
placing element z, at position ¢ and element x, at
position j. In each equation, if we assume that x,, is
assigned some value, then there is a target position for
Zy. In particular, if z,, = 0, then the target position
for x, is dy,. There is a linear decrease in the contri-
bution of an equation to the objective value the farther
element z,, is from its target position with respect to
the position of x,,.

Figure 2: If x, is in position 0, then the darkest red dot
denotes the target position for z, and the lighter the dots
are, the less ideal the position is for x,.

We refer to the payoff function (1) as the RELAXED
LINEAR EQUATIONS mod ¢ problem (or REL-LIN-
EQ(q) for short). Also, we allow each equation to

446

be weighted by a positive value, w,,. We note that if
we randomly assign each variable x,, a value in [0, ¢),
we would obtain a solution in which each equation
contributes half to the objective value in expectation.
Our main theoretical result is that given a set of equa-
tions in the form x, — x, = dy, (mod ¢), we can ef-
ficiently assign each element z,, a value in [0, q) such
that for each equation, the payoff function, (1), is sat-
isfied to within at least .854 times the payoff of that
equation in an optimal solution.

1.3 Applying REL-LIN-EQ(¢q) to
CONTIG SCAFFOLDING

If we had just one of the strings in a double-stranded
circular genome, and we knew the relative distance of
certain pairs of contigs, then the problem of CON-
TIG SCAFFOLDING would be very similar to an ap-
proximate version of the LINEAR EQUATIONS mod ¢
problem. However, since there are actually two op-
positely oriented strings, applying REL-LIN-EQ(q) to
the CONTIG SCAFFOLDING problem is not entirely
straightforward. We now clarify the differences be-
tween the problems and discuss how our problem can
be used as a tool to find good arrangements of the
contigs in the CONTIG SCAFFOLDING problem.

Rather than simply finding positions for the contigs,
we must also determine their relative orientation, or to
which of the two strings they belong. We discuss two
ways to reduce the CONTIG SCAFFOLDING problem
to one very similar to the REL-LIN-EQ(g) problem.
The first approach is given by Dayarian et al [3]. In
this approach, we find a maximum cut on the graph
composed of edges that represent constraints for con-
tigs that are oppositely oriented, since these contigs
should be on different strings. Once we have found a
partition of the contigs, we can order each set of con-
tigs separately. For each set in the partition, we only
need to consider constraints between pairs of contigs
specifying that they should have the same orientation
(a constraint between two oppositely oriented contigs
can be replaced by one in which one of the contigs is
substituted with its complement). We can then use
our algorithm to find a circular arrangement for each
set of contigs.

The second approach that we propose is to skip the
step which uses a maximum cut to partition the con-
tigs into sets, and try to arrange the contigs so that
all pairwise directions are oriented clockwise. If we
only consider pairwise constraints between contigs of
the same orientation (i.e. between contigs believed to

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

be on the same string), and if there were no errors
in our data and we could find an arrangement that
agreed with all of the pairwise distances, then the con-
tigs would be partitioned into two disjoint strings. (In
other words, the counterclockwise string would also be
translated to the clockwise direction.) Of course, there
may be noise in the data, and many of the pairwise
distance constraints may be violated in the arrange-
ment of the contigs that we find. However, our goal
is to take advantage of techniques that try to globally
satisfy the constraints. After finding such an arrange-
ment, extracting actual feasible solutions from our ar-
rangements will likely have to be conducted heuristi-
cally, e.g. throw away the most violated constraints.

Additionally, there are two more key issues that
are not directly addressed when optimizing the pay-
off function in the REL-LIN-EQ(q) problem. The first
issue is that the payoff function (1) rewards each con-
straint to the extent that it is satisfied, whereas the
stated goal in the CONTIG SCAFFOLDING problem
is to maximize the number (or weight) of equations
within some fixed distance from the target position.
We note that these two objectives are related. Sup-
pose we have a solution for the objective function in
(1) that has value (1 — €)|E|, where | E| is the number
of constraints. Let d, 0 be values in [0, 1].

Lemma 1 In a solution with value (1 —¢€)|E|, at most
0| E| equations are more than distance oq from the tar-
get, where 0 < €/(20).

We note that the desired distances from the tar-
get, o(e), may actually be different for different con-
straints. A way to address this with our payoff func-
tion, (1), could be to weight the constraint correspond-
ing to edge e more if o(e) is smaller.

The second issue is that in a feasible solution to the
CONTIG SCAFFOLDING problem, each position on the
circle should be occupied by at most two contigs (one
for the clockwise circle and one for the counterclock-
wise circle). We note that our solution to the problem
posed in (1) does allow that more than one or two
elements be assigned to a certain position. Since our
solution consists of rounding a semidefinite program-
ming (SDP) relaxation, we could add spreading con-
straints as in [5], so as to ensure that not too many
elements are assigned to the same position. However,
from a computational perspective, these constraints
are extremely expensive to add, since each constraint
is an inequality, which forces us to add a new vector
to the SDP relaxation for each constraint. Thus, if an
arrangement does map several contigs to the same po-

447

sition, then this issue will have to be addressed heuris-
tically. A suggestion in [3] is that if they obtain a
solution in which many contigs are assigned the same
position, they go back and add more constraints to
the contig graph based on local overlap information
between pairs of these contigs. Moreover, we note
that while our algorithm should generate useful global
information about where the contigs should be placed
relative to each other, as in many assembly algorithms,
it would likely need work in the “finishing” stage to
generate an actual feasible solution.

Finally, we mention that L—the distance between
two ends of a mate pair—does not have to be the same
length for each pair. In practice, there are usually a
small set of possible values for L. Some algorithms for
assembly based on mate pair information require that
L is a small set of values. In contrast, in our algorithm,
the desired directed distance between the contigs in a
constraint pair (represented by d,, in the respective
equation) can take on any value between between zero
and ¢, where g will represent the length of a string.
This could be useful for future technologies if mate
pair distances are generated from a broader range.

1.4 Complex semidefinite
programming

Complex semidefinite programming (CSDP) was in-
troduced by Goemans and Williamson to study the
MAax-3-CuT and LINEAR EQUATIONS mod 3 prob-
lems [8]. They represent each element with a com-
plex vector re~*, which is equivalent to represent-
ing each element with an infinite set of real vectors,
each with length r and corresponding to some an-
gle 8 € [0,27). Throughout this paper, we refer to
such a set of vectors as a two-dimensional disc. In
their rounding algorithm, they choose a normally dis-
tributed random vector g and project the vector g
onto each disc. The disc can be viewed as being par-
titioned into three equal sections, each of angle 120
degrees. Depending on which section of its disc the
vector g projects onto determines if the element is as-
signed a 0, 1 or 2. Although the applications in the
original paper are for problems with domains of size
three, it is interesting to note that the actual posi-
tions are denoted by angles which are continuous in
the range [0, 27). Thus, it seems likely that this tech-
nique may have applications for larger domain prob-
lems in which the goal is to place the elements on the
circle so as to optimize a specified objective function.
The main tool in [8] is that, if elements are represented

K. MAKARYCHEV, A. NEWMAN

by two-dimensional discs, and the rounding algorithm
is as described above, they give a formula for the dis-
tribution of the angle between the positions of two
elements, specifically, for the probability that the dis-
tance is less than a particular angle. Zhang and Huang
gave a formula for the probability that two elements
are an exact angle apart [15].

Despite the elegance of this approach, this tech-
nique does not appear to have been applied to other
optimization problems. One barrier is that these two-
dimensional discs have limited modeling power, i.e.
while we can model LINEAR EQUATIONS mod 3 ex-
actly with a complex semidefinite program, it is not
clear how to model LINEAR EQUATIONS mod ¢ for
g > 3 with these two-dimensional discs. (By “model”
a problem, we mean write an integer program for the
problem for which a solution of value « corresponds to
an actual integer solution to the problem with value
a.)

Our main tool to address the problem presented in
Section 1.2 is a simple geometric method for comput-
ing the expected angle between two elements if they
are assigned positions on a circle using the algorithm
from [8]. In contrast, as mentioned above, Goemans
and Williamson give a formula for the probability that
the angle after rounding is less than a certain angle.
Theirs is clearly a stronger theorem, but our proof is
quite simple. We believe that our proof might yield
some geometric insight into CSDP, which could pos-
sibly promote what appears to be a useful but over-
looked technique. We also note that although we do
not know how to model the REL-LIN-EQ(¢) problem
exactly using the CSDP methods from [8] (i.e. we can-
not represent the elements with two-dimensional discs
and obtain a relaxation of our problem in the usual
sense), we nevertheless show how to use techniques
from CSDP in our rounding methods.

1.5 Preliminaries and notation

The payoff function in (1) uses the following natu-
ral notion of distance between two points on a circle.
Suppose a circle has g equally spaced points that are
labeled clockwise from 0 through ¢ — 1 for some inte-
ger q. We note that the following definition of distance
between two points on a circle is sometimes referred
to as the Lee distance.

Definition 1 Given two points on a circle with indices

x,y € [0,q), let dist(x,y) = min{|z —y|, ¢— |z —y|},
that is, the length of the minor arc between x and y.

448

In general, for a specified domain of size ¢, a distance
on that domain will be a number between 0 and ¢/2
and a normalized distance will be a fraction between
0 and 1, i.e. the distance on domain ¢ divided by ¢/2.

1.5.1 Notation

Let E = {x,—x, = dy,(mod q)} be a given system
of linear equations on the set of elements V = {x,,}.
Let n = |V|. Let [q] denote the integers in the range

[0, q).

1.6 Our results and organization

In Section 2 we present our main tool, which is a
simple, geometric lemma to compute the expected an-
gle between two elements in the rounding algorithm
for CSDP given in [8]. In Section 3, we show how
to apply this lemma to a relaxation of a quadratic
program for the REL-LIN-EQ(q) problem to obtain a
.8046-approximation. This SDP relaxation contains
only two vectors per element, and thus can be solved
efficiently in practice for moderate values of |E|, e.g.
|E| &~ 100. Next, in Section 3, we show that us-
ing an SDP relaxation that is standard in the CSP
framework, we can obtain an improved approxima-
tion factor of .854, again using the same geometric
tool from Section 2 to round the relaxation. Since
an a-approximation algorithm for the REL-LIN-EQ(q)
problem implies an a-approximation for MAx-CuUT,
we note that assuming the Unique Games conjecture,
our approximation is within at least .0245 of optimal.
Finally, we note that both algorithms yield an approx-
imation guarantee of (1—O(+/€))|E| when the optimal
solution has value at least (1 —€)|E|. We also give an
improved approximation guarantee for LINEAR EQUA-
TIONS mod 4 in Section 5. All of our results hold for
sets of constraints with non-negative weights.

2 A geometric tool

Suppose we have two two-dimensional discs, A and
B, such that disc A is in the plane defined by two
orthogonal vectors A, and A, and disc B is in the
plane defined by two orthogonal vectors B, and B,.
Let g be any (possibly huge) positive integer. For
simplicity, we assume that ¢ is a multiple of four. For
each i € [g], we define the following vector:

2m -1
q

21 -1

A; = cos ()A, + sin ()A,. (2)

Then {A;} is the set of ¢ vectors that comprise the

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

two-dimensional disc A. In other words, A9 = A, and
Aq/a = Ay We can define a set of vectors for the disc
B similarly. We say that A = {A;} = (A5, 4,). More
generally, suppose we have the following properties
relating the four vectors A,, Ay, B, and By:

(i) Az - Ay =0and B, - B, =0,
(i) [Az| = [Ay[= [Bz| = |Byl,
(iii) Ay - By = Ay - (=Bz),

(iv) Ay - By = Ay - By,

If properties (i) through (iv) hold, then we can show
that an additional useful property holds.

Lemma 2 Let A = (A,,A,) and B = (B, B,) be
discs that satisfy the above properties (i) through (iv).
Then the angle between A; and B; equals the angle
between A;1 and Bjiy for alli, j, k € [q], where sub-
scripts are computed modulo q.

27-g

q

, with subscripts computed

Proof: Let @ = % and § =

2m(itk) o9 B = 2m-(j+k)
q q
modulo ¢g. Then we have:

Let oy

A; - Bj =cos(a— 0)(Ay - By) +sin(8 — a)(4y - B).

We have used the facts that A, - B, = A, - B, and
that A, - B, = —A, - B,. Since it is the case that
a—0 =a,— F and 8 — a = (B — ag, we have
shown that A; - B; = Ay - Bj+r. Additionally, if
property (ii) holds, then it is straightforward to see
that |Ap| = |Az| for all b € [¢], and similarly for all
vectors By,. Thus, the lemma follows. [l

Now suppose the two discs A and B represent two
elements x, and x;, that we want to place on a circle
with following goal in mind: if element a is in position
i, we want element b to be close to position ¢ 4 cgp-
In other words, our “target” is to satisfy the equation
Ty — Tq cap (mod ¢q). Is there a procedure that
places x, in a position 7 and places x; in a position
“close” to position i + cqp for all i € [q]?

Input: A set of n elements, {z,}, and a correspond-
ing set of n two-dimensional discs, {A} such that:
(a) Each disc A is defined by two specified orthog-
onal vectors, A, and A, in R?", and vector 4;
is defined as in Equation (2).
(b) Each pair of discs obeys constraints (i)—(iv).
Output: An assigned position for each element in
the range [q].

449

Rounding Procedure:

1. Choose g € N'(0,1)".

2. For each disc, A, compute the set of
values {4; - g}.

Let pos(x,) =i if A;—1-g <0 and

We note that the above rounding procedure is equiv-
alent to that presented by Goemans and Williamson
for CSDP [8]. Since the disc A is two-dimensional,
pos(z,) is uniquely defined. This is because the pro-
jection of g onto the disc A partitions the vectors in
the disc into two sets—those that have positive dot
products with g and those that have negative dot
products—and each set contains consecutive indices.
We now want to analyze the expected distance be-
tween pos(x,) and pos(xp) for two discs, A and B.
Using the definition of dist(x,y) from Definition 1, we
have:

Lemma 3 Let A = (A;,Ay) and B = (B, By)

be two discs that satisfy properties (i) through
(iv). Suppose arccos(Ag - Bg) = 0. Then:
(E[dist(pos(xa),pos(xb))] = % -q.

Proof: Consider the pairs of vectors {Ay, By} for in-
tegral k € [q]. By Lemma 2, we have that for all k:

Ao - By = Ay - By

Thus, for each pair of vectors, {Ay, By}, the angle
between the vectors is also 6. By [7], the probability
that this pair of vectors differs in sign is:

Pr[sign(g - Ao) # sign(g- Bo)] =
This probability holds for all pairs, since all pairs have
the same angle. Thus, in expectation, there are 6 -
q/m pairs with different signs. Since a pair of dot
products g - A;, g - B; differ in sign exactly when the
pair of dot products g- A;; /2, 9- Bitq/2 differs in sign
(superscripts computed modulo ¢), then the expected
distance between the position pos(z,) and pos(xp) is
exactly 0 - q/(27). O

More generally, if we assume without loss of gen-
erality that pos(z,) = 0, then we can compute the
expected distance of pos(xp) from its “target” posi-
tion j.

Lemma 4 Let A = (A,, A,) and B = (B,,B,) be
two discs that satisfy properties (i) through (iv). Sup-

K. MAKARYCHEV, A. NEWMAN

pose arccos(Ag - B;) = 0. Then: E[dist(pos(wa) +
j,pOS(wb))} —3-q

Proof. The proof is analogous to the proof of Lemma
3, except in this case we consider pairs of vectors
{Ai, Bitj}. O

3 Applying our techniques to
REL-LIN-EQ(q)

We now show how to apply the geometric tools from
Section 2 to the problem of REL-LIN-EQ(q). We con-
sider two semidefinite programming relaxations. The
first relaxation uses 2n vectors (two vectors per ele-
ment), thus making the relaxation tractable for rela-
tively large values of ¢ (e.g. ~ 100 on a desktop). We
show that using this relaxation, we can obtain a .8046-
approximation for the REL-LIN-EQ(¢) problem. In
Section 4, we consider another relaxation, from which
we can obtain an approximation guarantee of .854.
The latter relaxation is in the standard CSP frame-
work and therefore has ¢ vectors per vertex, making
it tractable only for very small values of ¢ (e.g. &~ 15).

In the following quadratic program, each element
x, € V corresponds to two vectors that associate this
element with a two-dimensional plane defined by the
vectors g, and y;-. There are ¢ elements, {y’} for
i € [q], in the disc associated with element x,,.

; 2 - _2med
Yu = €08 (= =)yu +sin ()i (3)

For the equation x, — 2, = dy,(mod ¢), we have the
following objective function:

1+yu- y{'f“” _
2
1+ cos (24w) (yy, - yy) + sin (2dur) (y, - yih)

2)

uveE
Thus, we can write the above objective function using
only two vectors per element.

Quadratic Program (Q):

1 .y duv
max Z 1Y

2
uwveE
Yu " Yu = 1, Vo, €V, (4)
Yo Yu =1, Vz, €V, (5)
Yu Yy =0, Va, €V, (6)

yu'yv:y'j'y#7 Vl‘u7$y€‘/, (7)
Yu va = _yi * Yo Vmu,xv eV, (8)
yuqui_ € 9{2, Vo, V. (9)

A semidefinite relaxation can be obtained by replac-
ing (9) with the constraint y,,y> € R?", Vz, € V.
We refer to this relaxation as (Q}). Note that the
objective value of this quadratic program—and thus
that of the corresponding relaxation—might not be
an upper bound on the value of an optimal solution.
This is because on the interval [7/2 < ¢ < 7], cos ¢ is
a lower bound to ¢/7. Nevertheless, as we now show,
we can derive an upper bound on the value of an opti-
mal solution to the REL-LIN-EQ(gq) problem given an
optimal solution to (Q}). Our main theorem of this
section is that applying the rounding procedure from
Section 2 to the two-dimensional discs obtained from
(Q}) results in the following guarantee:

Theorem 1 Rounding the relaxzation (Q}) is a factor
.8046 approximation for REL-LIN-EQ(q).

Consider a set of vectors {y,,y;-} obtained from an
optimal solution to (Q). Let 6, = arccos (32 - yduv)
and 0y, € [0,7] (i.e. corresponding to the equation
Xy — Ty = dyp(mod ¢q)). Define ~ as follows:

v = Z %COS (Ous). (10)

uveE

We can assume that v € [0,1]. Consider some arbi-
trarily large integer N and define 6; = % Define
Ormin () to be:

N/2
Omin = min a;0; 11
(7) = min ; (11)
subject to: 0<a; < 1, (12)
N/2
> ai=1, (13)
i=1
N/2
Z a;cos (0;) =~ (14)
=0

Define 6,4, () analogously.

Lemma 5 Given an optimal solution for (Q}) where
Y = Y wwer €08 (0uw)/|E|, we can upper bound the
value of an optimal solution: OPT < (1—0,,:n(7))|E|.

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

Proof. Suppose there were a solution with value more
than (1—60,,:,(7))|E|. Then, there would be a solution
to (Q}) with value (14 +')|E|/2 such that 4" >~. O

(1—v)

Lemma 6 For vy € [cos (0aw), 1), Omin = Teos 0.0

Proof: Consider v € [cos (04u),1). Begin with any
set of values {a;} that fulfill constraints (12), (13) and
(14) above. Since cos ¢ is concave in the range [0 <
¢ < 7/2] and convex on the range [7/2 < ¢ < 7|, we
can replace the values of a; with non-negative values
a; such that a} = 0 for 0 < ¢ < N/4 and there is only
one value of j € [N/4,N/2] such that a} # 0. For
these values a}, the following statements hold:

N/2
v = Z a; cos (6;)
i=1

=1—a); 4 aj cos(6;),
N/2
Zaiﬂi 2 a;ﬂj.
i=1

In other words, we have v = 1 — x 4+ x cos§ for some
x > 0 and some value of . We want to determine the
value of # > 0 that minimizes the value x-6. We have:

(1—n)-0

90)=z-6 = 1 —cos(0)

(15)

(1 =%)(1—cosf —0sinb)
(1 —cos)?

g'(0) = (16)

Note that 0., ~ 133.56° is the value that minimizes
(15) and it follows that 6, is also the value for which
(16) equals zero. Thus, for v € [cos (044), 1), we have:

(1 - /Y)eaw

™) 1 —cos (Oaw) (17)

O

Lemma 7 For v € (=1,co8(m — 0aw)], Omaz =

1(—1;03)(«092:,) : For v € [COS (7T - oaw)v 1}7 Omaz =
arccos .

Proof: First, we consider v € (=1, cos (7 — 644,)]. Be-

gin with any set of values {a;} that fulfill constraints
(12), (13) and (14). Since cos ¢ is concave in the range
[0 < ¢ < /2] and convex on the range [7/2 < ¢ < 7,
we can replace the values of a; with non-negative val-
ues a} such that a; = 0 for N/4 < i < N/2 and there
is only one value of j € [0, N/4] such that a’ # 0. For

451

these values af, the following statements hold:

N/2
Z a; cos (6;)
i=1

—1(1 — a}) + a cos(6;),
N/2

Zazﬂi S a’]ﬂj.

i=1

In other words, we have v = x — 1 4+ x cos§ for some
x > 0 and some value of §. We want to determine the
value of 6 that maximizes the value z - 8. We have:

g@)=z-0+(1—a)r

(1+7)0 + (cosf —)
1+ cosf '

We want to find the value of 6 that minimizes g(6).
Taking the derivative, we have:
"0) = (14) (cos@ + 1+ (0 —) sinb)
g = (1 4 cos 6)2 '

We are looking for 6 € [0,7/2]. Thus, ¢'(6) is zero
when the following holds:

0=cosf@+1+ (6 —m)sind

1 —cos(m—0)— (rm—0)sin (7 — 0).

Since this is the same expression as (16), we see that
it is satisfied when m — 6 = 6,,,, which implies that

0 = m — 0qw. Thus, for v € (—1,cos (7 — a)], we
have:
(L +7)(m — Oaw) + (cos (1 — Ogy) —)7
gmaw(’y) = .
1+ cos(m — Oaw)

= (14 7)0qw — mCcoSOa

B 1 — cos (0aw) '
Now we consider v € (cos(m — 0qw),1]. Let 6, =

arccosy. On the interval § € [0 < 6 < 6,], the
function g(f) is an increasing function of 6. So the
function is maximized when 6 0,. Thus, for
v € (cos (7 — Baw), 1], we have 0,4, = arccos-y. O

Now we can prove Theorem 1:

Proof of Theorem 1: Given a solution to (Q}),
where v = > pcos(0uy)/|E|, the approximation
ratio achieved by the rounding procedure is:

T — min{0a0 (), 7/2}

since the numerator is a lower bound on what our
rounding procedure yields, and the denominator is an
upper bound on the value of an optimal solution.

K. MAKARYCHEV, A. NEWMAN

In the interval v € [—1, w — 1], the ap-
proximation ratio is at least:
Z(1 — cos (04w
3 D) > .8046.

(1 —cos (Baw)) — (1 — ¥)0aw

In the interval v € [%ﬁf“’)) —1,c08 (7 — Oaw)];

the approximation ratio is at least:

(L +7)faw
(1 — cos (Ogw)) — (1

Finally, in the interval v € [cos (7 — 044), 1], the ap-
proximation ratio is at least:

> .8046.
= ¥)0aw

T — arccos vy

(1_7)0(1117
1—cos (Oqw)

> .8593.

T —
O

We conclude this section by analyzing the asymp-
totic guarantee of our algorithm when the optimal
value of an instance of REL-LIN-EQ(q) is (1 — €)|F|
for small e.

Theorem 2 If an optimal solution to an instance
of REL-LIN-EQ(q) has wvalue (1 — €)|E|, then our
algorithm finds a solution with value at least (1 —

O(ve))E.

Proof: Suppose € is very close to zero. Consider the
ratio in (18). We have:

(1 —)bfew

1= 7(1 — cos (qw))

>1—e

This implies that: v > 1—pie/ for some constant 5 >
0. The value obtained by the algorithm is 1 — 6. /7.
Since we have v = cos (6,) > 1 — e/, it follows that
cos? (0,) = 1 — 2me/B. Thus, for small values of 6.,
we have 0, < y/2me/B. So the value obtained by our
algorithm is at least 1 — O(/e). O

4 An improved approximation
ratio for REL-LIN-EQ(q)

We now consider another relaxation for which we
can also use the rounding procedure described in Sec-
tion 2. This standard relaxation is the one recently an-
alyzed by Raghavendra for CSP problems [14]. Each
element is represented by an orthogonal constellation
rather than a two-dimensional disc. The first step in
our approach is therefore to find a solution for the re-
laxation of the following quadratic program. Then,

452

the first step in our rounding procedure is to cre-
ate a two-dimensional disc for each element using the
vectors we obtain from this solution. We then apply
the rounding procedure from Section 2 to obtain po-
sitions for each element in the range [0,27). Thus,
despite the fact, that unlike in the output of relax-
ation (@), we do not directly obtain two-dimensional
discs from the SDP, we can still use our geometric tool
from Section 2. We therefore demonstrate a general
connection between the standard relaxation for CSPs
and the CSDP framework. Our analysis yields a .854-
approximation, which is better than the approxima-
tion guarantee given in Section 3.

Quadratic Program (Q-):

>

i,j€[q

max E

P{u,v}(%])“’z * Uy
weE]

u-v; 20, u;-u; =0 Va,,x, €V, 4,5 €[q],

(18)
> lwlf=1 vz, eV, (19)
i€lq]
\Zui—Zuj|2:O Yy, Ty €V, (20)
i€[q] j€ld]
u; € {0,1} Vx, €V, i€ |q (21)

We consider the semidefinite relaxation in which
constraint (21) is replaced by the constraint u; € R
for all , € V,i € [g]. We refer to this relax-
ation as (Q5). In the relaxation (Q5), each element
x, € V corresponds to g orthogonal assignment vec-
tors, {ug,u1,...ug—1}. In an integral solution, for
each element x, € V', only one vector u; (for a single
value of 7) is allowed to be a unit vector. The index of
this vector corresponds to the position to which this
element x, is assigned in this solution. The relax-
ation (Q5) is (exactly) the same as SDP(II) from [14]
(although there are also other ways to write it) and
has been used to obtain approximation algorithms for
Max-Dicut [6], LINEAR EQUATIONS mod ¢ [1] and
UNIQUE GAMES [2,10]. We note that we are using the
payoff function given in (1). However, if, for exam-
ple, we wanted to more accurately model the CONTIG-
SCAFFOLD problem, we could modify the payoff func-
tion so that for a particular equation corresponding
to edge e, all positions more than o(e) away from the
target position have payoff zero. It would be more
difficult to analyze what our rounding procedure gives
with this payoff function.

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

If the size of the domain, ¢, is a fixed integer, then
for any payoff function, Raghavendra gives an algo-
rithm that has an optimal approximation guarantee
assuming the Unique Games Conjecture [14]. More-
over, he shows that an integrality gap of « for the
problem corresponding to this payoff function implies
a Unique-Games hardness factor of «, and shows a
rounding scheme whose approximation ratio is arbi-
trarily close to the integrality gap. However, there is
a shortcoming to these results in terms of efficiency:
both the rounding algorithm and the computation of
the approximation ratio require time that is exponen-
tial in both the domain size and the inverse of the
accuracy parameter, making them impractical to com-
pute for a given payoff function. Moreover, note that
for our problem, ¢ need not be a fixed integer. Thus, in
the case that ¢ is not a fixed integer, Raghavendra’s
algorithm does not guarantee an optimal algorithm
even assuming the Unique Games Conjecture.

Note that our particular payoff function (1) is shift
invariant. In other words, the payoff function only
depends on the relative positions of 7 and j. Because of
this circular symmetry, for each solution with a certain
value, there are actually ¢ solutions with the same
value. We can therefore augment the relaxation (Q5)
with the following constraints:

|ui|2 = 1/(],
Uj

(%) Vr, €V, i€ [g],
"V = Uitk Uitk

Vo, x, €V, 4,5,k € [Q]

We refer to the relaxation (Q%) augmented with the
constraints (%) as (Q3). Note that the constraints ()
are also valid (for the same reasons) in the standard
LINEAR EQUATIONS mod ¢ problem. We will also
use the following lemma that holds for a feasible solu-
tion to the relaxation (Q3).

Lemma 8 For every u,v € V, it is the case that

q —
Zj:o Up * Vj = Up - UQ-

Proof: Note that for each u € V| the sum of elements
equals the same unit vector, call this vector x. Since
the sum of the lengths is 1 and the vectors are pairwise
orthogonal, it must be the case that ug - ug = ug - x.
In other words, we have:

q q
E ’LLQ'Uj:UO'E Vj =Up T = Uy *UQ-
5=0 3=0

453

The lemma follows.

4.1 Geometric rounding of (Q%)

Let {u;} be a feasible solution to (Q%) correspond-
ing to a given instance of REL-LIN-EQ(q). The main
idea behind our improved algorithm is to create the
following two-dimensional disc for each element z, €
V.

27rz

(22)

MQ

(=)

"z

=0

(23)

We can show that the following holds for the vectors
{Us, Uy}

Lemma 9 The vectors {U,,Uy} for x, € V satisfy
properties (i) through (iv).

(Since the proof of Lemma 9 is somewhat long, it can
be found in Appendix B.) We can therefore apply the
rounding procedure from Section 2.

In particular, we can apply Lemma 4 to find posi-
tions for the elements in V. If we choose g € A (0,1)™
and we wish to compute the expected distance be-
tween pos(U, g) and pos(V,g) + h, then we must de-
termine the angle between Uy and V},, in other words
we need to compute the angle between Uy and Vj,.

Lemma 10

1
Uy - Vi 3
0 Th 0, — 0 V.
|Uol - [Vl q,§)COS(k00 ok
Proof:
q—1 .
U0~Vh:Zcos(27r.Z)ui' <(COS(2W.h)) Vy
i=0
+(sin(27r h)) Va:)

q—1
= Z cos (0;)u;- Z cos (6)vj+sin (0) Z sin (UJ>
j=0

(cos 0n)
1 q
<Zcos(9 —Op)v)

'M‘

s
Il
<}

—1

= 3 s (0i)u; - (Zcos 6, — Gh)v]> (24)
=0 %
q—1 i—1

= ug - (Z cos (05 — Gh)vji> (25)
i=0 Jj=1t

K. MAKARYCHEV, A. NEWMAN

q—1 i—1
= Z cos (6;) - <Zcos (05 — 0p)uo - 'l)j_i)
i=0

j=i
q—1 i—1
= Z cos (6;) - (Zcos (0; + (6 — 6, — 6;))uo -”Uj_i>
=0 j =1
q—1 Jq71
= Z cos (0;) - (Z cos (0; + (0 — 6p))uo - Uk) (26)
1=0 k=0
q—1 q—1
= Z cos? (0;) - < Z cos (0 — Op)uo - Uk> (27)
1=0 k=0
q—1
= % . <ZCOS(9k — Op)uo -Uk>- (28)
k=0

To obtain (24), note that the indices of v; are com-
puted modulo p. Line (25) follows from the con-
straints of (Q3). Substituting k for j — ¢ and 6 for
8; — 0;, we obtain line (26). Using the identity for
cos(a+0b) = cosacosb — sinasinb and Lemma 15
(found in Appendix A), we obtain (27). Lastly, apply-
ing Lemma 14 (also found in Appendix A), we obtain
the final equality.

The lemma follows from the fact that the length of
\U;| = % for all i € [q] and all 2, € V. This proof
can be found in Appendix B. O

Applying Lemma 10, we obtain the following theo-
rem. Let 9; = 2%

Theorem 3 Given a set of vectors {u;} that forms
a feasible solution to (Q3%) corresponding to a set of
elements V, we can find a set of positions, {pos(z,)},
for all x,, € V such that for all x,,,x, € V and h € [g]:

{E} [dist (pos(a:u) + h,pOS(ﬂﬁv))}

q—1
arccos (chos (6; — Op)ug - Ui) . 2i
™

i=0
Theorem 3 follows from Lemma 10.

4.2 Analysis

We now consider the payoff function (1) and show
that rounding (Q3) using Theorem 3 gives a good ap-
proximation. In particular, let ALG represent the
value returned by our algorithm, and let SDP repre-
sent the objective value of the formulation (Q%) with
the payoff given in (1). We wish to determine the
worst case ratio of ALG/SDP. Let a; = (ug-v;)p. By
Lemma 8, we have 221:—01 a; = 1. Given a set of values

{ag,...ag_1} such that 3977 a; = 1, we can assume
without loss of generality that Zfi % a; =1, i.e. welet
a; = (uo - v; +ug - Vg/24;)p- This follows from the fact
that both of the two functions below are symmetric.

P ome
arccos cos()a;
2
ALG=1- ;
™
a/2 i
SDP = 1—2-)a,.
;()

Let 6, = QZ'i. Then we have:

q/2
arccos E cos(6;)a;
=0

ALG =1— ,
0
q/2 0. q/2 0.
1=0 1=0
q/2
T — arccos Zcos(@l)al
ALG i=0
SDP q/2 (29)
™ — ZGZ s Qg

ALG
Theorem 4 Spp = -394

Proof: For any value of 6 from 0 < 8 < 7, we consider
an arbitrary set {a;} such that Z‘Zg) 0;a; = 6. We first
show that there exists some set {a}} where a} =0 for
alli:0<i< % andaj=a;foralli:? <i<Zsuch
that:

q/2 q/2
)SURTED SO
i=0 i=0
and
q/2

arccos Z cos (6;) - a;
i=0

< (30)

a/2
arccos E cos (60;) - a,
i=0

and both Zfﬁ) a; = 1 and Zfi% a; = 1. In other
words, the ratio in (29) is no greater using the set

{a} in place of the set {a;}. The inequality in line

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

(30) follows from the fact that the function cos (¢) is
concave on the range [0 < ¢ < 7/2]. Next, we will
show that there is some set {a}} such that af = q
and a} # 0 for only one value of i # 0. Let us refer
to this index as j. This follows from the fact that the
function ¢ is convex on range [7/2 < ¢ < 7. Since

/2
E:g 0 Qi

we have:

= 1, we have ag + aj = 1. In other words,

q/2

arccos Z cos (0
i=0
(31)

arccos

M\
O
£
3

arccos (ag + cos (0;) - af)

We will now show that there exists some 6, and
some value x between 0 and 1 such that 6 = 6,

and:

m — arccos (1 — a’f + cos (0;) - a})

j
T—0

> (32)

m —arccos (1 — x + cos () - x)
m™—0

Let f(0,) = cos(0,) - —x = cos(0/x) -z — x. Note
that the righthand side of Equation (32) is minimized

when f(6,) is minimized. Substituting z = 6/0,.
f(0z) = cos (0;) - % %
~ —0(1 —cos (0))

O

Thus f(6,) is minimized when (1—cos (6,))/6, is max-
imized. Note that by Lemma 3.5 in [7], we have:

_
1 —cos(0,) ~

™

5 (-87856....).

Thus, for any fixed value of 8 = 0, - x, the function
f(6,) is minimized for a value of 8, that we will refer
to as Ogw. (However, note that since x < 1, this is
only true for 6 < Ogw. We will deal with € such that
Oaw < 0 < 7 separately.) We recall that z = 6/0gw .
Thus, we have the following function of z.

m —arccos (1 — z + cos (Ogw) -)

h(x): 7T—9G1/V~:L'

455

Figure 3 shows the function h(z). We conclude that
the function is always at least .854 achieves this value
for 6 = 37 degrees.

For values of € in the range [fgw,), we note that
0, > 6. We note that the function (1 — cos#,)/0, is a
decreasing function of 6, in the range Ogw < 0 < 7.
Thus, the function is maximized for 6, = 6 in this
range, and it is straightforward to observe that (32) is
always at least 1 for values of € in this interval. 0

0.95

0.9

0.85

0 0?1 012 013 0?4 015 016 0?7 018 0;9 1
Figure 3: Graph of the function h(z) on the interval z €

[0,1].

Lemma 11 If the ratio from (29) is considered for a
domain of ¢ = 4, then the ratio is agw > .878.

Proof: In the case of ¢ = 4, the only non-zero values
of a; correspond to the angles 0, 7/2 and 7. Thus, we
want to compute the minimum value of the following
expression. Let x = ag and let y = a4/2. Note that
0 =y-mand that x +y < 1.

m — arccos (z — y)
r—y-nm—(1l—x—y) /2

m — arccos (z — y)
™—0

_ 1 —arccos (x —y)/m
l—y—(l-z—-y)/2
1 — arccos (z — y)/m
(I4+2z—-1y)/2

Let z = x — y. Then the above expression is:

1 — arccos (z) /7
(1+2)/2

which is has a minimum value of agy > .878. O

Suppose the optima value of an instance of REL-
LIN-EQ(q) is at least (1 — €)|E|. It is not surprising
that in this case we can obtain a (1 —0O(/€))|E|, since
we could obtain the same guarantee for the round-

K. MAKARYCHEV, A. NEWMAN

ing of (Q}), which does not appear to be a stronger
relaxation than (Q3).

Lemma 12 If an optimal solution to an instance
of REL-LIN-EQ(q) has wvalue (1 — €)|E|, then our
algorithm finds a solution with value at least (1 —

O(ve))E.

Proof: Given that we fix the angle 6, i.e. the SDP
value is fixed, what is the minimum value returned by
the algorithm? For 0 < Oaw, the worst case is:

7 — arccos (1 — 2 + cos (Ogw) - x)
m™—6

The value of cos(6gw) is at most —.689. If € = I'QT?W,
sox=¢-7/0qw.

1 —arccos (1 — €(1.689) /0w)
1—e¢

1—arccos (1 —¢-0)/m
1—e€
where (3 is a constant that is at least 2.276. This last
quantity is 1 — O(y/€) for small e. O

This is the same asymptotic behavior as the MAX
Curt algorithm of Goemans-Williamson [7].

5 Linear equations mod 4

We can apply our techniques to obtain an improved
approximation factor for the linear equations mod 4
problem. Note that for linear equations mod 3, there
is an algorithm with an approximation guarantee of
at least .793 [8]. However, such a strong result is not
known for the problem of linear equations mod 4. Al-
though previous results indicate that one can do better
than random for linear equations mod ¢ (i.e. there is
an approximation algorithm with a guarantee strictly
better than 1/p, [1,4]), the best known explicitly com-
puted approximation ratio for p =4 is 1/4 + 1/5120
[4]. We show here that we can do much better than
this. Before doing so, we state the following useful
lemma.

Lemma 13 Given an instance of linear equations
mod q, the optimal value for the relaxed objective is
at least as large as the optimal value for the standard
objective.

Proof: This follows since any solution for the stan-
dard linear equations mod ¢ contributes 1 for each

456

satisfied assignment and at least 0 for every unsatis-
fied assignment. O

theorem 5 Linear equations mod 4 can be approxi-
mated to within a factor of agw /2 ~ .439.

Proof: Consider a solution to the relaxed version of
linear equations mod 4. For each equation, we either
satisfy it (contributing 1 to the objective function)
or we do not satisfy it (contributing .5 or 0 to the
objective function). For each element, x;, we keep
the assignment of z; unchanged with probability .5.
With probability .5, we make the assignment z; :=
(z; + 1)mod4. If the equation was satisfied, then we
have probability half that it is still satisfied (i.e. both
variables remain unchanged or both change). If the
contribution was .5, there is a .25 chance that the
equation is satisfied.

Thus, we are obtaining a solution with value agyw /2
of the optimal for the relaxed version, which by
Lemma 13 is at least as large as optimal. Thus, we
can conclude that we can satisfy at least agw /2 as
many equations as an optimal solution. O

6 Future directions

We plan to run experiments on actual or simulated
contig data to see how our methods can be applied
in practice. For example, we can consider constraints
based on pairs of contigs in an actual arrangement
that has had some noise added to it. We note that
even if actual contig-mate-pair-graphs are much larger
than what our algorithm can handle, we would like to
know if constructing a scaffold from a small sample of
the contigs gives any helpful information in determin-
ing the final arrangement of contigs.

Finally, we remark that we can possibly use our
techniques for assembly on a line, simply by constrain-
ing the elements to lie on, say, a half circle. Given
that the current methods are more naturally tailored
to a circle, this would likely be more computationally
expensive (more constraints), but is a direction for fu-
ture investigation.

Acknowledgments

AN would like to thank Nir Ailon, Khaled Elbas-
sioni and Kurt Mehlhorn for valuable suggestions and
for comments on an earlier version of this paper. She
would also like to thank Kevin Chen, Adel Dayarian

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

and Alexander Schliep for helpful discussions related
to genome assembly. This work was done in part while
AN was a member of the Algorithms and Complexity
Group at the Max-Planck-Institut fiir Informatik in
Saarbriicken, Germany.

References

1]

G. Andersson, L. Engebretsen, and J. Hastad. A
new way to use semide?nite programming with
ap-plications to linear equations mod p. Journal
of Algorithms, 39:162-204, 2001.

M. Charikar, K. Makarychev, and Y.
Makarychev. Near-optimal algorithms for
unique games. In Pro-ceedings of the 38th

Annual Symposium on the Theory of Computing
(STOC), Seattle, 2006.

A. Dayarian, T. P. Michael, and A. M. Sengupta.
SOPRA: Scaffolding algorithm for paired reads
via statistical optimization. BMC Bioinformat-
ics, 11:345, 2010.

L. Engebretsen and V. Guruswami.Is constraint
satisfaction over two variables always easy? Ran-
dom Structures and Algorithms, 25(2):150-178,
2004.

G. Even, J. Naor, S. Rao, and B. Schieber.
Divide-and-conquer approximation algorithms
via spreading metrics. Journal of the ACM,
47(4):585-616, 2000.

U. Feige and M. X. Goemans.Approximating the
value of two prover proof systems with applica-
tions to MAX-2-SAT and MAX DICUT. In Pro-
ceedings of the Third Israel Symposium on Theory
of Computing and Systems, pages 182-189, 1995.

M.X. Goemans and D. P. Williamson. Im-
proved approximation algorithms for maximum
cut and satisfiability problems using semide?nite
programming. Journal of the ACM,42:1115-1145,
1995.

M.X. Goemans and D. P. Williamson. Ap-
proximation algorithms for MAX-3-CUT
and other problems via complex semidefinite

program-ming. Journal of Computer and System
Sciences, 68:442-470, 2004.

D. H. Huson, K. Reinert, and E. W. Myers.The
greedy path-merging algorithm for contig scaf-
folding. Journal of the ACM, 49(5):603-615,
2002.

457

[10]

[11]

[13]

[14]

[15]

A

S. Khot. On the power of unique 2-prover 1-round
games. In Proceedings of the 34th Annual Sympo-
stum on the Theory of Computing (STOC), pages
767-775, Montreal, 2002.

E. W. Myers, G. G. Sutton, H. O. Smith, M.
D. Adams, and J. C. Venter. On the sequencing
and assembly of the human genome. Proceedings
of the National Academy of Sciences, 99(7):4145-
4146, 2002.

P. A. Pevzner and H. Tang. Fragment assembly
with double-barreled data. In ISMB (Supplement
of Bioinformatics), pages 225-233, 2001.

M. Pop.Genome assembly reborn: recent com-
putational challenges. Briefings in Bioinformat-
ics, 10(4):354-366, 20009.

P. Raghavendra. Optimal algorithms and
inapprox-imability results for every CSP? In Pro-
ceedings of the 40th ACM Symposium on the The-
ory of Com-puting (STOC), pages 244-254, 2008.

S. Zhang and Y. Huang.Complex quadratic op-
timization and semidefinite programming. SIAM
Journal on Optimization, 16(3):871-890, 2006.

Some basics

We give some definitions and basic lemmas that we
use several times. Let §; = 2%, Let ¢ be an integer
representing the size of the domain.

Lemma 14 If q > 3, then:

-1

1% 1 1

- E cos? 0, = = E sin?6; = =.

q- q“ 2
=0 7=0

Proof: If we assume that the two sums are equal,
then since the two sums sum to one, it follows that
each sum equals one half. Thus, it remains to prove
that the two sums are equal. We have:

sin? 0, — 1 — cos(26;)
‘ 2
=0 =0
q—1 q—1
cos?f; = H%().
=0 =0

Thus, if we can show that:

qg—1
Z cos(26;) =0,
i=0

K. MAKARYCHEV, A. NEWMAN

then we are done. To do this we can use complex

numbers. Let x = 47“. We have:
q—1 q—1
cos(26;) = Re Zei(“’j)
=0 =0
1— i(47r)
S
1—e'a

1 — cosdm — isindm

Foing)

4

1 — cos —isin =&

Re(

We can multiply both the numerator and denominator
by the complex conjugate of the denominator:

e (()()

0-(1—cosz+isinx)

1 —cosdm —isindn 1—cosx+isinz

1—cosz+isinz

)

0-(1—cosz+isinz)

1 —cosz —isinz

Re (

(1 —cosx)? +sin’z
Re ()

Note that the numerator is always 0, regardless of
q. However, the denominator is also 0 when ¢ = 1, 2.

33
2 —2cosx (33)

=0

Thus, the lemma holds only for ¢ > 3. (]
Lemma 15 If g > 3, then:

q—1

Zcos 0; sinf; = 0.

i=0

Proof: Since we have that cos 8;-sin8; = 2sin 26;, the
resulting sum obtained by this substitution is just the

imaginary part of the expression (33). When ¢ > 3,
the imaginary part of this expression is always 0. [
Fact 1
q—1 q—1
Zcos 0j)v; = cos(8; + (0; — 6:))v;
Jj=0 J=0
qg—1
= » (cos(0;)cos(8; —6;) —
j=0
sin (6;) sin (6; — 6;))v;
Fact 2
q—1 q—1
Zsin (05)v; = sin(6; + (0 — 0;))v;
Jj=0 Jj=0
q—1
= > (sin(6;)cos(0; — 6;) +
7=0

COS (91) sin (9] — 97;))11]'

458

B Proof of Lemma 9

Given a set of vectors {u;} for u € V and i € [p]
that form a feasible solution to the relaxation (Q5),
we show that the corresponding vectors {U,,U,} sat-
isfy the following properties. We assume that ¢ > 3.
Recall that 6; = %

i) Uy -Uy =0, forall z,, €V,

[=H

i) [Us| =

(i)

(i Uyl = V2| =
(iii) U.

(

(

|Vyl|, for all z,,z, €V,
e Vy=Uy (=Vy), forall z,,z, €V,

iv) Uy - Vo =U,y -V, forall zy,2, € V.

i)

qg—1

<Z sin (2m)uz> .
i=0

Since w; - uj # 0 if and only if ¢ = j, we have:

q—1
<Z sin®; cos; (u; - uz)>
i=0
1 [
- (Z sin6; cos 9i>
17\i=

0

Jj=1

U, - U,

The last equality follows from Lemma 15.

(i)

q—1 . q—1
U, U, = Zsin(%rq Z)ulwz:sin(27T !
i=0 i=0

The last inequality follow from Lemma 14. Thus we

have |Uy| = Note that we also use Lemma 14 to
show that |U, | = —=. Thus, property (ii) holds for all
ueV.

(iii)

Ky 21 -4 Ky 2 -3
U, Vy:Zsin()ui-ZCOb(])Uj
i=0 q 7=0 q

COMPLEX SEMIDEFINITE PROGRAMMING REVISITED AND THE ASSEMBLY OF CIRCULAR GENOMES

By Fact 1, we have:

q—1 q—1
— E Sil’l2 Hiui E sin (6?] — Oi)vj
=0 7=0

q—1 qg—1
— E sin? 6, E sin (0)ug - vk
§=0 k=0

U, Vy

By definition, we have:

27 -

7 Z)ul (—j}_:osin(

2

gy
q)UJ>

q—1 g—1
Uy~ (=Va) = =) cos” yu; Yy _sin (6; — 0;)u;
1=0 j=0

Uy - (—Vg) = icos(

By Fact 2, we have:

q—1 q—1
- E cos? 6; E sin (0x)ug - vg-
j=0 k=0

Thus, by Lemma 14, we see that property (iii) holds.

(iv)

Up - Vo =Uy -V,
qg—1 .
2
= Zcos(ﬂ) ug - ;-
i=0 4

q—1
. ZSiH (Hj)vj

j=0

q—1

=0

)

We recall that for j > 4, we have u; - v; = ug - v(j—s)-
By Fact 2, we have:

q—1q—1+4:
Uy - Vp = (sin? (6;) sin (0; — 6;)
=0 j=t
cos (0;) sin (0;) sin (0; — 6;))uo - v(j—s)
q—1 q—1
= Z sin?0; > (cos (0x)) ug - vi
i=0 k=0
¢
=5 > (cos (Ok)) up - vy
k=
q—1 q—1
Uy - Vy = (D cos (B:)ui) - (Y cos (6;)v5)
1=0 j=0

We recall that for j > i, we have u; - v; = uo - v(;—s). By

Fact 1, we have:

q—1qg—1+41
U, -V, = Z Z (cos® (8;) cos (0; — 60;)—

i=0 j=i

cos (0;) sin (6;) sin (05 — 6:))uo - v(j—)

q—1 q

-1
Z cos® 0; Z (cos (0k)) uo - vk
i k=0

(cos (0k)) uo - k.

Thus, property (iv) holds.

459

